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Abstract— The auto-encoder method is a type of dimensional-
ity reduction method. A mapping from a vector to a descriptor
that represents essential information can be automatically
generated from a set of vectors without any supervising infor-
mation. However, an image and its spatially shifted version are
encoded into different descriptors by an existing ordinary auto-
encoder because each descriptor includes a spatial subpattern
and its position. To generate a descriptor representing a spatial
subpattern in an image, we need to normalize its spatial
position in the images prior to training an ordinary auto-
encoder; however, such a normalization is generally difficult
for images without obvious standard positions. We propose
a transform invariant auto-encoder and an inference model
of transform parameters. By the proposed method, we can
separate an input into a transform invariant descriptor and
transform parameters. The proposed method can be applied to
various auto-encoders without requiring any special modules
or labeled training samples. By applying it to shift transforms,
we can achieve a shift invariant auto-encoder that can extract
a typical spatial subpattern independent of its relative position
in a window. In addition, we can achieve a model that can
infer shift parameters required to restore the input from the
typical subpattern. As an example of the proposed method, we
demonstrate that a descriptor generated by a shift invariant
auto-encoder can represent a typical spatial subpattern. In
addition, we demonstrate the imitation of a human hand by
a robot hand as an example of a regression based on spatial
subpatterns.

I. INTRODUCTION

The auto-encoder method [1], [2], [3] is a type of dimen-
sionality reduction method. It can extract essential informa-
tion from a vector via general non-linear mapping. Moreover,
a mapping from a vector to a descriptor representing essential
information can be automatically generated from a set of
vectors without any supervising information.

In general, an auto-encoder is generated as an encoder and
decoder pair. The encoder converts a vector to a descriptor
with lower dimensionality, and the decoder approximately
restores the original vector from the descriptor. An auto-
encoder can be trained using a set of training samples
by minimizing the restoration error of the encoder–decoder
combination. After the training, the encoder should be able
to generate a numerical representation of the principal com-
ponents required to restore the original vector. Because the
encoder and the decoder can be non-linear and can be trained
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without supervisor information, the auto-encoder method is
suitable for allocating numerical vectors to targets without
simple numerical representations.

As a measure of the accuracy of the restoration performed
by a auto-encoder, the simple `2 measure is often used. Using
the `2 measure, an image and its spatially shifted version
are considered to be different. If an auto-encoder is trained
with the `2 measure, images including a common spatial
subpattern may be encoded as very different descriptors
depending on the position of the subpatterns (Fig. 1(a)). This
means that an ordinary auto-encoder inseparably embeds
a spatial subpattern and its position within a descriptor.
Therefore, to generate a descriptor representing a spatial
subpattern in an image, we need to normalize its spatial
position in the images prior to training an ordinary auto-
encoder. However, such a spatial normalization is generally
difficult. For example, the normalization of the appearances
of various hand–object interactions such as those shown in
Fig. 2, is not obvious and requires a pattern recognition
technique to automatically find the standard for each image.

A combination of a convolutional neural network
(CNN)[4] and spatial pooling ignores shifts of local small
shifts, but it ignores only small shifts. M. Jaderberg et al.
proposed “Spatial Transformer Networks” [5], which include
a module to learn a spatial transform that is effective in
classification. The transform module can cancel a transform
including a spatial shift; however it must be trained with a
teacher label for each input image. X. Shen et al. proposed
“Transform-Invariant Convolutional Neural Networks” [6].
but it requires a teacher label for each input image on the
training process, too. M. Baccouche et al. proposed “Sparse
Shift-Invariant Representation” [7], which requires a special
training process where the best translation need to be found
for each training sample. M. Ranzato et al. proposed “Sparse
and Locally Shift Invariant Feature Extractor”[8]; however,
its shift invariance is achieved at the cost of low spatial
resolution by down sampling by max-pooling layer.

We propose a transform invariant auto-encoder that outputs
a descriptor invariant with respect to a set of transforms. By
considering spatial shifts, the proposed method can generate
a shift invariant auto-encoder, which extracts a typical spatial
subpattern without regard to its relative position in a window
(Fig. 1(b)). The proposed method is based on a novel cost
function for training an auto-encoder, which induces trans-
form invariance and accurate restoration. The proposed cost
function is so designed as to be independent of the concrete
structures of an encoder and a decoder of an auto-encoder.
Therefore, it can be applied to various auto-encoders without
requiring any special modules or labeled training samples.
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Fig. 1. Characteristics of auto-encoders

Fig. 2. Appearances
of hand–
object
interactions

The proposed method can achieve transform invariance
without requiring layers for low spatial resolution. Using
the proposed method, we can encode spatial subpatterns in
images even if the images are difficult to label or normalize,
for example, the appearances of hand–object interactions.

As an example, we have experimented with a shift in-
variant auto-encoder. In several experiments, we demonstrate
that a descriptor using a shift invariant auto-encoder can
represent a typical spatial subpattern. We also demonstrate
the imitation of a human hand by a robot hand as an example
of regression based on spatial subpatterns.

II. ORDINARY AUTO-ENCODER

In general, an auto-encoder is so trained that the encoder–
decoder combination approximately restores an input in a
certain input set. It is formulated as a problem minimizing
a cost function Cord(E,D) defined as

Cord (E,D) =
∑
I∈S
‖I −D (E (I))‖22 , (1)

where S, D(·), E(·), and ‖·‖p denote a set of inputs, the
encoder, the decoder, and the `p norm, respectively.

To minimize Cord(E,D), the decoder should be able to
approximately restore an original vector I from its descriptor
E(I), which has a lower dimensionality than I . By training
the encoder E and the decoder D by minimizing Cord(E,D),
information sufficient to restore an original vector can be
extracted as a descriptor by the encoder. In this way, the auto-
encoder method can construct descriptors of vectors from just
a set of training vectors.

However, a descriptor of an image from an ordinary auto-
encoder includes both a spatial subpattern and its position.
If images have a common spatial subpattern at different
positions, their descriptors are different.

III. TRANSFORM INVARIANT AUTO-ENCODER

As a method to construct a descriptor representing a
property invariant to a certain set of transforms, we propose

a transform invariant auto-encoder. We call the set “ignored
transforms”. A transform invariant auto-encoder is generated
by training an auto-encoder with a novel cost function. The
cost function should induce the accurate restoration of a
subpattern as well as transform invariance. We achieve such
an cost function by adding a transform variance term and
relaxing the restoration error term.

A. Transform Variance Term

As a measure of the transform variance, we propose a
sum of differences between a restored image and an image
restored from a transformed input as follows:

Cinv(E,D)
def
=
∑
I∈S

∑
i

‖D (E (I))−D (E (Tθi (I)))‖22 ,

(2)
where S and Tθ denote a set of training inputs and a
transform operator in the ignored transforms, respectively.
To minimize (2), the combination of the encoder E and
the decoder D need to output similar vectors for variously
transformed versions of an input. By optimizing the encoder
E and the decoder D so that they minimize (2), their
combination is approximately transform invariant for inputs
in the set S.

B. Restoration Error Term

To compare subpatterns without respect to ignored trans-
forms, we need to relax the restoration error cost in (1) so
that it will be small if a restored input matches a transformed
version of its original input. Therefore, we propose the
following term as a measure of the accuracy of the restoration
of a subpattern:

Cres(E,D)
def
=
∑
I∈S

min
i
‖Tθi (I)−D (E (I))‖22 . (3)

To minimize (3), the restored image D(E(I)) should approx-
imately match one of the transformed inputs {Tθi(I)}. This
means that the subpattern should be approximately restored.

C. Cost Function

Our total cost function C(E,D) is formulated as follows;

C (E,D)
def
=λinvCinv (E,D) + λresCres (E,D)

+ λspa

∑
I∈S

(
‖E (I)‖1
‖E (I)‖2

)2

,
(4)

where λinv, λres, and λspa denote the scalar weights of each
term. The third term evaluates the spatial sparseness of the
descriptors [9].

We train the encoder E and the decoder D so that they
minimize the proposed cost function C (E,D).

IV. INFERENCE OF TRANSFORM PARAMETER

We also propose a inference method of a transform param-
eter which is ignored by a transform invariant auto-encoder.
We define a transform parameter of an input I as a parameter
representing a transform from the input I to the restored
input D(E(I)). For example, a transform parameter for a



shift invariant auto-encoder means a spatial shift. An input
can be approximately restored from its descriptor and trans-
form parameter. Therefore, a pair of a transform invariant
auto-encoder and the corresponding inference model of a
transform parameter is an auto-encoder that can represent an
input as a pair of a transform invariant part and a transform
variant part.

We propose the following cost function to train an infer-
ence model R of a transform parameter.

Cpar(R) =
∑
I∈S

∥∥∥∥R (I)− argmin
θ
‖I − Tθ (D (E (I)))‖22

∥∥∥∥2
2

.

(5)
We can achieve an inference model R of a transform
parameter by minimizing Cpar(R).

V. EXPERIMENTS

We demonstrate the effectiveness of the proposed method
by experiments with a shift invariant auto-encoder. The shift
operator Tθi is defined as

(Tθi (I)) (x, y) = I(x+ ∆xi, y + ∆yi), (6)

where I(x, y) denotes the value of the image I at the position
(x, y). We used the following shift parameters:

{(∆xi,∆yi)} = {−8,−6,−4,−2, 0, 2, 4, 6, 8}2 . (7)

A. Experiments for MNIST

Here, we demonstrate shift invariant property of the pro-
posed method using experiments for digit patterns.

As an encoder, we used a neural network consisting of a
single CNN with 9× 9 filter kernels and 16-channel outputs
following a max pooling with stride 2 and a three-layer fully
connected neural network (NN), where each layer has 1500,
150, 30 outputs respectively. As a decoder, we used a three-
layer fully connected NN, where each layer has 150, 1500,
1024 outputs, respectively. In addition, we used a hyperbolic
tangent as an activation function, which is placed between
each pair of layers. We generated two pairs of encoders and
decoders with the same structure. One was trained as an
ordinary auto-encoder by minimizing (1), and the other was
trained as a shift invariant auto-encoder by minimizing (4) for
digit images of training images in the MNIST database [4].
For the ordinary auto-encoder, we used additional images
that were randomly shifted according to the parameters in
(7). Both auto-encoders were trained by stochastic gradient
descent (SGD) [4] with learning rate 1.0 × 10−3, and both
were updated with every 50 samples that were randomly
extracted from the training images (60k samples) in the
MNIST database. We used auto-encoders that were updated
100,000 times (≈ 83 epochs). We also trained an inference
model R of a shift parameter. The inference model consisted
of a three-layer fully connected NN.

As an example, we encoded and decoded an test image
of the digit “2”, which is not used in training auto-encoders.
Input images are shown in Fig. 3, where the center image is
the original image in the MNIST database and the others are
its shifted versions. Images in Fig. 4 are restored from images

in Fig. 3 using an ordinary auto-encoder. Images restored by
a proposed shift invariant auto-encoder are shown in Fig. 5.
Fig. 6 shows the restored images which are shifted according
to the shift parameters estimated by the inference model R.
In Fig. 4, the restored images are located depending on the
shifts in the input images. Conversely, the restored images
in Fig. 5 are very similar to each other and they are closer
to a typical shape of the digit “2” than the input in Fig. 3. In
the cost function (4), there is a trade-off between Cinv and
Cres. In this case, the auto-encoder successfully find a typical
shape of the digit “2” by focusing on shapes without their
positions.

In addition, we calculated the distributions of the de-
scriptors from the shifted images. We encoded the digit
images corresponding to “2”, “5”, and “7” and their shifted
versions using the two auto-encoders. Fig. 7 shows the
distributions from the ordinary auto-encoder, and Fig. 8
shows those from the shift invariant auto-encoder. In these
figures, 30 dimensional descriptors are projected onto a two-
dimensional space spanned by the three mean vectors of
the descriptors for digits “2”, “5”, and “7”. By comparing
these figures, we see that descriptors generated by the shift
invariant auto-encoder are obviously concentrated for each
digit. With a shift invariant auto-encoder, descriptors from
shifted images of the same digit are close to each other and
descriptors from shifted images of other digits are far from
each other. This means that a descriptor generated by a shift
invariant auto-encoder represents the spatial subpattern. In
addition, descriptors in Fig. 8 make clusters corresponding
to digits, even though we have entered no digit information
when training the shift invariant auto-encoder. The proposed
method may be applicable to the unsupervised clustering of
images based on their spatial subpatterns.

B. Experiments for Hand Object Interactions

Here, we show examples of the encoding appearances
of hand–object interactions, which are generally difficult to
label or normalize.

In this experiment, we used a two-channel image con-
sisting of a hand region mask and an object region mask
(Fig. 9) as the input of the auto-encoders. The structures of
the encoder and the decoder are similar to those used in V-
A except that the input of the encoder and the output of the
decoder are two-channel (32×32)[pixel] interaction images.
We generated interaction images from the interaction scene
images with a simple background via skin color extraction
and background subtraction. We trained an ordinary auto-
encoder and a shift invariant auto-encoder with interaction
images that included a hand region larger than 20% of the
entire image. The interaction images were extracted from
random positions of 1680 scenes including the 14 types
of interactions shown in Fig. 10. Both auto-encoders were
trained using SGD and both were updated with every 168
samples randomly extracted from the 1680 scenes. We used
auto-encoders updated 20,000 times.

To compare the spatial patterns represented by the descrip-
tors using an ordinary auto-encoder and a shift invariant auto-



Fig. 3. An image in MNIST
and its shifted versions

Fig. 4. Images restored using
an ordinary auto-encoder

Fig. 5. Images restored using
a shift invariant auto-encoder

Fig. 6. Images restored using
a shift invariant auto-encoder
with inferred shifts
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Fig. 9. An interaction image

encoder, we encoded and decoded the interaction images
used in the training process. Fig. 11 shows nine interaction
images extracted from a scene where a cutter is grasped.
Fig. 12 shows the interaction images restored using the
ordinary auto-encoder. In the figure, outlines of the restored
hand region masks are blurred and differ depending on
the shifts in the input images. In particular, the restored
images in the right column are very different from their input
images. Fig. 13 shows the interaction images restored using
the shift invariant auto-encoder. Contrary to the ordinary
auto-encoder, the interaction images restored by the shift
invariant auto-encoder have clearer outlines. This shows
that the descriptors generated by the shift invariant auto-
encoder represent spatial subpatterns more accurately than
those generated by an ordinary auto-encoder, as we expected.

The restored images are similar to the center image in
the left column of Fig. 11. This means that the image is
considered to be a typical image in the training process
of the shift invariant auto-encoder. In addition, the bottom
image in the right column of Fig. 13 is similar to the typical
image even though the corresponding input image in Fig. 11
includes only fingertips. This means that a shift invariant
auto-encoder can predict a possible neighbor typical pattern

Cup without a handle Mug

Reversed mug
Cutter Pentype1 type2Scissors

Eraser
type1 type2Stapler

type1 type2

type1 type2type1 type2

type1 type2

Fig. 10. Interaction types

(a) Appearances (b) Hand region masks (c) Object region
masks

Fig. 11. Example of input interaction images

from a local non-typical pattern. The shift invariant auto-
encoder enables us to analyze an image using typical features
without a dense scan.

In addition, we applied similar experiments to unknown
interaction images that are not used in the training process.
Fig. 14 shows interaction images restored by the ordinary
auto-encoder and the shift invariant auto-encoder. Fig. 14(a)
is the case of grasping a cutter, and Fig. 14(b) is the
case of grasping scissors. Fig. 14(a) shows that the shift
invariant auto-encoder extracted mask shapes regardless of
their position. Fig. 14(b) shows that the ordinary auto-
encoder failed to restore masks accurately; however, the shift
invariant auto-encoder restored typical interaction images.
The shift invariant auto-encoder can predict a possible typical
interaction image even from images not used in the training
process.

C. Experiments on Human Hand Imitation using a Robot
Hand

Here, we show examples using the proposed method for
controlling a robot hand. Even though a joint angle can be
represented numerically, it is not obvious which combina-
tions of joint angles of a robot hand are effective for grasping
an object. If a robot hand can imitate the effective hand
posture of a human, the cost of designing the joint angles



(a)Hand region masks (b)Object region masks

Fig. 12. Interaction images restored using an ordinary auto-encoder

(a)Hand region masks (b)Object region masks

Fig. 13. Interaction images restored using a shift invariant auto-encoder

can be reduced. Such imitations can be realized by learning
the relationship between the appearance of a human hand
and the corresponding joint angles of a robot hand. A shift
invariant auto-encoder can effectively numerically represent
the appearance of a human hand because the corresponding
joint angles of a robot hand are independent of the location
of the human hand in the view.

We developed an imitation program as follows.
1) Collect depth images of postures of a human hand.
2) Generate a shift invariant auto-encoder for the col-

lected depth images.
3) Allocate the joint angles of a robot hand to several

postures of a human hand.
4) Train a neural network regressor to calculate the joint

angles of a robot hand from a descriptor of a human
hand posture.

Using a shift invariant auto-encoder, we can generate a
descriptor representing a human hand shape directly from
the appearances without any normalization.

In this experiment, we used a 3-finger robot hand with
10 degrees of freedom (9 DOF fingers and 1 DOF wrist).
We trained a shift invariant auto-encoder and a regressor so
that the fingers of the robot hand imitated the thumb, the
forefinger and the middle finger (Fig. 15). The encoder of the
shift invariant auto-encoder consists of two CNN layers and a
three-layer fully connected NN, and the decoder is a three-
layer fully connected NN. In this experiment, the encoder
converts a single channel (32× 32)[pixel] depth image into
a 100-dimensional descriptor and the regressor converts a
descriptor into the joint angles of the robot hand. The shift
invariant auto-encoder is trained with 9377 depth images and
the regressor is trained with 1339 pairs of descriptors and
manually determined combinations of joint angles.

To demonstrate the effectiveness of the proposed method,
we developed a similar program using principal component
analysis (PCA) instead of the shift invariant auto-encoder.
The dimension of the descriptors used by the PCA is 100,

which is the same as that used by the shift invariant auto-
encoder. The cumulative contribution ratio for the dimension
is approximately 95%.

The left two columns in Fig. 16 show RGB images
and depth images of a human hand that are not used in
the training process. The third and fifth columns in the
figure show images restored by the shift invariant auto-
encoder and PCA, respectively. The shapes of the fingers
are preserved in the images restored by the shift invariant
auto-encoder; however, PCA does not preserve such features.
This is because a descriptor generated by PCA depends on
the position of the spatial subpattern and the positions of
the human hand in Fig. 16 are different from the training
samples. This means that the shift invariant auto-encoder
is more suitable for generating a descriptor representing a
spatial subpattern.

We show the results of the imitations in the fourth and
sixth columns in Fig. 16, where the robot hand replays the
joint angles calculated by the regressor. In the case using
PCA (the sixth column in Fig. 16), the joint angles of the
robot hand are very different from those of the human hand.
However, in the case using the shift invariant auto-encoder
(the fourth column in Fig. 16), the joint angles of the three
fingers of the robot hand appear similar to those of the
human hand. Because a descriptor generated by the shift
invariant auto-encoder represents the spatial shape accurately,
the regressor can learn the relationship between a shape and
the joint angles more accurately than when using PCA.

In Fig. 17, we show error histograms for 9 joints on
fingers and a joint on the wrist. They are calculated from
27 samples that are not used in the training process. In
Fig. 17, “PCA+NN” and “SIAE+NN” mean NN-based angle
regressions from a descriptor by PCA or Shift Invariant
Auto-Encoder (SIAE). “Direct CNN” means a CNN-based
direct regression from an input image to joint angles without
intermediate descriptors. In Fig. 17(a), the histograms are
similar, but Fig. 17(b) shows that the SIAE+NN estimated
the wrist angles more accurately than the PCA+NN and the
Direct CNN. The PCA+NN and the Direct CNN may be
overfitted to the training samples. The root mean squared
errors (RMSEs) of the PCA+NN, the Direct CNN and
the SIAE+NN for fingers are 30.8, 22.2 and 22.1[degree],
respectively. The RMSEs of them for the wrist are 64.2, 49.0
and 56.2[degree], respectively. Although the SIAE+NN has
a larger RMSE due to a few samples with very large error,
the ratio of samples with errors within ±5[degree] is 81%
much larger than 22% (the PCA) and 11% (the Direct CNN)
as shown in Fig. 17(b).

These results show that a shift invariant auto-encoder is
effective for regression based on a spatial subpattern.

VI. CONCLUSIONS

We proposed a transform invariant auto-encoder and
demonstrated that a shift invariant auto-encoder can generate
a descriptor representing a spatial subpattern regardless of
its position. In several experiments, we showed that the
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Fig. 14. Restoration from unknown interaction images
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Fig. 16. Imitation of a human hand by a robot hand

Direct CNN
SIAE+NN

Error [degree]

R
at

io

PCA+NN

0 60 120 180-60-120-180
0

0.2

1.0

0.8

0.6

0.4

 

 

 

(a) 9 joints on fingers

Direct CNN
SIAE+NN

Error [degree]
R

at
io

PCA+NN

0 60 120 180-60-120-180
0

0.2

1.0

0.8

0.6

0.4
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Fig. 17. Error histograms of
estimated joint angles

proposed method is applicable to regression based on a
spatial subpattern.

In this paper, we experimented with spatial subpatterns and
shifts. However, the framework of the proposed cost function
can be applied to temporal patterns and other transforms
such as dilation and rotation. Since the proposed function
requires enumeration of transforms, random sampling of
transforms may be required to suppress the computation
cost. With such an extension, an auto-encoder will be able
to independently encode typical motions in a video without
regard to dilation and rotation. This will be useful for motion-
based recognition.
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