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Abstract— This work provides an architecture to enable
robotic grasp planning via shape completion. Shape completion
is accomplished through the use of a 3D convolutional neural
network (CNN). The network is trained on our own new open
source dataset of over 440,000 3D exemplars captured from
varying viewpoints. At runtime, a 2.5D pointcloud captured
from a single point of view is fed into the CNN, which fills in the
occluded regions of the scene, allowing grasps to be planned and
executed on the completed object. Runtime shape completion
is very rapid because most of the computational costs of shape
completion are borne during offline training. We explore how
the quality of completions vary based on several factors. These
include whether or not the object being completed existed in
the training data and how many object models were used to
train the network. We also look at the ability of the network
to generalize to novel objects allowing the system to complete
previously unseen objects at runtime. Finally, experimentation
is done both in simulation and on actual robotic hardware to
explore the relationship between completion quality and the
utility of the completed mesh model for grasping.

I. INTRODUCTION

Grasp planning based on raw sensory data is difficult due
to occlusion and incomplete information regarding scene ge-
ometry. This work utilizes 3D convolutional neural networks
(CNNs)[1] to enable stable robotic grasp planning via shape
completion. The 3D CNN is trained to do shape completion
from a single pointcloud of a target object, essentially filling
in the occluded portions of objects. This ability to infer
occluded geometries can be applied to a multitude of robotic
tasks. It can assist with path planning for both arm motion
and robot navigation where an accurate understanding of
whether occluded scene regions are occupied or not results
in better trajectories. It also allows a traditional grasp planner
to generate stable grasps via the completed shape.

The proposed framework consists of two stages: a training
stage and a runtime stage. During the training stage, the
CNN is shown occupancy grids created from thousands
of synthetically rendered depth images of different mesh
models. Each of these occupancy grids is captured from a
single point of view, and occluded portions of the volume
are marked as empty. For each training example, the ground
truth occupancy grid (the occupancy grid for the entire 3D
volume) is also generated for the given mesh. From these
pairs of occupancy grids the CNN learns to quickly complete
mesh models at runtime using only information from a single
point of view. Several example completions are shown in
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Fig. 1: Ground Truth, Partials, and Completions (L to R). The
top four are completions of synthetic depth images of Grasp
Dataset holdout models. The mug and drill show completions
of Kinect-captured depth images of physical objects.

Fig. 1. This setup is beneficial for robotics applications as the
majority of the computation time takes place during offline
training, so that at runtime an object’s partial-view pointcloud
can be run through the CNN and completed in under a tenth
of a second on average and then quickly meshed.

During the runtime stage, a pointcloud is captured using a
depth sensor. A segmentation algorithm is run, and regions
of the pointcloud corresponding to graspable objects are
extracted from the scene. Occupancy grids of these regions
are created, where all occluded regions are labeled as empty.
These maps are passed separately through the trained CNN.
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The outputs from the CNN are occupancy grids, where
the CNN has labeled all the occluded regions of the input
as either occupied or empty for each object. These new
occupancy grids are either run through a fast marching cubes
algorithm[2], or further post-processed if they are to be
grasped. Whether the object is completed or completed and
post-processed results in either 1) fast completions suitable
for path planning and scene understanding or 2) detailed
meshes suitable for grasp planning, where the higher resolu-
tion visible regions are incorporated into the reconstruction.
This framework is extensible to crowded scenes with mul-
tiple objects as each object is completed individually. It is
also applicable to different domains because it can learn to
reproduce objects from whatever dataset it is trained on, and
further shows the ability to generalize to unseen views of
objects or even entirely novel objects. This applicability to
multiple domains is complemented by the thousands of 3D
models available from datasets such as ShapeNet[3] and the
rapidly increasing power of GPU processors.

The contributions of this work include: 1) A novel
CNN architecture for shape completion; 2) A fast mesh
completion method, resulting in meshes able to quickly
fill the planning scene; 3) A second CUDA enabled
completion method that creates detailed meshes suitable
for grasp planning by integrating fine details from the
observed pointcloud; 4) A large open-source dataset of
over 440,000 403 voxel grid pairs used for training.
This dataset and the related code are freely available at
http://shapecompletiongrasping.cs.columbia.edu. In addi-
tion, the website makes it easy to browse and explore the
thousands of completions and grasps related to this work; 5)
Results from both simulated and live experiments compar-
ing our method to other approaches and demonstrating its
improved performance in grasping tasks.

II. RELATED WORK

General shape completion to enable robotic grasping has
been studied in robotics. Typical approaches [4][5][6] use
symmetry and extrusion heuristics for shape completion, and
they are reasonable for objects well represented by geometric
primitives. Our approach differs from these methods in that
it learns to complete arbitrary objects based upon a large set
of training exemplars, rather than requiring the objects to
conform to heuristics.

A common alternative to general shape completion in the
robotics community is object recognition and 3D pose de-
tection [7][8][9]. In these approaches objects are recognized
from a database of objects and the pose is then estimated.
These techniques fill a different use case: the number of
encountered objects is small, and known ahead of time often
in terms of both texture and geometry. Our approach differs
in that it extends to novel objects.

The computer vision and graphics communities have
become increasingly interested in the problem of shape
completion. Some examples include [10][11], which use
a deep belief network and Gibbs sampling for 3D shape
reconstruction, and [12], which uses Random Forests. In

addition, work by [13] uses an exemplar based approach for
the same task. Others [14][15] have developed algorithms to
learn 3D occupancy grids directly from 2D images. Li et. al
[16] uses a database of pre-existing models to do completion.
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Fig. 2: Training Data; In X, the
input to the CNN, the occu-
pancy grid marks visible por-
tions of the model. Y, the ex-
pected output, has all voxels
occupied by the model marked.

It is difficult to apply
many of these works di-
rectly to robotic manipu-
lation as no large dataset
of renderings of handheld
objects needed for robotic
manipulation tasks ex-
isted until now. Also,
[14][15] use pure RGB
rather than the RGBD im-
ages prevalent in robotics,
making the problem more
difficult as the completed
shape must somehow be
positioned in the scene
and the process does not
utilize available depth in-
formation. Most create re-
sults with resolutions too
low for use with current
grasp planners which require meshes. Our work creates a
new dataset specifically designed for completing objects
useful for manipulation tasks using the 2.5-D range sensors
prevalent in robotics, and provides a technique to integrate
the high resolution observed view of the object with our
relatively high resolution CNN output, creating a completion
suitable for grasp planning.

Our work differs from [17] and our own related work [18],
both of which require a complete mesh to query a model
database and retrieve grasps used on similar objects. These
approaches could be used in tandem with our framework
where the completed model would act as the query mesh.
While grasps can be planned using partial meshes where
the object is not completed (see [19]), they still have their
limitations and issues. Shape completion can be used to
alleviate this problem.

While many mesh model datasets exist such as [3], [10],
and [20], this framework makes heavy use of the YCB[21]
and Grasp Database[22] mesh model datasets. We chose
these two datasets as many robotics labs all over the world
have physical copies of the YCB objects, and the Grasp
Database contains objects specifically geared towards robotic
manipulation. We augmented 18 of the YCB objects whose
provided meshes were of high quality with models from the
Grasp Database which contains 590 mesh models.

III. TRAINING

A. Data Generation

In order to train a network to reconstruct a diverse range
of objects, meshes were collected from the YCB and Grasp
Database. The models were run through binvox[23] in order
to generate 2563 occupancy grids. In these occupancy grids,

http://shapecompletiongrasping.cs.columbia.edu
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Fig. 3: CNN Architecture. The CNN has three convolutional and two dense layers. The final layer has 64000 nodes, and
reshapes to form the resulting 403 occupancy grid. The numbers on the bottom edges show the input sizes for each layer.
All layers use ReLU activations except for the last dense layer, which uses a sigmoid.
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Fig. 4: Jaccard similarity for three CNNs, one (shown in blue) trained with 14 mesh models, the second (green) trained with
94 mesh models, and the third (red) trained with 486 mesh models. For each plot, while training, the CNNs were evaluated
on inputs they were being trained on (Training Views, plot a), novel inputs from meshes they were trained on (Holdout
Views, plot b) and novel inputs from meshes they have never seen before (Holdout Models, plot c).

both the surface and interior of the meshes are marked
as occupied. In addition, all the meshes were placed in
Gazebo[24], and 726 depth images were generated for each
object subject to different rotations uniformly sampled (in
roll-pitch-yaw space, 11*6*11) around the mesh. The depth
images are used to create occupancy grids for the portions
of the mesh visible to the simulated camera, and then all
the occupancy grids generated by binvox are transformed to
correctly overlay the depth image occupancy grids. Both sets
of occupancy grids are then down-sampled to 403 to create a
large number of training examples. The input set (X) contains
occupancy grids that are filled only with the regions of the
object visible to the camera, and the output set (Y) contains
the ground truth occupancy grids for the space occupied by
the entire model. An illustration of this process is shown in
Fig. 2.

B. Model Architecture and Training

The architecture of the CNN is shown in Fig. 3. The model
was implemented using Keras[25], a Theano[26][27] based
deep learning library. Each layer used rectified linear units as
nonlinearities except the final fully connected (output) layer
which used a sigmoid activation to restrict the output to the
range [0, 1]. We used the cross-entropy error E(y, y′) as the
cost function with target y and output y′:

E(y, y′) = − (y log(y′) + (1− y) log(1− y′))

This cost function encourages each output to be close to
either 0 for unoccupied target voxels or 1 for occupied. The

optimization algorithm Adam[28], which computes adaptive
learning rates for each network parameter, was used with
default hyperparameters (β1=0.9, β2=0.999, ε=10−8) ex-
cept for the learning rate, which was set to 0.0001. Weights
were initialized following the recommendations of [29] for
rectified linear units and [30] for the logistic activation layer.
The model was trained with a batch size of 32. Each of the
32 examples in a batch was randomly sampled from the full
training set with replacement.

We used the Jaccard similarity to evaluate the similarity
between a generated voxel occupancy grid and the ground
truth. The Jaccard similarity between sets A and B is given
by:

J(A,B) =
|A ∩B|
|A ∪B|

The Jaccard similarity has a minimum value of 0, where
A and B have no intersection and a maximum value of 1
where A and B are identical. During training, this similarity
measure is computed for input meshes that were in the
training data (Training Views), meshes from objects within
the training data but from novel views (Holdout Views),
and for meshes of objects not in the training data (Holdout
Models). The CNNs were trained with an NVIDIA Titan X
GPU.

C. Training Results

Fig. 4 shows how the Jaccard similarity measures vary
as the networks’ training progresses. In order to explore
how the quality of the reconstruction changes as the number



(a) Image of Occluded Side (b) Point Cloud (c) Segmented and Meshed (d) CNN Input

(e) CNN Output (f) Fast Mesh (g) Detailed Mesh (h) Grasp Planning

Fig. 5: Stages to the Runtime Pipeline. These images are not shown from the angle in which the data was captured in order
to visualize the occluded regions. (a): An object to be grasped is placed in the scene. (b): A pointcloud is captured. (c): The
pointcloud is segmented and meshed. (d): A partial mesh is selected by the user and then voxelized and passed into the 3D
shape completion CNN. (e): The output of the CNN. (f): The resulting occupancy grid can be run through a marching cubes
algorithm to obtain a mesh quickly. (g): Or, for better results, the output of the CNN can be combined with the observed
pointcloud and preprocessed for smoothness before meshing. (h): Grasps are planned on the smoothed completed mesh.
Note: this is a novel object not seen by the CNN during training.

of models in the training set is adjusted, we trained three
networks with identical architectures using variable numbers
of mesh models. One was trained with partial views from
14 YCB models, another with 94 mesh models (14 YCB +
80 Grasp Database), and the third with 486 mesh models
(14 YCB models + 472 Grasp Database). Each network was
allowed to train until learning plateaued; for the CNN trained
on 486 objects, this took over a week. The remaining 4
YCB and 118 Grasp Dataset models were kept as a holdout
set. Results are shown in Fig. 4. We note that the networks
trained with fewer models perform better shape completion
when they are tested on views of objects they have seen
during training than networks trained on a larger number of
models. This suggests that the network is able to completely
learn the training data for the smaller number of models
but struggles to do so when trained on larger numbers.
Conversely, the models trained on a larger number of objects
perform better than those trained on a smaller number when
asked to complete novel objects. Because, as we have seen,
the networks trained on larger numbers of objects are unable
to learn all of the models seen in training, they may be forced
to learn a more general completion strategy that will work for
a wider variety of objects, allowing them to better generalize
to objects not seen in training.

Fig. 4(a) shows the performance of the three CNNs on
training views. In this case, the fewer the mesh models

used during training, the better the completion results. Fig.
4(b) shows how the CNNs performed on novel views of
the mesh objects used during training. Here the CNNs all
did approximately the same. Fig. 4(c) shows the completion
quality of the CNNs on objects they have not seen before. In
this case, as the number of mesh models used during training
increases, performance improves as the system has learned
to generalize to a wider variety of inputs.

IV. RUNTIME

At runtime the pointcloud for the target object is acquired
from a 3D sensor, scaled, voxelized and then passed through
the CNN. The output of the CNN, a completed voxel grid
of the object, goes through a post processing algorithm that
returns a mesh model of the completed object. Finally, a
grasp can be planned and executed based on the completed
mesh model. Fig. 5 demonstrates the full runtime pipeline
on a novel object never seen before.
1) Acquire Target Pointcloud: First, a pointcloud is
captured using a Microsoft Kinect, then segmented using
PCL’s[31] implementation of euclidean cluster extraction.
A segment corresponding to the object to be completed is
selected either manually or automatically and passed it to the
shape completion module.
2) Complete via CNN: The selected pointcloud is then
used to create an occupancy grid with resolution 403. This



occupancy grid is used as input to the CNN whose output
is an equivalently sized occupancy grid for the completed
shape. In order to fit the pointcloud to the 403 grid, it is
scaled down uniformly so that the bounding box of the
pointcloud fits in a 323 voxel cube, and then centered in the
403 grid such that the center of the bounding box is at point
(20, 20, 18) in the voxel grid. Finally all voxels occupied
by points from this scaled and transformed pointcloud are
marked as such. Placing the pointcloud slightly off-center in
the z dimension leaves more space in the back half of the
grid for the network to fill.
3a) Create Fast Mesh: At this point, if the object being
completed is not going to be grasped, then the voxel grid
output by the CNN is run through the marching cubes
algorithm, and the resulting mesh is added to the planning
scene, filling in occluded regions of the scene.
3b) Create Detailed Mesh: Alternatively, if this object
is going to be grasped, then post-processing occurs. The
purpose of this post-processing is to integrate the points from
the visible portion of the object with the output of the CNN.
This partial view is of much higher density than the 403 grid
and captures significantly finer detail for the visible surface.
This merge is made difficult by the large disparity in point
densities between the captured cloud and 403 CNN output
which can lead to holes and discontinuities if the points are
naively merged and run through marching cubes.

Algorithm 1 Shape Completion

1: procedure MESH(cnn_out, observed_pc)
2: //cnn_out: 403 voxel output from CNN
3: //observed_pc: captured pointcloud of object
4: if FAST then return mCubes(cnn_out)
5: d_ratio ← densityRatio(observed_pc, cnn_out)
6: upsampled_cnn ← upsample(cnn_out, d_ratio)
7: vox ← merge(upsampled_cnn, observed_pc)
8: vox_no_gap ← fillGaps(vox)
9: vox_weighted ← CUDA_QP(vox_no_gap)

10: mesh ← mCubes(vox_weighted)
11: return mesh

Alg. 1 shows how we integrated the dense partial view
with our 403 voxel grid via the following steps. (Alg.1:L5) In
order to merge with the partial view, the output of the CNN
is converted to a point cloud and its density is compared
to the density of the partial view point cloud. The densities
are computed by randomly sampling 1

10 of the points and
averaging the distances to their nearest neighbors. (Alg.1:L6)
The CNN output is up-sampled by d_ratio to match the
density of the partial view. This is performed by examining
each cube of 8 adjacent original low resolution voxels, with
the centers of the voxels as the corners. The new voxels
are uniformly distributed inside the cube. For each new
voxel, the L1 distance to each original voxel is computed
and the 8 distances are summed, weighted by 1 if the
original voxel is occupied and -1 otherwise. The new voxel
is occupied if its weighted sum is nonnegative. This has

the effect of creating piecewise linear separating surfaces
similar to the marching cubes algorithm and mitigates up-
sampling artifacts. (Alg.1:L7) The upsampled output from
the CNN is then merged with the point cloud of the partial
view and the combined cloud is voxelized at the new higher
resolution of (40 ∗ d_ratio)3. For most objects d_ratio
tends to be either 2 or 3, depending on the physical size
of the object, resulting in a voxel grid of either 803 or
1203. (Alg.1:L8) Any gaps in the voxel grid between the
upsampled CNN output and the partial view cloud are filled.
This is done by finding the first occupied voxel in every z-
stack. If the distance to the next occupied voxel is less than
d_ratio+1 the intermediate voxels are filled. (Alg.1:L9) The
voxel grid is smoothed using our own CUDA implementation
of the convex quadratic optimization problem from [32]. This
optimization re-weights the voxels, minimizing the Laplacian
on the boundary of the embedding function F , i.e.:∫ (

∂2F

∂x2

)2

+

(
∂2F

∂y2

)2

+

(
∂2F

∂z2

)2

dV → min.

subject to the hard constraint:

∀i, j, k vijk · fijk ≥ 0

The constraint means that for all input voxels v and output
weighted voxels f all occupied voxels prior to the optimiza-
tion stays occupied or on the boundary, and all unoccupied
voxels remain unoccupied or on the boundary. Again, for
further details see [32]. (Alg.1:L10) The weighted voxel grid
is then run through marching cubes.
4) Grasp completed mesh: The reconstructed mesh is
then loaded into GraspIt![33] where a grasp planner is run
using a Barrett Hand model. The reachability of the planned
grasps are checked using MoveIt![34], and the highest quality
reachable grasp is then executed.

V. EXPERIMENTAL RESULTS

We created a test dataset by randomly sampling 50 training
views (Training Views), 50 holdout views (Holdout Views),
and 50 views of holdout models (Holdout Models). The
Training Views and Holdout Views were sampled from the
14 YCB training objects. The Holdout Models were sampled
from holdout YCB and Grasp Dataset objects. We used three
metrics to compare the accuracy of the different completion
methods: Jaccard similarity, Hausdorff distance, and geodesic
divergence.

A. General Completion Results

We first compared several general completion meth-
ods: passing the partial view through marching cubes and
then Meshlab’s Laplacian smoothing (Partial), mirroring
completion[4] (Mirror), our method (Ours). Our CNN was
trained on the 484 objects from the YCB + Grasp Dataset
and the weights come from the point of peak performance
on holdout models (the peak of the red line in Fig. 4.(c)).

The Jaccard similarity was used to guide training, as
shown in Fig. 4. We also used this metric to compare the final
resulting meshes from several completion strategies. The



View Type Partial Mirror Ours
Training Views 0.1182 0.2325 0.7771
Holdout Views 0.1307 0.2393 0.7486

Holdout Models 0.0931 0.1921 0.6496

TABLE I: Jaccard Similarity Results (Larger is better).
This measures the intersection over union of two voxelized
meshes as described in Section V-A.

View Type Partial Mirror Ours
Training Views 11.4 7.5 3.6
Holdout Views 12.3 8.2 4.0

Holdout Models 13.6 10.7 5.9

TABLE II: Hausdorff Distance Results (Smaller is better).
This measures the mean distance in millimeters from points
on one mesh to another as described in Section V-A.

completed meshes were voxelized at 803, and compared with
the ground truth mesh. The results are shown in Table I. Our
proposed method results in higher similarity to the ground
truth meshes than the partial and mirroring approaches for
all tested views.

The Hausdorff distance is a one-directional metric com-
puted by sampling points on one mesh and computing the
distance of each sample point to its closest point on the other
mesh. The mean value of a completion is the average distance
from the sample points on the completion to their respective
closest points on the ground truth mesh. The symmetric
Hausdorff distance was computed by running Meshlab’s[35]
Hausdorff distance filter in both directions. Table II shows
the mean values of the symmetric Hausdorff distance for each
completion method. In this metric, the CNN completions are
significantly closer to the ground truth than are the partial
and the mirrored completions.

The completions are also compared using a measure of
geodesic divergence[36]. A geodesic shape descriptor is
computed for each mesh. A probability density function
is then computed for each mesh by considering the shape
descriptor as a random distribution and approximating the
distribution using a Gaussian mixture model. The probability
density functions for each completion are compared with
that of the ground truth mesh using the Jenson-Shannon
divergence. Table III shows the mean of the divergences for
each completion method. Here, our method outperforms all
other completion methods.

Across all metrics, our method results in more accurate
completions than the other general completion approaches.

B. Comparison to Database Driven Methods

In addition, we evaluated a RANSAC-based approach[8]
on the Training Views of the YCB dataset using the same
metrics. This corresponds to a highly constrained environ-
ment containing only a very small number of objects which
are known ahead of time. It is not possible to load 484
objects into the RANSAC framework, so a direct comparison
to our method involving the large number of objects we
train on is not possible. In fact, the inability of RANSAC-
based methods to scale to large databases of objects is one

View Type Partial Mirror Ours
Training Views 0.3770 0.2905 0.0867
Holdout Views 0.4944 0.3366 0.0934

Holdout Models 0.3407 0.2801 0.1412

TABLE III: Geodesic Divergence Results (Smaller is better).
This measures the Jenson-Shannon probabilistic divergence
between two meshes as described in Section V-A.

(a) Partial planned (b) Mirrored planned (c) Ours planned

(d) Partial executed (e) Mirrored executed (f) Ours executed

Fig. 6: Top Row: Planned Grasps using variety of comple-
tions methods. Bottom Row: Grasps from the top row exe-
cuted on the Ground Truth object. Notice both the partial and
mirrored completions’ planned and executed grasps differ
whereas our method shows fidelity between the planned and
executed grasps.

of the motivations of our work. However, we compared our
method to a very small RANSAC using only 14 objects, and
our method performs comparably to the RANSAC approach
even on objects in its database, while having the additional
abilities to train on far more objects and generalize to novel
objects: Jaccard (Ours: 0.771, RANSAC: 0.8566), Haus-
dorff (Ours: 3.6, RANSAC: 3.1), geodesic (Ours: 0.0867,
RANSAC: 0.1245). Our approach significantly outperforms
the RANSAC approach when encountering an object that
neither method has seen before (Holdout Models): Jac-
card (Ours: 0.6496, RANSAC: 0.4063), Hausdorff (Ours:
5.9, RANSAC: 20.4), geodesic (Ours: 0.1412, RANSAC:
0.4305). The RANSAC based approach’s performance on
the Holdout Models is also worse than that of the mirrored
or partial completion methods on both the geodesic and
Hausdorff metrics.

C. Simulation Based Grasp Comparison

In order to evaluate our framework’s ability to enable
grasp planning, the system was tested in simulation using the
same completions from Sec V-A, allowing us to quickly plan
and evaluate over 24,000 grasps. GraspIt! was used to plan
grasps on all of the completions of the objects by uniformly
sampling different approach directions. These grasps were
then executed, not on the completed object, but on the ground
truth meshes in GraspIt!. In order to simulate a real-world



View Error Completion Type
Partial Mirror Ours RANSAC

Training Joint (◦) 6.09◦ 4.20◦ 1.75◦ 1.83◦
View Pose (mm) 16.0 11.5 4.3 7.3

Holdout Joint (◦) 6.27◦ 4.05◦ 1.80◦ 1.69◦
View Pose (mm) 20.8 15.6 6.7 7.4

Holdout Joint (◦) 7.59◦ 5.82◦ 4.56◦ 6.86◦
Model Pose (mm) 18.3 15.0 13.2 29.25

TABLE IV: Results from simulated grasping experiments.
Joint Err. is the mean difference between planned and
realized grasps per joint in degrees. Pose Err. is the mean
difference between planned and realized grasp pose in mil-
limeters. For both metrics smaller is better.

Completion
Method

Grasp Success
Rate (%)

Joint Error
(degrees)

Completion
Time (s)

Partial 71.43 9.156◦ 0.545
Mirror 73.33 8.067◦ 1.883
Ours 93.33 7.276◦ 2.426

TABLE V: Grasp Success Rate shows the percentage of suc-
cesful grasp attempts. Joint Error shows the mean difference
in degrees between the planned and executed grasp joint
values. Completion Time shows how long specified metric
took to create a mesh of the partial view.

grasp execution, the completion was removed from GraspIt!
and the ground truth object was inserted in its place. Then
the hand was placed 20cm backed off from the ground
truth object along the approach direction of the grasp. The
spread angle of the fingers was set, and the hand was moved
along the approach direction of the planned grasp either until
contact was made or the grasp pose was reached. At this
point, the fingers closed to the planned joint values. Then
each finger continued to close until either contact was made
with the object or the joint limits were reached. Fig. 6 shows
several grasps and their realized executions for different
completion methods. Visualizations of the simulation results
for the entire YCB and Grasp Datasets are available at
http://shapecompletiongrasping.cs.columbia.edu

Table IV shows the differences between the planned and
realized joint states as well as the difference in pose of the
base of the end effector between the planned and realized
grasps. Using our method caused the end effector to end up
closer to its intended location in terms of both joint space
and the palm’s cartesian position.

D. Performance on Real Hardware

In order to further evaluate our framework, the system
was used in an end-to-end manner using actual robotic hard-
ware to execute grasps planned via the different completion
methods described above. The 15 objects used are shown
in Fig. 7. For each object, we ran the arm once using each
completion method. The results are shown in Table V. Our
method enabled a 20% improvement over the general shape
completion methods in terms of grasp success rate, and
resulted in executed grasps closer to the planned grasps as
shown by the lower joint error.

Fig. 7: Barrett Hand(BH8-280), StaubliTX60 Arm, and ex-
periment objects.

(a) Planned Grasp (b) Accidental Collision

(c) Unfilled Planning Scene (d) Filled Planning Scene

Fig. 8: The system can be used to quickly complete obstacles
that are to be avoided. The arm fails to execute the planned
grasp (a), resulting in collision shown in (b). The collision
with the non-target object occurred due to a poor planning
scene as shown in (c), but the CNN without post-processing
can be used to fill the planning scene allowing the configu-
ration to be correctly marked as invalid as shown in (d).

E. Crowded Scene Completion

A scene often contains objects that are not to be manipu-
lated and only require completion in order to be successfully
avoided. In this case, the output of our CNN can be run
directly through marching cubes without post-processing to
quickly create a mesh of the object. Fig. 8(a) shows a grasp
planned using only the partial mesh for the object near
the grasp target. Figs. 8(b) and 8(c) show the robotic hand
crashing into one of the nearby objects when attempting to
execute the grasp. The failure is caused by an incomplete
planning scene. Fig. 8(d) shows the scene with the nearby
objects completed, though without smoothing. With this
fuller picture, the planner accurately flags this grasp as
unreachable. The time requirement for the scene completion
is:

Tcompletion = Tsegment + Ttarget + Tnon_target ∗ n

with Segmentation Time (Tsegment), Target Completion

http://shapecompletiongrasping.cs.columbia.edu


Time (Ttarget), Non Target Completion Time(Tnon_target)
and Number of Non Target Objects (n). Our system has the
ability to quickly fill in occluded regions of the scene, and
selectively spend more time generating detailed completions
on specific objects to be manipulated. Average completion
times in seconds from 15 runs are Tsegment = 0.119,
Ttarget = 2.136, and Tnon_target = 0.142.

VI. CONCLUSION AND FUTURE WORK

This work presents a framework to train and utilize a
CNN to complete and mesh an object observed from a single
point of view, and then plan grasps on the completed object.
The completion system is fast, with completions available
in a matter of milliseconds, and post processed completions
suitable for grasp planning available in several seconds. The
dataset and code are open source and available for other
researchers to use. It has also been demonstrated that our
completions are better than more naive approaches in terms
of a variety of metrics including those specific to grasp plan-
ning. In addition, grasps planned on completions generated
using our method are more often successful and result in
executed grasps closer to the intended hand configuration
than grasps planned on completions from the other methods.

Several future avenues of research include: the use of
Generative Adversarial Networks (GANs)[37] for training,
migrating to a larger object dataset such as ShapeNet[3],
and using the completed object as a query to retrieve grasps
planned on similar objects as done with the Columbia Grasp
Database[18] and DexNet[17].
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