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Abstract— We present AutonoVi:, a novel algorithm for au-
tonomous vehicle navigation that supports dynamic maneuvers
and satisfies traffic constraints and norms. Our approach is
based on optimization-based maneuver planning that supports
dynamic lane-changes, swerving, and braking in all traffic
scenarios and guides the vehicle to its goal position. We
take into account various traffic constraints, including collision
avoidance with other vehicles, pedestrians, and cyclists using
control velocity obstacles. We use a data-driven approach to
model the vehicle dynamics for control and collision avoidance.
Furthermore, our trajectory computation algorithm takes into
account traffic rules and behaviors, such as stopping at inter-
sections and stoplights, based on an arc-spline representation.
We have evaluated our algorithm in a simulated environment
and tested its interactive performance in urban and highway
driving scenarios with tens of vehicles, pedestrians, and cyclists.
These scenarios include jaywalking pedestrians, sudden stops
from high speeds, safely passing cyclists, a vehicle suddenly
swerving into the roadway, and high-density traffic where the
vehicle must change lanes to progress more effectively.

I. INTRODUCTION

Autonomous driving is a difficult and extremely complex
task that has immense potential for impacting the lives of bil-
lions of people. In order to develop autonomous capabilities
to perform the driving task, we need appropriate capabilities
to sense and predict the traffic and road obstacles, as well
as for planning, control, and coordination of the vehicle [1],
[2]. There is considerable research in this area that borrows
ideas from different disciplines including computer vision,
machine learning, motion planning, mechanical engineering,
intelligent traffic simulation, human-factors psychology, etc.

Research into sensing and perception technologies has
been progressing considerably and current vehicle sensors
seem to have the capability to detect relevant obstacles, vehi-
cles, and other traffic entities including bicycles and pedestri-
ans. However, automatic planning in different scenarios and
the computation of the appropriate response to vehicle and
non-vehicle entities, such as bicycles and pedestrians, are still
the subjects of ongoing research. A key issue is the devel-
opment of an efficient navigation algorithm for autonomous
driving that takes into account the vehicle dynamics, sensor
inputs, traffic rules and norms, and the driving behaviors
of other vehicles. Moreover, the uncertainties in the sensor
data, capability, and response of the autonomous vehicle,
typically referred to as the ego-vehicle [3], have led to
the development of behavior and navigation algorithms that
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impose conservative limits on the acceleration, deceleration,
and steering decisions. For example, algorithms tend to limit
hazard responses to either steering [4], [5] or braking [6].
Few algorithms demonstrate combined control of throttle
and steering and typically do so in constrained navigation
scenarios [7]. In terms of planning the routes and navigating
the roads, current algorithms tend to limit the lane-changing
behaviors, precluding their use for progressing more quickly
to a goal or better utilization of the road conditions. These
limitations have led to the perception that autonomous cars
behave more like student drivers taking their driving test
than actual skilled human drivers [3]. One of the goals is
to extend the capabilities of current autonomous vehicles
in terms of planning, control, and navigation, making them
less conservative but still allowing safe performance during
driving.

Main contributions: We present a novel navigation algo-
rithm for autonomous vehicles, AutonoVi, which utilizes a
data-driven vehicle dynamics model and optimization-based
maneuver planning to compute a safe, collision-free trajec-
tory with dynamic lane-changes. Our approach is general,
makes no assumption about the traffic conditions, and plans
dynamically feasible maneuvers in traffic consisting of other
vehicles, cyclists, and pedestrians. In order to develop an au-
tonomous vehicle planning approach with these capabilities,
we present four novel algorithms:

• Optimization-based Maneuvering: We describe a
novel multi-objective optimization approach for evalu-
ating the dynamic maneuvers. Our algorithm encodes
passenger comfort, safe passing distances, maneuver
constraints in terms of dynamics, and global route
progress in order to compute appropriate trajectories.

• Data driven Vehicle Dynamics: We use a data-driven
vehicle dynamics formulation that encodes feasible ac-
celerations, steering rates, and decelerations into a set
of per-vehicle profile functions, which can be quickly
evaluated. These profiles are generated by simulating
the ego-vehicle through a series of trials to obtain lateral
and longitudinal slip profiles. This data-driven model
generalizes to multiple vehicles and configurations.

• Collision avoidance with kinematic and dynamic
constraints: We present a collision avoidance algorithm
that combines collision-free constraints with specific
kinematic and dynamic constraints of the autonomous
vehicle. Our approach allows the autonomous vehicle to
steer away from collisions with other vehicles, pedes-
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trians, and cyclists as well as to apply brakes, or use a
combination of steering and braking.

• Trajectory Planning with Traffic Rules and Behav-
iors: We present a trajectory planning algorithm that
encodes traffic rules and road behaviors along with lane-
following for computing safe trajectories. Our approach
is based on computing arcs along the center-line of
the current lane to generate an initial trajectory that
satisfies all the constraints. This initial trajectory is
computed and refined according to collision avoidance
and maneuver optimization computations.

We evaluate our algorithm in a set of traffic scenarios
generated using a physics-based traffic simulator in both
sparse and dense traffic conditions with tens of other ve-
hicles, pedestrians, and cyclists. We demonstrate collision-
avoidance events including a vehicle suddenly driving into
the road, traffic suddenly stopping ahead of the ego-vehicle
while travelling at high speed, and a pedestrian jaywalking
in front of the ego-vehicle, representing typical accident
scenarios [5]. Our approach enables advantageous of lane
changes (e.g., overtaking) and adherence to traffic rules in
typical traffic conditions. It also exhibits safe maneuvering
in the presence of heavy traffic, pedestrians, and cyclists.
To our knowledge, AutonoVi is the first approach that
allows the ego-vehicle to follow an arbitrary route, determine
appropriate lane changes dynamically during travel, and plan
dynamically and kinematically feasible trajectories while
following traffic norms and providing collision avoidance for
vehicles, pedestrians, and cyclists.

The rest of the paper is organized as follows: we detail
relevant related work in section 2. In section 3, we introduce
the vehicle kinematic model, define relevant assumptions,
and introduce the terminology used in the rest of the paper.
In section 4, we present our navigation algorithm, AutonoVi,
and its components. We present the details of our simulation
benchmarks in section V and highlight the results in section
VI.

II. RELATED WORK

The problem of autonomous driving has been widely stud-
ied in robotics, computer vision, intelligent transportation
systems and related areas. In this section, we give a brief
overview of prior methods which address motion planning
and navigation, dynamics, behavior generation, and collision
avoidance. More detailed surveys are given in [2], [8], [9].

Vehicle Kinematics and Dynamics Modeling: A number
of approaches have been developed to model the motion of
a moving vehicle. Different models offer a trade-off between
simplicity or efficiency of the approach, and physical accu-
racy. Simpler models are typically based on linear dynamics
and analytical solutions to the equations of motion [10].
More accurate models provide a better representation of the
physical motion, but require more computational power to
evaluate and incorporate non-linear forces in the vehicle
dynamics [4]. The Reeds-Shepp formulation is a widely
used car model with forward and backward gears [11].
Margolis and Asgari [12] present several representations of

a car including the widely used single-track bicycle model.
Borrelli et al. [4] extend this model by including detailed
tire-forces. Current planning and control algorithms leverage
varying levels of detail in the model of the vehicle.

Path Planning and Collision Avoidance: Prior ap-
proaches to path planning for autonomous vehicles are based
on occupancy grids [13], random-exploration [14], driving
corridors [15], potential-field methods [16], etc. Recent ap-
proaches seek to incorporate driver behavior prediction in
path planning using game-theoretic approaches [17] and
Bayesian behavior modeling [18]. In addition, a variety
of algorithms have been proposed for planning paths for
automobiles for navigation outside of road conditions and
traffic rules [19]. Several techniques have been proposed to
specifically avoid hazards while remaining in a target lane.
These techniques can be coupled with a path planner to avoid
vehicles [20] and other hazards in the ego-vehicle’s lane [7].

Many continuous approaches for collision-avoidance have
been proposed based on spatial decomposition or velocity-
space reasoning. Berg et al. [21] apply velocity-space rea-
soning with acceleration constraints to generate safe and
collision-free velocities. Bareiss et al. [22] extend the concept
of velocity obstacles into the control space to generate a
complete set of collision free control inputs. Ziegler et al. [1]
utilize polygonal decomposition of obstacles to generate
blockages in continuous driving corridors. Sun et al. [23]
demonstrate the use of prediction functions and trajectory
set generation to plan safe lane-changes.

Modeling Traffic Rules: Aside from planning the appro-
priate paths to avoid collisions, autonomous vehicles must
also follow applicable laws and traffic norms. Techniques
have been proposed to simulate typical traffic behaviors in
traffic simulation such as Human Driver Model [24] and
data-driven models such as [25]. An extensive discussion on
techniques to model these behaviors in traffic simulation can
be found in [26].

Autonomous Driving Systems: Many autonomous sys-
tems have been demonstrated that are able to navigate an au-
tonomous vehicle in traffic along a specific route. Ziegler et
al. [3] demonstrated an autonomous vehicle which drove the
historic Bertha Benz route in southern Germany. They use a
conservative navigation approach, which specifically encodes
lanelets for lane changing and does not account for dynamic
lane changes. In contrast, our algorithm allows the vehicle
to change lanes when our maneuver optimization method
deems it appropriate and does not rely on pre-encoded
changes. Geiger et al. [27] demonstrate a planning and
control framework that won the Grand Cooperative Driving
Challenge in 2011. This vehicle was designed for platooning
and employed controls over acceleration only. Our navigation
algorithm plans maneuvers using both steering and accelera-
tion to operate in more generic traffic scenarios. The DARPA
Urban Grand Challenge included a number of autonomous
vehicle navigating examples of driving scenarios [28], [29].
While overtaking was allowed as an intended capability in
these systems, the vehicles were not evaluated in dense, high-
speed traffic conditions where the benefits of lane changes
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Fig. 1. Algorithm Pipeline: Our autonomous vehicle planning algorithm operates in several sequential steps. First, a route is planned using graph-search
over the network of roads. Secondly, traffic and lane-following rules are combined to create a guiding trajectory for the vehicle for the next planning
phase. This guiding trajectory is transformed to generate a set of candidate control inputs. These controls are evaluated for dynamic feasibility using our
data driven vehicle dynamics modeling and collision-free navigation via extended control obstacles. Those remaining trajectories are evaluated using our
optimization technique to determine the most-appropriate set of controls for the next execution cycle.

could be demonstrated.

III. PROBLEM SPACE

In this section, we introduce the notation, the kinematic
and dynamics model of the car and the state space of the
vehicle in terms of both physical configuration and behavior
space.

A. Vehicle State Space

We represent the kinematic and dynamic constraints of the
vehicle separately. In terms of trajectory planning, steering
and throttle controls that could lead to skidding or a loss of
control are first excluded in our dynamics model (see section
IV-F) and future trajectories are computed according to our
vehicle kinematic model described in equation (1).

We extend the simple-car kinematic model [10], [30]. The
vehicle has three degrees of freedom in a planar coordi-
nate space. These are the position of the center of mass
~p = (px, py), and the current heading or orientation θ. We
represent the speed of the vehicle as v and steering as φ.
Lf and Lr represent the distance from the center of mass to
the front and rear axles, respectively. The geometry of the
ego-vehicle is represented as Oe.

The vehicle has two degrees of control, throttle (ut) and
steering (uφ). We define throttle −1 ≤ ut ≤ 1, where
−1 indicates maximum braking effort for the vehicle and
1 represents maximum throttle. −1 ≤ uφ ≤ 1 describes the
steering effort from −φmax to φmax.

We also use acceleration and steering functions, A(v, ut)
and Φ(v, us), respectively, which describe the relationship
between the vehicle’s speed, steering, and control inputs and
its potential for changes in the acceleration and steering (see
section IV-F). A and Φ can be chosen to be constants in
the simplest model, or may be represented using complex
functions corresponding to tire dynamics and load transfer.
We describe our choice for A and Φ in section IV-F. The
vehicle’s motion can be described by:

ṗx = v cos(θ) ṗy = v sin(θ) θ̇ =
tan(φ)

Lf + Lr
v (1a)

v̇ = A(v, ut) φ̇ = Φ(φ, us) (1b)

In addition to the physical state of the vehicle, we describe
its behavior b as a label from a set of all behaviors B,
such as driving straight, turning left, merging right, etc.
The behavior state is used to modify parameters of each
stage of the algorithm. Each behavior state can encode a

set of weights of the maneuver optimization function, bias
the generation of a guiding path, and adjust the sampling
bias of our control-obstacle approximation and acceleration
when necessary (see section IV-A). The full state of a vehicle
is defined as Xe = {px, py, v, φ, ut, uφ, b}. The vehicle
updates its plan at a fixed planning rate ∆t. At each planning
step, the vehicle computes a target speed v′ and target
steering φ′ to be achieved by the control system. We refer
to equation (1) compactly as the state evolution function
Xt+∆t = q(Xt, u, t). We also define a function S(u,X)
which determines if a set of controls is feasible. Given the
current state of the vehicle, S(u,X) will return false if the
given input u will cause a loss of traction or control. We
describe this function further in section IV-F.

B. Sensing and Perception
We assume a sensing module is available for the ve-

hicle that is capable of providing information regarding
the surrounding environment. For each lane on a road, the
sensing module provides an approximation of the center
line of the lane, l. The sensing module also provides the
closest point on the lane center to the ego-vehicle, ~lp, and a
reasonable value of the friction coefficient µ. Recent work
has presented approaches to evaluate µ from sensor data [31].
Our navigation algorithm utilizes the set of nearby vehicles,
pedestrians, bicycles, or other obstacles, collectively referred
to as neighbors, N within the sensing range. For each
neighbor n ∈ N , the sensing system provides the neighbor’s
shape, On, position, ~pn, and velocity ~vn. Moreover, the
sensing module provides the lane ln, acceleration v̇n, and rate
of turn, θ̇ for the neighbor. We define a set of neighbor types,
Tn, including vehicle, pedestrian, cyclist, and obstruction.
Each neighbor is assigned a type Tn corresponding to the
detected neighbor type. The complete state of a neighbor is
denoted as Xn = {~pn,~vn, ln, v̇n, θ̇n}

IV. NAVIGATION ALGORITHM

In this section, we describe our navigation algorithm.
Our algorithmic approach operates in four sequential stages,
shown in Fig. 1. First, a route is constructed over the space
of roads in the environment. Secondly, a Guiding Path that
follows the current lane is computed that provides input
to the collision-avoidance and optimization-based maneuver
stages. The collision avoidance stage determines the set
of feasible candidate controls that represent dynamically
feasible, collision-free controls for the vehicle. Finally, a new
control is chosen for the vehicle based on the optimization-
based maneuver function.
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Fig. 2. Finite State Machine: We highlight different behavior states that
are determined by the routing and optimization algorithms. When executing
turns, the routing algorithm transitions the behavior state to a turning state.
When the optimization-based maneuver algorithm plans a lane change, the
behavior state is transitioned to merging.

A. Route Choice and Behavior State

Our navigation algorithm performs several steps in a
sequential manner. In the first step, a global route for the
vehicle to follow to the goal is determined. This step is
performed only once unless special conditions (e.g., missing
a turn) force the vehicle to recompute a route. The ego-
vehicle is provided a connected graph of roads in the
environment from a GIS database. Each road in the graph
contains information on the number and configuration of
lanes in the road and the speed limits. When a destination is
chosen, we use A* search to compute the shortest route to
the goal and construct a route plan.

Each step of the route plan encodes how the vehicle
transitions from one road to the next. We denote these
as road-transition maneuvers. A road-transition maneuver
consists of the valid source lanes, valid destination lanes,
the position along the road at which the maneuver begins,
denoted ~pm, and the behavior implied by the road transition.
The set of behaviors includes merging, right turns, left
turns, and driving straight. Once the road-change maneuver
is completed, the vehicle navigates along the lanes of the
new road until the next maneuver node is reached. Lane
changes are not encoded in the maneuver nodes, but they
are performed implicitly based on the optimization function
described in section IV-E.

The behavior state of the vehicle is described by a finite-
state machine shown in figure 2. It is used to restrict
potential control decisions and adjust the weight of the cost-
function for specific maneuvers, such as turning. This allows
our algorithm to force the vehicle to be more conservative
when performing delicate maneuvers. For example, the valid
steering space is constrained in turns to guarantee that the
vehicle moves closely along the center line.

B. Guiding Path

In order to perform trajectory planning, the ego-vehicle
computes a set of waypoints along the center-line of its
current lane at fixed time intervals, and these waypoints

(A) (B) (C)

Fig. 3. Guiding Path Computation: The vehicle computes a guiding
path to the center of its current lane based on a circular arc. (A): When the
vehicle tracks a path off the center of its current lane, the guiding path leads
it smoothly back to center. (B): In cases where the guiding path represents
abrupt changes to heading, the center point is reflected about the axis formed
by the car’s position and the final waypoint. (C): In the case of lane changes,
the guiding path is computed by a weighted average of the waypoints on
the departure and destination lanes.

represent the expected positions for a planning horizon, τ .
We represent these waypoints as ~w1− ~wk. Using its own po-
sition, the median point, and the final waypoint (~p, ~w k

2
, ~wk),

we compute a circular arc on the road plane which sets the
initial target speed and steering, v′ and φ′ respectively, and
acts as the guiding path for the next planning phase. We use
circular arc approximations because they implicitly encode
the radius of curvature needed for slip computation making it
easy to check whether the dynamic constraints are violated.

Absent discontinuities in the center-line of the lane, the
guiding arcs exhibit first-order C1 continuity. Figure 3(a)
demonstrates a guiding arc constructed for a sample lane.

We constrain the arcs to lie within the first two quadrants
of the circle that is represented by three waypoints. In cases
when the vehicle’s trajectory tracks away from the center
of the lane, e.g. during collision avoidance maneuvers, this
constraint may be violated as shown in figure 3(b). In such
cases, the point ~w k

2
is reflected about the axis formed

between ~p and ~wk to correct the arc angle. In case of
lane changing, waypoints are constructed from a weighted
average of points sampled ahead on both the departure lane
and the destination lane. Figure 3(c) demonstrates a set of
lane-change arcs.

Given a guiding path, a target steering, φ′ is computed
from equation (1a). The radius of the arc, r, is substituted
into equation (8) to determine the maximum safe speed for
the current road curvature. A target speed, v′, is computed
from the minimum value of the current speed limit and the
maximum safe speed. The target steering and speed form the
basis of the control-obstacle exploration in the subsequent
stage.

1) Traffic Rules: Traffic rules such as stopping at red
lights are encoded in our algorithm. When choosing a target
speed v′, the sensing system is referenced to determine if
an intersection is being approached and whether the vehicle
needs to stop at the intersection. In cases where the vehicle



must stop, the edge of the intersection is used to compute a
stopping point and v′ is set to the speed that will reach the
stopping point at τ seconds. In case of stoplights, the green
light signals v′ to return to its original value.

In the case of stops with continuous cross-traffic, the
vehicle waits until the collision-avoidance algorithm indi-
cates safety. This is accomplished by limiting the potential
speed controls the vehicle may choose. When waiting for
cross-traffic, the vehicle will stop until its guiding path is
determined to be safe. In the case of all-way stops, the
vehicle maintains a queue of vehicle arrival order, but defers
to other drivers if they enter the intersection out of turn.

Although merges are not specifically encoded in transi-
tions in the route plan, the vehicle is able to determine
when merging is safe through the collision-avoidance and
optimization stages of the algorithm. A merge is note deter-
mined safe and appropriate unless it provides collision-free
guarantees and respects safety and comfort costs detailed in
section IV-E.

C. Collision Avoidance

We leverage the theory of Control Obstacles for collision
avoidance [22]. Control Obstacles construct constraints in the
control space and are an extension of acceleration-velocity
obstacles [21]. For each neighbor of the ego-vehicle, n, we
define the control obstacle for the neighbor as the union of
all controls that could lead to collisions with the neighbor
within the time horizon, τ . Given t, where 0 ≤ t ≤ τ , the
relative position of the ego-vehicle and neighbor ~pen must
remain outside the Minkowski Sum given by the formulation,
which is defined as

Oen = On ⊕−Oe. (2)

The complete derivation for control obstacles can be found
in [22].

In order to adapt to the autonomous vehicles, we modify
the original control obstacle formulation [22] in the following
manner: (1) We do not assume reciprocity in collision
avoidance and the ego-vehicle must take full responsibility
for avoiding collisions; (2) We do not assume the control
inputs of other vehicles are observable, which is consistent
with the first point; (3) We do not assume bounding discs
for the neighboring entities, but rather a tight bounding
rectangle. The Minkowski Sum for two convex polygons
can be computed in linear time in the number of edges; (4)
The new feasible control chosen does not correspond to the
control that minimizes the deviation from v′ and φ′. Rather
it is the control that minimizes the objective function defined
in section IV-E.

The union of all control-obstacles and the set of dynam-
ically infeasible controls form the boundary of the space
of collision-free controls for the ego-vehicle. As long as
a new control set is chosen from outside the union of the
control obstacles, the ego-vehicle will be collision free for
the next τ seconds. In section VII, we detail how behavior
prediction models can be incorporated to assume varying
levels of reciprocity. This approach is conservative and it is

possible that there may be no feasible solution. In that case,
we reduce τ and search for a feasible solution.

D. Trajectory Sampling

Computing the exact boundary of the control obstacle
is computationally expensive. Moreover, depending on the
choice of A and Φ, the boundary computation will typically
not have an analytical solution. In order to ensure that the
vehicle can plan within a specific time bound, we use a
sampling strategy around φ′ and v′ to determine a feasible
control that the vehicle will adopt for the next τ seconds.
Each sample is referred to as a candidate control and
represented as uc.

First, the closest collision-free velocity to v′ is determined
where φ = φ′ by forward projection. This represents the
largest speed the vehicle could take without deviating from
the center-line of its lane and is always included in the set of
candidates. Next, we compute evenly spaced samples around
the point (v′, φ′) in the control space. We also choose a set of
samples around the prior step solution, φt−1 and vt−1, which
allows the vehicle to explore minor deviations in trajectory.
Samples near the prior solution facilitate lane-keeping and
within-lane avoidance maneuvers.

For each neighbor n ∈ N , we compute a set of states for
that neighbor for the next τ seconds by forward integration
of q(Xn, ∅, t). We assume that the neighboring vehicle will
follow its current lane at the current speed and accelera-
tion during this time interval. Otherwise, the neighbor is
assumed to move along its current velocity ~vn with the
current observed values of turning and acceleration, θ̇ and
v̇n, respectively.

For each candidate control, uc, we determine whether
equation (8) is violated by the candidate control inputs and
immediately discard it if that is the case. If not, the sample
points are computed at even time intervals along 0 ≤ t ≤ τ
by forward integration of q(Xt, uc, t). For each position
in time, ~pt, we compute the relative position with each
neighboring position at that time and determine if the relative
position lies inside the Minkowski Sum. If so, we discard the
candidate controls. After all the candidates are evaluated, the
new control sequence is chosen by minimizing the objective
function described in the subsequent section.

E. New Trajectory Computation

Once a set of suitable control candidates has been com-
puted, the vehicle selects the valid controls that minimize the
following cost function at each sample point i ∈ I:

C =

I∑
i=0

cpath(i) + ccmft(i) + cmnvr(i) + cprox(i). (3)

This function corresponds to producing paths which are
comfortable for passengers, provide safe passing-distances
from other vehicles, and respect the constraints of upcoming
maneuvers the vehicle must perform. Each term consists of
several cost evaluation functions, each with its own weight
e ∈W , which are described in the following sections.



Fig. 4. Results: (A) and (B): The ego-vehicle is forced to stop as a pedestrian enters the roadway during the Jaywalking benchmark due to the proximity
costs. Once the pedestrian has moved away, the vehicle resumes its course. (C) and (D): The ego-vehicle approaches a slower moving vehicle from behind.
The path and maneuver costs drive the ego-vehicle to plan a lane-change around the slower vehicle. The trajectory of the ego-vehicle is shown in green.
(E): The Hatchback ego-vehicle during the S-Turns benchmark. The vehicle plans the highest speed it can safely maintain during the tight turns. Each
ego-vehicle plans a different safe speed based on their data-driven vehicle dynamics functions. (F): An overview of the Simulated City benchmark. The
ego-vehicle navigates amongst typical traffic to a set of randomly assigned destinations. (G): The ego-vehicle (outlined in green) yields to an oncoming
vehicle (outlined in red) during the Simulated City benchmark. Once the vehicle clears the intersection, the ego-vehicle proceeds with a left turn. (H):
The ego-vehicle (outlined in green) stops in traffic waiting for a stoplight to change during the Simulated City benchmark.

1) Path Cost: cpath encodes costs associated with the
vehicle’s success at tracking its path and the global route.
To compute this cost, we define two points. The target
point, ~ptar, represents the relative position the vehicle would
achieve following the spline defined by its guiding path
exactly at v′. Given the final sample, we project the vehicle’s
expected position at the final sample point onto ~ptar, which
we denote ~pI,tar. The path cost is given by:

cpath = cvel + cdrift + cprog (4)
cvel = (v′ − v)2

cdrift = ||~p−~lp||2

cprog =
||ptar − pI,tar||
||ptar||

cvel is the squared difference between desired speed and
current speed and cdrift is the squared distance between the
center line of the vehicle’s lane and its current position. If
the path crosses a lane boundary, cdrift is computed with
respect to the new lane. cprog represents the vehicle’s desire
to maximally progress along its current path. Candidates
which reduce progress with respect to the guiding path
are penalized. These terms drive the vehicle to choose
trajectories that maximally progress the ego-vehicle along
its computed route between steps. cprog is only computed at
the final sample point.

2) Comfort Costs: Comfort costs are computed similar
to [1] and penalize motions which are uncomfortable for
passengers in the vehicle. caccel penalizes large accelerations
and decelerations. cyawr penalizes large heading changes and
discourages sharp turning. The comfort costs are given as:

ccmft = caccel + cyawr (5)
caccel = ||v̇i||
cyawr = ||θ̇||

3) Maneuver Costs: The novel maneuvering cost func-
tion discourages lane-changes without excluding them and
guides the vehicle to occupy the necessary lane for its next
maneuver. The formulation is given as:

cmnvr = clane + cmdist (6)
clane = 1 · LaneChanged

cmdist =
1

~p− ~pm
·WrongLane

LaneChanged is a boolean variable representing whether a
candidate path crosses a lane boundary. ~pm is the position of
the next maneuver change, e.g. the beginning of a right turn.
This position is determined by the point of maneuver and
starts in the desired lane for the maneuver. WrongLane is
a boolean that evaluates to true if the vehicle’s lane does not
match the lane for the next maneuver. If a candidate control is
chosen where for some point i ∈ I , LaneChanged evaluates
to true, a lane change behavior is initiated in the finite state
machine.

4) Proximity Costs: While the collision avoidance stage
prevents the vehicle from colliding with neighbors, the
proximity cost term is designed to prevent the vehicle from
passing close to neighboring entities based on the identified
type of the neighbor, Tn. This cost is represented as a cost
distance term with exponential decay based on the relative
positions of the ego-vehicle and its neighbor.



cprox =

N∑
n=0

d(Nj , ~p) (7)

d(Nn, ~p) = CtypeTn
· e−||~pn−~pe||

Ctype is a per-type constant cost value. Ctype is larger for
pedestrians and bicycles than for vehicles, and guides the
ego-vehicle to pass those entities with greater distance.

F. Data-driven Vehicle Dynamics Model

In order to determine values for A(v, ut) and Φ(φ, us),
we use a data-driven approach to model the dynamics of the
vehicle. For each ego-vehicle, data is collected by driving
the vehicle from v = 0 to v = vmax at the highest possible
throttle without loss of traction. Similarly, for braking, the
vehicle is decelerated from v = vmax to v = 0 using the
highest braking effort possible without loss of traction. Data
is collected at 60Hz for these values: current speed, accelera-
tion, and throttle/braking values. From these data, piecewise
quadratic functions are constructed by least squares fitting to
represent the maximum available acceleration and braking
given the current vehicle state. These values also define
thresholds for the control safety function S(u,X).

We determine Φ(φ, us) by fixing the vehicle’s speed and
collecting data for instantaneous changes to the steering
angle for a given us. We construct a piecewise quadratic
function by least-squares fitting to represent the vehicle’s
steering dynamics. Having the value of µ from the sensors,
we determine the maximum feasible speed for a given
curvature from the centripetal force equation:

v =
√
µrg (8)

where r is the radius of curvature that is computed from
equation (1a). By substituting equation (1a) into equation
(8), and the angular velocity formula v = ω · r, we can
determine feasible steering for a given speed as

φ = tan−1(
(Lf + Lr) · µ · g)

v2
). (9)

Given the generated functions S, A, and Φ, the future path
of the vehicle can be evaluated quickly for planning future
controls.

G. Control Input

Once a new set of controls is chosen, they are input to
the vehicle using a pair of PID controllers. One of the PID
controllers drives the current speed to match the target speed.
The second PID controller drives the current steering angle
to match the target steering angle chosen by the optimization
function. By limiting the choice of candidate controls to
kinematically and dynamically feasible controls using our
data-driven vehicle dynamics model, the PID controllers are
sufficient to achieve the desired values.

V. EXPERIMENTAL EVALUATION

In this section, we detail the evaluation scenarios for our
navigation algorithm. Each scenario is chosen to test different
aspects of the algorithm including response time, safety, and
handling different traffic situations.

A. Ego-Vehicles

To demonstrate the generality of our approach, we tested
each experimental scenario on each of three vehicles. Vehicle
1, the hatchback, has a mass of 1365 kg, a length of 3.8m,
and a maximum steering angle of 60◦. Vehicle 2, the sports
car, has a mass of 1750 kg, a length of 4.6m, and a maximum
steering angle of 63◦. Vehicle 3, the SUV, has a mass of
1866 kg, a length of 4.8m, and a maximum steering angle
of 55◦.

B. Benchmarks

We conducted a series of simulations with each vehicle
representing a variety of the challenging traffic scenarios
an ego-vehicle will face while navigating city roads and
highways.

Passing a bicycle: This scenario involves the ego-vehicle
passing a bicycle on a four lane straight road. The vehicle
should maintain a safe distance from the bicycle, chang-
ing lanes if possible to avoid the cyclist. We perform the
evaluation twice, once featuring a vehicle in the adjacent
lane preventing the vehicle from moving to avoid the cyclist
without first adjusting its speed.

Jaywalking Pedestrian: This scenario features a pedes-
trian stepping into the road in front of the vehicle. The
vehicle must react quickly to safely decelerate or stop to
avoid the pedestrian.

Sudden Stop at High Speed: The vehicle must execute
an emergency stop on a highway at high speeds when
the vehicle in front of it stops suddenly. We evaluate this
scenario in two conditions. First, we evaluate performance
with no other traffic aside from the ego-vehicle and stopping
vehicle. In this condition, swerving can be performed simply.
Secondly, we evaluate this scenario with surrounding traffic,
complicating any swerving maneuvers as the vehicle must
account for nearby traffic.

High Density Traffic Approaching a Turn: This scenario
features a four lane road with the ego-vehicle starting in a
heavily congested outer lane. The ego-vehicle must make a
turn at a stoplight ahead in the outer lane. To make optimal
progress, the ego-vehicle must execute a lane change to the
inner lane, but must return to the outer lane with sufficient
time to execute the turn.

Car Suddenly entering Roadway: This scenario demon-
strates the ego-vehicle traveling along a straight road at
constant speed when a vehicle suddenly enters the roadway
ahead of the vehicle and blocks the vehicle’s path. The
vehicle must decelerate and swerve to avoid colliding with
the blocking vehicle. We demonstrate this scenario with the
ego-vehicle travelling at 10, 30, and 50 mph and with the
blocking vehicle obstructing either the right lane or both
lanes.
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Fig. 5. Collision Avoidance Timing: We detail the relationship between
the cost of collision checking for a trajectory and the number of nearby
entities considered. We observe a linear relationship between collision
checking and number of neighbors.

S-turns: We demonstrate the ego-vehicle navigating a
set of tight alternating turns, or S turns. Each ego-vehicle
computes a different safe speed depending on the specific
kinematic and dynamic limits of the vehicle.

Simulated City: We demonstrate the ego-vehicle navi-
gating to several key points in a small simulated city. The
vehicle must execute lane changes to perform various turns
as it obeys traffic laws and navigates to its goals. The vehicle
encounters bicycles, pedestrians, and other vehicles as it
navigates to its waypoints.

VI. BENCHMARK RESULTS

We evaluated our navigation algorithm in these simulated
scenarios. The algorithm can avoid tens of vehicles at inter-
active rates. As expected, the sports-car and the hatchback
were able to maintain their preferred speeds more effectively
in turns, whereas our SUV was forced to reduce speed. Each
of the vehicles was able to pass other vehicles, pedestrians,
and bicycles safely. In Car Suddenly entering Roadway
scenario, we observed a greater tendency to swerve. We
did not observe the ego-vehicle colliding with any of the
simulated vehicles in traffic.

Figure 4 details some of the interesting behaviors we
observed while testing our navigation algorithm. As ex-
pected, the ego-vehicle utilizes lane-changes to pass slower
vehicles when no traffic is imposing. In traffic, the ego-
vehicle slows down until it is safe to pass in the adjoining
lane. When interacting with pedestrians, the high proximity
cost discourages the vehicle from changing lanes as the
pedestrian passes, and the vehicle instead waits until the
pedestrian has moved considerably.

A. Timing Results

We collected data from a simulation designed to gradually
increase the density of other vehicles encountered by our
car. Figure 5 demonstrates the relationship between collision
avoidance cost for a specific trajectory sample and the
number of nearby vehicles and entities. We observe the

T
im

e 
(M

ic
ro

se
co

nd
s)

Mean Plot Data Linear Fit

Optimization Cost Evaluation vs Number of Trajectory Samples
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Fig. 6. Cost Function Evaluation Timing: The computational cost of
computing the optimal trajectory for the vehicle varies linearly with the
number of collision-free trajectories evaluated.

cost of collision avoidance grows linearly in the number of
neighbors.

Figure 6 demonstrates the relationship between the number
of trajectories sampled and the computational expense of
optimization evaluation. The observed relationship is linear
with greater variance than that of collision avoidance com-
putation. The overall computation time for a typical navi-
gation update including guiding path computation, control-
obstacle sampling, collision-avoidance and cost evaluation
is on the order of milliseconds, typically between 1 and 2
milliseconds. This suggests that the cost of the algorithm is
dominated by the optimization time.

VII. CONCLUSION AND LIMITATIONS

We present, AutonoVi, a navigation algorithm for au-
tonomous vehicles. Our approach uses a data-driven vehicle
dynamics model and optimization-based maneuver planning
to compute safe, collision free trajectories with dynamic lane
changes under typical traffic conditions. We have demon-
strated our algorithm on a varied set of vehicles under
varying dense and sparse traffic conditions with pedestrians
and cyclists. We have also demonstrated that our vehicles
follow traffic laws, and utilize both braking and steering
simultaneously when avoiding collisions. We highlight many
benefits over prior methods in our simulations.

Our approach has some limitations. First, though our
introduction of the data-driven dynamics functions A, Φ,
and S generalize to arbitrary levels of underlying dynamics
complexity, our current approach requires computing new
vehicle dynamics functions for different values of µ. We will
address this limitation in future work by learning a transfer
function between various road frictions to produce more
general data-driven vehicle dynamics functions. In addition,
we have assumed perfect sensing in the current technique
and it would be useful to take into account sensing errors
and uncertainty in our approach. These could be based on
relying on predictive behavior models to overcome imperfect
state estimations for neighboring entities [18], [23]. With
prediction, our control obstacles could anticipate levels of



reciprocity from predictable vehicles. We will also explore
whether the use of circular arcs may is appropriate for ve-
hicles with substantially different geometries, such as trucks
pulling large trailers. It is unclear if our kinematic models
and data-driven profiles will navigate large vehicles safely.
We will also like to incorporate real-world driving patterns
and cultural norms to improve our navigation algorithm. This
will include choosing optimal weights for the navigation
algorithm using available training data.
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