
ETH Library

Dynamic locomotion and whole-
body control for quadrupedal
robots

Conference Paper

Author(s):
Bellicoso, C. Dario; Jenelten, Fabian; Fankhauser, Peter; Gehring, Christian; Hwangbo, Jemin; Hutter, Marco

Publication date:
2017

Permanent link:
https://doi.org/10.3929/ethz-b-000174751

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.1109/IROS.2017.8206174

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-4285-4990
https://doi.org/10.3929/ethz-b-000174751
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/IROS.2017.8206174
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Dynamic Locomotion and Whole-Body Control for Quadrupedal Robots

C. Dario Bellicoso, Fabian Jenelten, Péter Fankhauser, Christian Gehring, Jemin Hwangbo, Marco Hutter

Abstract— This paper presents a framework which allows
a quadrupedal robot to execute dynamic gaits including trot,
pace and dynamic lateral walk, as well as a smooth transition
between them. Our method relies on an online ZMP based
motion planner which continuously updates the reference mo-
tion trajectory as a function of the contact schedule and the
state of the robot. The planner is coupled with a hierarchical
whole-body controller which optimizes the whole-body motion
and contact forces by solving a cascade of prioritized tasks. We
tested our framework on ANYmal, a fully torque controllable
quadrupedal robot which is actuated by series-elastic actuators.

I. INTRODUCTION

Research focused on robotic locomotion has made great
efforts in trying to reach the natural capabilities of animals,
which are capable of executing highly dynamic gaits and nat-
urally perform quick and smooth transitions from one gait to
another. The recent advances in both the motion planning and
control methods, as well as the increase in performance of
both hardware and software, are narrowing the gap between
legged robots and their biological counterparts. Although
we are still far from a fully autonomous system capable of
locomotion in all environments, the recent years have seen
several important results.

Dynamic locomotion is a complex problem which involves
a multi-body system which interacts with the environment
through several contact points. The execution of dynamic
gaits for such a system over unknown and challenging terrain
requires careful motion planning and accurate motion and
force control. Research groups and companies have demon-
strated the ability to walk, run and jump over challenging
terrain. Cheetah 2 [15] from MIT has been shown able to
run and jump over obstacles which are 80% of the robot’s
leg length using an MPC controller. Recent results have
shown ANYmal [9] walking [1], trotting [5], and climbing
over stairs [3] by employing whole-body control and motion
optimization algorithms. The IIT HyQ [17] quadruped has
been shown walking using a creeping gait [14] over stepping
stones [19]. Motion planning for the torso was obtained by
solving an optimization problem which constrained the Zero-
Moment Point (ZMP) [18] to lie in the support polygons.

A notable example of dynamic locomotion is given by the
legged robots developed by Boston Dynamics. One of their
recent legged robots, Spot, has demonstrated a wide variety
of dynamic gaits, including a dynamic walk, trotting with

This work was supported in part by the Swiss National Science Foun-
dation (SNF) through the National Centre of Competence in Research
Robotics.

All authors are with the Robotic Systems Lab, ETH Zurich, Switzerland,
bellicoso@mavt.ethz.ch

Fig. 1. Our motion plan and control framework, tested on the fully torque-
controllable quadrupedal robot ANYmal, can execute a dynamic walk which
includes overlapping swing phases for lateral legs (e.g. left-front and left-
hind legs).

full flight phases, pacing, as well as demonstrating smooth
transitions between these. Spot mini, a more recent machine,
has shown similar skills as well as manipulation capability
with a robotic arm. While impressive, the methods to achieve
such results are not available. In this paper, we contribute
a novel framework and methods for motion planning and
control algorithms needed to execute complex and dynamic
gaits.

Based on the results shown in [10] and [19], we developed
a ZMP based motion planner which can generate a motion
through a sequence of arbitrary support polygons, including
triangles and quadrilaterals, but also lines, which is the
case for a dynamic walk with overlapping swing phases or
for a trotting and pacing gait. Rather than computing the
optimal motion on discrete events (e.g. a foot touchdown),
we recompute the optimization as soon as the previous one
ends successfully, providing us with a motion plan which
continuously adapts to the new state of the robot as well
as to changes in the gait pattern. We also reformulate the
cost function to include costs on the deviation from previous
solutions, as well as costs which penalize the deviation from
a path regularizer. Motion tracking is obtained by means of
a whole-body controller which solves a sequence of motion
and contact force prioritized tasks using the hieararchical
optimization formulation. We demonstrate our method by
executing dynamic gaits such as a dynamic lateral walk
with overlapping swing phases, a trot and a pace on the

quadrupedal robot ANYmal. We conclude our experiments
by showing a transition between a dynamic lateral walk and
a pace gait. To the best of our knowledge, this is the first
contribution with results and methodologies on the execution
of such dynamic gaits, specifically a dynamic lateral walk,
a pacing gait and transitions between them.

II. MODEL FORMULATION

In general, a walking robot can be modeled as a system
with a free-floating base B to which legs are attached (see
Fig.2). The motion of the entire system can be described
w.r.t. a fixed inertial frame I . We write the position vector
from the inertial to the base frame expressed in the inertial
frame as IrIB ∈ R3 and use Hamiltonian unit quaternions
to parametrize the orientation of the main body. The limb
joint angles are stacked in the vector qj ∈ Rnj . We write
the generalized coordinates vector q and the generalized
velocities vector u as

q =

IrIBqIB
qj

 ∈ SE(3)× Rnj , u =

 IvB
BωIB
q̇j

 ∈ Rnu , (1)

where nu = 6 + nj , IvB and BωIB are the linear and
angular velocity of the base w.r.t. the inertial frame expressed
respectively in the I and B frame, and qIB ∈ SO(3) is
the unit quaternion that projects the components of a vector
expressed in B frame to those of the same vector expressed
in I frame. The equations of motion of legged systems can
be written as M(q)u̇ + h(q,u) = ST τ + JTs λ, where
M(q) ∈ Rnu×nu is the mass matrix and h(q,u) ∈ Rnu
is the vector of Coriolis, centrifugal and gravity terms. The
selection matrix S =

[
0nτ×(nu−nτ) Inτ×nτ

]
selects which

DoFs are actuated. If all limb joints are actuated, then nτ =
nj . The vector of constraint forces λ is mapped to the joint
space torques through the support Jacobian Js ∈ R3nc×nu ,
which is obtained by stacking the constraint Jacobians as
Js =

[
JTC1

· · · JTCnc
]T

, with nc the number of limbs
in contact. Motion at the supporting contact points must be
constrained. If the feet are modeled as point contacts, then
each contact introduces three constraint equations IrIC(t) =
const, which can be differentiated twice to yield

I ṙIC = JCu = 0, I r̈IC = JC u̇ + J̇Cu = 0. (2)

III. HIERARCHICAL OPTIMIZATION

We have recently shown [1] the implementation of a whole
body controller which finds the optimal joint torques and
joint accelerations by solving a cascade of prioritized QP
problems. In this work we use a different implementation
which solves for contact forces rather than joint torques.
Hence, we search for a vector ξd =

[
u̇Td λTd

]T ∈ Rnu+nc
of desired joint accelerations and contact forces. The dimen-
sion of ξd is a function of the number of contact points nc.
When the feet are modeled as point contacts, the dimensions
of ξd will be smaller or equal to the case of optimizing for
joint torques. As noted in [8], this is beneficial in terms of
computation speed when solving the numerical optimization

Fig. 2. A sketch of the quadrupedal robot ANYmal. The floating base
pose is defined by the position of the base frame wr.t. the inertial frame
expressed in the inertial frame IrIB , and by the orientation of the base
w.r.t. the inertial frame CIB . As discussed in earlier works [5], we define a
control frame CIC which is aligned with the local estimation of the terrain
and with the robot’s heading direction.

of tasks. It also results in an more natural way of expressing
constraints of contact forces.

Equations of motion: By taking advantage of the de-
composition induced by the selection matrix ST , we can
constrain the motion and the contact forces to live on the
manifold described by the floating base system dynamics by
writing [

Mfb −JTsfb
]
ξd = −hfb, (3)

where Mfb, JTsfb and hfb are the first six rows of the com-
posite inertia matrix, the support Jacobian and the nonlinear
terms respectively, which are the equations related to the
dynamics of the floating base.

Contact motion constraint: The solution found by the
controller should not violate the contact constraints defined
in (2). Hence, we impose null accelerations at the contact
points by setting[

Js 03nc×3nc

]
ξd = −J̇su. (4)

Contact force and torque limits: To avoid slipping, contact
forces should be constrained to lie in the friction cone which
is aligned with the normal to the contact surface In expressed
in world frame and is a function of the friction coefficient
µ. To write these constraints as linear ones, we approximate
the friction cones with pyramids. These are aligned with the
unit perpendicular vectors I l and Ih which lie on the contact
surface. We achieve this by writing constraints on the k-th
contact force λk as

(Ih− Inµ)T Iλk ≤ 0

−(Ih + Inµ)T Iλk ≤ 0

(I l− Inµ)T Iλk ≤ 0

−(I l + Inµ)T Iλk ≤ 0.

(5)

Joint actuation torques should also be limited to avoid
mechanical limits given by the actuators. We can write

τmin − hj ≤
[
Mj −JTsj

]
ξd ≤ τmax − hj , (6)

TABLE I
THE LIST OF PRIORITIZED TASKS USED IN OUR EXPERIMENTS. EACH

TASK IS ASSOCIATED WITH A PRIORITY (1 IS THE HIGHEST).

Priority Task
1 Floating base equations of motion
2 Torque limits

Friction cone and λ modulation
3 No contact motion
4 Center of mass linear motion

Center of mass angular motion
Swing leg motion tracking

5 Contact force minimization

where the j subscript is relative to the rows of the equations
of motion describing the joint dynamics. The quantities τmin
and τmax are nj dimensional vectors of minimum and
maximum actuator torques.

Motion tracking: To track the desired motion of the
floating base and the swing legs, we constrain the joint accel-
erations by implementing operational space controllers with
feed-forward reference acceleration and a motion dependent
state feedback state. For the main body we write[

CJP 0
]
ξd = C r̈

d
IB + kposD (C ṙ

d
IB − CvB)

+ kposP (Cr
d
IB − CrIB)

(7)

for the linear motion and[
CJR 0

]
ξd = −kangD CωB + kangP (qdCB � qCB) (8)

for the angular motion. The Jacobian matrices CJP and CJR
are the translational and rotational Jacobian associated to the
base expressed in the Control frame C, which is a frame
aligned with the local estimation of the terrain and with the
heading direction of the robot (for more details see [1] and
[5]). The � operator yields the Euler vector which represents
the relative orientation between the desired attitude qdCB and
the estimated one qCB . The gains kposP , kposD , kangP and kangD

are diagonal positive definite matrices of control gains. The
reference motion CrIB and its derivatives are the output of
the motion plan which is described in section IV.

Contact force minimization: We minimize the contact
forces by setting[

03nc×nu I3nc×3nc

]
ξd = 0. (9)

Table I summarizes the tasks and their priority (a lower value
indicates a higher priority) used throughout the experiments.

Given a computed set of joint motions and contact forces
ξd =

[
u̇Td λTd

]T
, we compute the reference joint torques

as τ d =
[
Mj −JTsj

]
ξd + hj , where Mj , JTsj and hj are

defined as in (6).

IV. MOTION OPTIMIZATION

We describe how to obtain a motion plan for the x
and y coordinates of the whole-body center of mass (com)
such that balance is ensured during locomotion at all times.
Fig.3 shows the resulting motion plan obtained during the
execution of a dynamic lateral walk.

Fig. 3. The solution obtained by the motion planner when a dynamic lateral
walk gait is active. The support polygons are computed as the convex hull
of the points which are in contact (large blue dots) according to the contact
schedule. To increase robustness of the solution, a safety margin is applied
to the polygons such that their area is reduced. Only the first three support
polygons of the sequence (respectively in red, green and blue) are shown.
The resulting center of mass motion p(t) (red path) is optimized to deviate
the least possible from a path regularizer π(t) (blue path), while the ZMP
pzmp(t) (green path) is constrained to always lie in the active support
polygon. When two lateral legs are simultaneously swinging, the support
polygon collapses to a line (shown in green). To avoid numerical issues
and excessive accelerations due to a required increase in the order of the
approximating spline, we expand the line to a rectangle.

The locomotion framework can receive high-level velocity
commands from an external source, i.e. an operator device or
a high-level navigation planner. To drive locomotion to the
reference speed, footholds are generated for all legs (section
IV-A) to obtain the desired average velocity of the torso.
This information, together with the footfall pattern (e.g.
fig.4), is used to generate a sequence of support polygons
(section IV-B) which are sent to the motion plan optimizer
(section IV-C). This in turn will produce position, velocity
and acceleration profiles for the x and y coordinates of the
whole-body center of mass.

The entire plan is computed in the Plan frame P which
is located at the origin of the inertial frame and follows the
yaw rotation of the torso of the robot. Hence, it is always
aligned to the heading direction of the robot. This allows us
to interpret the problem formulation contributions to the x
and y coordinates of the plan as constraints on heading and
lateral directions of the motion.

A. Foothold generation

External high-level velocity commands are used to drive
locomotion in a specific direction and speed by adjusting
the reference footholds, which are computed for each leg at
each new control loop. Depending on the contact state of a
leg, these are computed in two different ways: when a leg
is in contact, the commanded velocities will be projected
to foothold locations computed such that the average torso
speed matches the required locomotion speed; if a leg is
swinging, the reference foothold is computed in the same
way but added to a velocity feedback term which stabilizes
the robot when it receives a push which produces a velocity
control error. For more details, see [5].

B. Support polygon sequence

We describe a gait by defining lift-off φlo and touch-down
φtd events in the phase domain for each leg. This also defines
a contact schedule for all legs. Fig.4 shows the phase events
for a dynamic lateral walk, which exhibits overlapping swing

LF

LH

RF

RH

0 1

Fig. 4. The contact schedule associated to a dynamic lateral walk. The
dark areas represent a contact phase, while the light areas represent a swing
phase. The abbreviations stand for left fore (LF), right fore (RF), left hind
(LH) and right hind (RH). This gait exhibits an overlap in the swing phases
of the left fore/hind and the right fore/hind legs. The red line represents the
current phase ϕ ∈ [0, 1]

phases for fore/hind left and fore/hind right legs. Given the
touch-down and lift-off events for all legs, as well as the
current feet locations and the set of desired footholds, we
can compute a sequence of support polygons (defined as the
tuple of vertices and time duration in seconds) to be used in
the motion planner. We do this whenever a new motion plan
is available, such that the new solution adapts to changes
in the contact schedule, changes in the reference footholds
and changes in the high-level operator velocity. To compute
each polygon, we start from the current phase ϕ and store
the x − y coordinates of the feet which are in contact. We
search for the next phase event ϕk with k = 1 to get the
duration of the first polygon t0 = ts(ϕk − ϕ), with ts the
stride duration in seconds. Thus, we have completely defined
a support polygon by its vertices and its duration in seconds.
We iterate by updating ϕ to ϕk and searching for the next
phase event. Since the contact schedule is periodic, we repeat
these steps until the phase event ϕ0 + 1, which corresponds
to the starting phase ϕ0.

C. Problem formulation

As done in [19], we choose to represent the motion plan
by using two sequences of fifth order polynomial splines for
the x and y coordinates of the center of mass position. Each
spline has a time duration tfk. Hence, the position p ∈ R2 at
time t described by the k-th pair of splines in the sequence
can be compactly written as

p(t) =

[
px(t)
py(t)

]
=

[
αTkx
αTky

]
η(t) (10)

where

αTkx =
[
axk5 axk4 axk3 axk2 axk1 axk0

]
αTky =

[
ayk5 ayk4 ayk3 ayk2 ayk1 ayk0

] (11)

and
η(t)T =

[
t5 t4 t3 t2 t 1

]
. (12)

Alternatively we can write

p(t) =

[
η(t)T 06×1

06×1 η(t)T

] [
αkx
αky

]
= T(t)αk, (13)

with T(t) ∈ R2×12. We hence represent the k-th pair of
splines as sTk =

[
αTkx αTky

]
. Using this parametrization,

we setup an optimization problem that will solve for all the

spline coefficients for k = 0, . . . , n− 1, with n the number
of splines used to generate the motion. This also allows to
easily represent velocities and accelerations as

ṗ(t) =

[
αTkx
αTky

]
η̇(t) p̈(t) =

[
αTkx
αTky

]
η̈(t) (14)

or by writing ṗ(t) = Ṫ(t)αk and p̈(t) = T̈(t)αk. The
problem we solve is then to search for the vector optimal
coefficients

ξ =
[
αT0x αT0y αT1x αT1y . . . αT(n−1)x αT(n−1)y

]T
(15)

by solving a QP problem. The total number of splines used
to approximate the motion is 2n. The following will describe
the setup of an optimization problem formulated as

min.
ξ

1

2
ξTQξ + cT ξ

s. t. Aξ = b, Dξ ≤ f .

(16)

In the following, if not explicitly noted otherwise, we will
refer only to the x coordinate of each pair of splines sk. The
same arguments hold for the y coordinate.

D. Plan initialization

The motion plan is initialized with an extended state
(position, velocity and acceleration) which is used as a hard
constraint for the initial state of the spline sequence. This
is done by fusing together the previous desired position
Cr

des
IB with the current measured one CrIB by using an

exponentially decaying alpha filter designed as

Cr
ref
IB = αCr

des
IB + (1− α)CrIB (17)

with α = 0.5e−λtc , where λ ∈ R can be set to weigh
the desired position as a function of the computation time
tc since the last successful optimization. A similar filter is
employed to set the initial velocities, whereas acceleration is
initialized with the last available reference one.

E. Cost function

In our formulation, several terms contribute to the Hessian
matrix Q ∈ R12n×12n and the linear term c ∈ R12n

appearing in (16). We penalize the deviation of the position
p(t) = T(t)α from a desired position reference pr by
writing

1

2
‖Tα− pr‖2W

=
1

2
(Tα− pr)

TW(Tα− pr)

=
1

2
αTTTWTα− pTr WTα+

1

2
pTr Wpr.

(18)

Minimizing the squared norm in (18) is equivalent to solving
a QP in the form 16 with

Q = TTWT c = −TTWTpr. (19)

To penalize deviation for velocity references, it is simply
required to use Ṫ and ṗr in (18). A similar reasoning can
be done for acceleration deviations.

1) Acceleration minimization: As shown in [10], we can
minimize the acceleration by writing

Qacc
k =

(400/7)t7f 40t6f 24t5f 10t4f

40t6f 28.8t5f 18t4f 8t3f
...

24t5f 18t4f 12t3f 6t2f 04×2

10t4f 8t3f 6t2f 4tf
...

· · · 02×4 · · · 02×2

 (20)

with a null linear term cacck = 0. Note that if this were
the only term added to the cost function, there would be
no cost associated to the α1k and α2k coefficients of each
spline, leading to a positive semi-definite Hessian. This is
problematic when using a method such as the Active Set
one [6] which requires the Hessian to be positive definite. In
that case, a regularizer term can be added as

Q
accρ
k =

[
04×4 04×2

02×4 ρI2×2

]
(21)

with ρ = 10e−8 and a null linear term.
2) Soft final constraints: We set the final position pf ∈

R2 to be at the center preff ∈ R2 of the polygon defined
by the planned footholds, which is the polygon that would
support the robot if it would stop to stand at the end of
the support polygon sequence. To minimize the norm ‖pf −
preff ‖2Wf

= ‖Afsf − preff ‖2Wf
we write

Qf = AT
fWfA cf = −ATWfp

ref
f , (22)

with Wf ∈ R2×2 a symmetric diagonal matrix of positive
weights. To avoid solutions in which the optimizer places
the final state far away from the reference position, we
add inequality constraints on the position such that it is
constrained in a box centered at the reference position.

3) Deviation from previous solution: Since we are com-
puting a new optimization as soon as the previous one
was successful, to avoid large deviations between successive
motion plans we penalize deviations on position, velocity and
acceleration obtained by the current solution ξ from the ones
resulting from the previous one ξi−1. Given tpre the time
elapsed since the last successful optimization, we penalize
the deviations ‖p(t̄) − pi−1(tpre + t̄)‖2Wpre

, ∀t̄ ∈ [0, tf],
where tf =

∑n−1
k=0 tfk is the sum of the durations of all

of the n splines that compose the motion. We discretize
the optimization horizon [0, tf] using a sample time dt. We
employ a similar cost penalizing deviations from velocities
and accelerations obtained by the last solution.

4) Path regularization: Continuous update of the motion
plan can cause drift in the motion of the torso w.r.t. the
reference footholds. This can be caused by the accumulation
of control errors, which alter the solution such that the
motion can become unfeasible. To avoid this issue, we add
a cost on the deviation from a reference regularizer path.
The path itself is approximated as a sequence of splines
represented by π(t), π̇(t) and π̈(t). The spline coefficients
of the path regularizer are obtained from a minimization
problem setup such that:

• The initial state π(0), π̇(0) and π̈(0) coincides with
the center of the initial support polygon and is equal to
the initial velocity and acceleration

• The final state π(tf), π̇(tf) and π̈(tf) is set as in
section IV-E.2

• Acceleration is minimized
• Splines are smoothly connected by setting equality

constraints on the state at the spline junctions
By sampling the entire motion as done in section IV-E.3,
we penalize deviations of the resulting motion from the path
regularizer.

F. Equality constraints
Since the entire motion is composed of a sequence of

splines, we setup the problem to ensure that they are con-
nected. Since the initial state cannot be modified by the
motion plan, we set a hard equality constraint such that the
initial state of the first spline s0 coincides with the one set
in the plan initialization. The initial hard constraint can be
written as p(0) = pr, ṗ(0) = ṗr and p̈(0) = p̈r. Hence,
we write η(0)T

η̇(0)T

η̈(0)T

αx0 =

prxṗrx
p̈rx

 . (23)

To ensure that two splines sk and sk+1 are connected, we
constrain them such that[

η(tfk)T −η(0)T

η̇(tfk)T −η̇(0)T

] [
αxk
αxk+1

]
= 0, (24)

with tfk representing the duration in seconds of spline
sk. When the equality junction connecting two splines lies
between two disjoint support polygons, we cannot guarantee
the smoothness or the motion anymore, but will have to
allow the ZMP to jump, which will cause a jump in the
acceleration reference. Although this has a negative effect on
the controller, it does allow the optimizer to find a solution
when traversing disjoint support polygons. We check whether
two polygons intersect by using the Separating Axis Theorem
(SAT) described in [7]. If such an intersection exists, we also
constrain acceleration between two splines by writing[

η̈(tf)T −η̈(0)T
] [αxk
αxk+1

]
= 0. (25)

G. Inequality constraints
As demonstrated in [11] and [19], balance during locomo-

tion can be ensured by constraining the Zero-Moment Point
(ZMP) to lie inside the support polygon. Starting from the
measured feet configuration at the time the motion plan is
called and using the planned feet positions, we compute a
sequence of support polygons and their duration by using the
contact schedule as defined in [5]. By assuming at least two
feet on the ground at all times, the support polygon for a
quadrupedal robot can be a line, a triangle or a quadrilateral.

As discussed in [16] and [19], the location of the ZMP is
a function of the motion of the center of mass. The location
of the x coordinate of the ZMP is defined by

xzmp = xcom −
zcomẍcom
g + z̈com

, (26)

where g is the gravitational acceleration. We reorder the
vertices of each support polygon counter-clockwise by com-
puting their polar coordinates w.r.t. the center of the support
polygon and comparing their phase. We can then constrain
the ZMP by adding one constraint for each edge of the
support polygon by writing axzmp + byzmp + c ≥ 0, where
a, b and c are the coefficients of the line that passes through
the vertices of an edge of the support polygon. The normal
vector to this line n =

[
a b

]T
is directed towards the inside

of the polygon.
As mentioned in section IV-E, we place additional inequal-

ity constraints on the final position pf of the motion. This
is obtained by adding four constraints of the form (26) on
pf .

H. Constraint relaxation

The optimizer can fail if the constraints are too tight. First,
the initial ZMP may not lie in the current support polygon.
For this reason, we exclude the ZMP constraint on the first
sample of the motion plan. This way the optimizer is still
able to find a solution, and our experiments have shown this
to work on the real system.

Second, the support polygon safety margin may be too
high. To counteract this, whenever an optimization fails, we
iteratively decrease the margin by a fixed amount, and we
increase it back at a slower rate to ensure the success of the
optimization.

Finally, we check for the time duration tfk associated
to each polygon. If it is smaller or comparable to the
sample time used to discretize the motion and to setup
the constraints, we remove the support polygon from the
sequence.

V. EXPERIMENTS

A. Setup

Our experiments1 were conducted on ANYmal [9], an
accurately torque-controllable quadrupedal robot. Control
signals are generated in a 400Hz control loop which runs on
a dedicated on-board computer together with state estima-
tion [2] and communication with the drives. For modeling
and computation of kinematics and dynamics, we use the
open-source Rigid Body Dynamics Library [13] (RBDL),
which is a C++ implementation of the algorithms described
in [4]. To numerically solve the QP problems described
in the previous sections, we use a custom version of the
QuadProg++ [12] library, a C++ open-source QP solver
which implements the Active Set algorithm described in [6].

B. Dynamic locomotion

We have tested our planning and control framework by
executing several gaits, including a dynamic lateral walk
with overlapping swing phases; a trotting gait; a pacing
gait; a transition between dynamic lateral walk and pacing
(see Fig.7). The execution of all these gaits was successful
both on flat terrain and on slightly uneven terrain, including
locomotion over a small but unperceived step. We have also

0

0.2

0.4

0.6

0.8

x
 [
m

]

4 5 6 7 8 9 10

time [s]

-0.1

-0.05

0

0.05

0.1

y
 [
m

]

meas

des

Fig. 5. The time evolution of the measured (blue) and reference (red)
whole-body center of mass position on the x and y directions during a
pacing gait.

LF

LH

RF

RH

Fig. 6. The contact schedule associated to a pacing gait. This gait exhibits
a complete overlap in the swing phase of two legs which are on the same
side of the main body, namely fore/hind left or fore/hind right legs.

tested an online transition from stand to a dynamic lateral
walk to a pace. This was achieved by applying a transition
from the walking to the pacing gait by interpolating the two
footfall patterns as a function of the commanded heading
speed. As shown in the videos, we can smoothly switch from
stand, to dynamic walk to pace and safely back to stand.

VI. CONCLUSIONS AND FUTURE WORK

We have shown how it is possible to execute highly
dynamic and agile gaits on a torque-controllable quadruped
robot by combining a motion planner based on a simplified
dynamic model and a hierarchical whole-body controller.
The motion planner based on the ZMP stability criterion is
continuously updating the reference trajectory as a function
of the current gait pattern and the robot state; the whole-body
controller tracks the reference plan by solving a hierarchy
of tasks. We have demonstrated the execution of dynamic
gaits such as a trot, a dynamic lateral walk, a pace and a
transition between the last two on ANYmal. To the best of
our knowledge, this is the first time that experimental results
are published for such gaits.

The next steps will be focused on improving the main
features of gait execution and gait transition. This includes
foothold evaluation and gait pattern adaptation in order to be
able to deal with harsh changes in the state of the robot and
sudden changes in the active gait pattern. The framework
should also be extended to include full flight phases, which
would allow to perform even more agile locomotion.

1https://youtu.be/iUQE-ZQqdJY

0.6

0.8

1

1.2

1.4

10 10.5 11 11.5 12 12.5 13 13.5 14

-0.05

0

0.05

0.1

0.15

meas

des

dynamic lateral walk pace

Fig. 7. The time evolution of the measured and reference whole-body center
of mass position in the inertial frame during a transition from dynamic lateral
walk to pace.

-0.5

0

0.5

1

1.5

x
 [

m
/s

2
]

10 10.5 11 11.5 12 12.5 13 13.5 14

time [s]

-2

-1

0

1

2

y
 [

m
/s

2
]

dynamic lateral walk pace

Fig. 8. The time evolution of the reference acceleration for the whole-body
center of mass during a transition from dynamic lateral walk to pace.

10

1 2 3 4 5

6 7 8 9

11 12 13 14 15

Fig. 9. A sequence showing ANYmal during a transition from a dynamic
lateral walk to a pacing gait. Balance is retained even though there is an
unperceived step.

REFERENCES

[1] C. D. Bellicoso, C. Gehring, J. Hwangbo, P. Fankhauser, and M. Hut-
ter. Perception-less terrain adaptation through whole body control
and hierarchical optimization. In 2016 IEEE-RAS 16th Int. Conf. on
Humanoid Robots (Humanoids), pages 558–564, Nov 2016.

[2] M. Bloesch, C. Gehring, P. Fankhauser, M. Hutter, M. A. Hoepflinger,
and R. Siegwart. State estimation for legged robots on unstable and
slippery terrain. In 2013 IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, pages 6058–6064. IEEE, nov 2013.

[3] P. Fankhauser, C. D. Bellicoso, C. Gehring, R. Dub, A. Gawel, and
M. Hutter. Free gait - an architecture for the versatile control of
legged robots. In 2016 IEEE-RAS 16th Int. Conf. on Humanoid Robots
(Humanoids), pages 1052–1058, Nov 2016.

[4] R. Featherstone. Rigid Body Dynamics Algorithms. Springer US,
Boston, MA, 2008.

[5] C. Gehring, S. Coros, M. Hutler, C. D. Bellicoso, H. Heijnen, R. Di-
ethelm, M. Bloesch, P. Fankhauser, J. Hwangbo, M. Hoepflinger, and
R. Siegwart. Practice makes perfect: An optimization-based approach
to controlling agile motions for a quadruped robot. IEEE Robotics
Automation Magazine, 23(1):34–43, March 2016.

[6] D. Goldfarb and a. Idnani. A numerically stable dual method for solv-
ing strictly convex quadratic programs. Mathematical Programming,
27(1):1–33, 1983.

[7] S. Gottschalk. Separating axis theorem. Technical report, TR96-024,
Department of Computer Science, UNC Chapel Hill, 1996.

[8] A. Herzog, L. Righetti, F. Grimminger, P. Pastor, and S. Schaal. Bal-
ancing experiments on a torque-controlled humanoid with hierarchical
inverse dynamics. In 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 981–988, Sept 2014.

[9] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis,
J. Hwangbo, P. Fankhauser, M. Bloesch, R. Diethelm, and S. Bach-
mann. ANYmal - A Highly Mobile and Dynamic Quadrupedal Robot.
In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
2016.

[10] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal. Fast,
robust quadruped locomotion over challenging terrain. In 2010 IEEE
Int. Conf. on Robotics and Automation, pages 2665–2670. IEEE, may
2010.

[11] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal. Learn-
ing, planning, and control for quadruped locomotion over challenging
terrain. The International Journal of Robotics Research, 30(2):236–
258, nov 2010.

[12] Luca Di Gaspero. QuadProg++. Available at http://quadprog.
sourceforge.net/, 1998.

[13] Martin Felis. Rigid Body Dynamics Library. Available at http:
//rbdl.bitbucket.org/.

[14] R. McGhee and A. Frank. On the stability properties of quadruped
creeping gaits. Mathematical Biosciences, 3:331–351, aug 1968.

[15] H.-W. Park, P. M. Wensing, and S. Kim. Online planning for
autonomous running jumps over obstacles in high-speed quadrupeds.
Robotics: Science and Systems, 2015.

[16] P. Sardain and G. Bessonnet. Forces acting on a biped robot. center
of pressure-zero moment point. IEEE Transactions on Systems, Man,
and Cybernetics - Part A: Systems and Humans, 34(5):630–637, Sept
2004.

[17] C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella,
and D. G. Caldwell. Design of hyq–a hydraulically and electrically
actuated quadruped robot. Proceedings of the Institution of Mechanical
Engineers, Part I: Journal of Systems and Control Engineering,
225(6):831–849, 2011.

[18] M. Vukobratovic and B. Borovac. Zero-moment point thirty five years
of its life. International Journal of Humanoid Robotics, 01(01):157–
173, 2004.

[19] A. W. Winkler, C. Mastalli, M. Focchi, D. G. Caldwell, and
I. Havoutis. Planning and Execution of Dynamic Whole-Body Lo-
comotion for a Hydraulic Quadruped on Challenging Terrain. Icra,
pages 5148–5154, 2015.

http://quadprog.sourceforge.net/
http://quadprog.sourceforge.net/
http://rbdl.bitbucket.org/
http://rbdl.bitbucket.org/

