
Mesh-based 3D Textured Urban Mapping

Andrea Romanoni1 Daniele Fiorenti1 Matteo Matteucci1

Abstract— In the era of autonomous driving, urban mapping
represents a core step to let vehicles interact with the urban
context. Successful mapping algorithms have been proposed in
the last decade building the map leveraging on data from a
single sensor. The focus of the system presented in this paper
is twofold: the joint estimation of a 3D map from lidar data
and images, based on a 3D mesh, and its texturing. Indeed,
even if most surveying vehicles for mapping are endowed by
cameras and lidar, existing mapping algorithms usually rely
on either images or lidar data; moreover both image-based
and lidar-based systems often represent the map as a point
cloud, while a continuous textured mesh representation would
be useful for visualization and navigation purposes. In the
proposed framework, we join the accuracy of the 3D lidar
data, and the dense information and appearance carried by
the images, in estimating a visibility consistent map upon the
lidar measurements, and refining it photometrically through the
acquired images. We evaluate the proposed framework against
the KITTI dataset and we show the performance improvement
with respect to two state of the art urban mapping algorithms,
and two widely used surface reconstruction algorithms in
Computer Graphics.

I. INTRODUCTION

The growing interests around autonomous driving has
focused the Robotics and Computer Vision communities
on specific research areas such as sensing, mapping, and
driving policy development [1]. Here we focus on urban
dense textured mapping, which plays an important role to
enable autonomous navigation through cities.

Surveying vehicles, aiming at city mapping, are usually
endowed with 360° laser range finders and monocular or
stereo cameras. While laser range finders directly provide
accurate 3D measurements of the environment, cameras
collect its dense appearance. Successful mapping algorithms
have been proposed using cameras or lasers separately,
but, to the best of our knowledge, none of them exploits
both data sources to build dense textured maps. Only [2]
considers both information sources, but the final outcome
is a dense stereo matching disparity map, and not a full
photoconsistent 3D map of the environment. Moreover, most
systems reconstruct a point cloud or a voxelized map, while
a continuous mesh of the environment which represents in
a dense way the observed scene can lead to more robust
navigation or localization and it allows texturing too.

Laser-based mapping algorithms [3] and [4] have shown
to produce accurate maps of the environment, but fine-
grained details are often discarded, due to sparsity of the

1Politecnico di Milano, Dipartimento di Elettronica, Informazione e
Bioingegneria (DEIB), Milano, Italy
andrea.romanoni@polimi.it (corresponding author)
daniele.fiorenti@mail.polimi.it
matteo.matteucci@polimi.it

Fig. 1. Textured mesh reconstructed from the KITTI sequence. Notice how
moving objects do not appear in the final results

3D point clouds, and they can include moving points if not
properly filtered from the laser scans. Feature-based image-
based mapping algorithms [5], [6] and [7] build the map
reconstruction on 3D points estimated through robust 2D
to 2D correspondences; they are able to discard moving
points from the final outcome, nevertheless the resulting
map is still a sparse point cloud. Finally, photometric image-
based approaches from multi-view stereo exploit the whole
information carried in the image and result in more detailed
dense or semi-dense reconstructions; however they usually
assume the scene to be static not being designed to cope
with moving objects.

In this paper we propose a novel visibility consistent
3D photometric mapping algorithm to reconstruct a urban
textured mesh relying on both images and a sparse, although
accurate, 3D point clouds, coming from a lidar sensor. The
algorithm we propose is robust to the presence of moving
object and it is able to reconstruct a consistent textured mesh
without them (see in Fig. 1).

In Section II we discuss works in the literature close to
the proposed system. In Section III we describe the novel
framework proposed in the paper, which relies on both lidar
data and images; in Section IV we show the experimental
results and in Section V we conclude the paper proposing
out some future direction of research.

II. RELATED WORK

In this paper we present a complete framework to estimate
a texturized triangular mesh map of the environment in which
moving object are explicitly removed from the geometry of
the scene from the photometric refinement process and from
the texture. We now give an overview of the various topic
involved in the design of this framework

ar
X

iv
:1

70
8.

05
54

3v
1 

 [
cs

.C
V

] 
 1

8 
A

ug
 2

01
7



Mapping from laser sensors is a well studied research area
in Robotics; in the early studies, the map has been estimated
in 2 dimensions [8], while, in recent years, the prevalent
approach is to estimate it in 3D thanks to advances in
algorithms, processing and sensors. Mapping can be pursued
together with robot self-localization leading to Simultaneous
Localization and Mapping systems; these algorithms do not
focus on the mapping part, indeed they reconstruct a sparse
point-based map of the environment, while in our case we
aim at reconstructing a dense representation of it.

Some approaches estimate a 2.5D map of the environ-
ment by populating a grid on the ground plane with the
corresponding cell heights [9]. These maps are useful for
robot navigation, but neglect most of the environment details.
A more coherent representation of the scene is volumet-
ric, i.e, the space is partitioned into small parts classified
as occupied, free and, in some cases, unknown, and the
boundary between occupied and free space represents the 3D
map. In laser-based mapping the most common volumetric
representation is voxel-based due to its good trade-off be-
tween expressiveness and easiness of implementation [10];
the drawback of this representation is the large memory
consumption, and, therefore its non-scalability. Many efforts
have been directed to improve the scalability and accuracy of
voxel based mapping. Ryde and Hu [11] store only occupied
voxels, while Dryanovski et al. [12] store both occupied
and free voxels, in order to represent also the uncertainty
of unknown space. The state-of-the-art system OctoMap [3],
and its extension [4], are able to efficiently store large maps
by including an octree indexing to add flexibility to the
framework.

Voxel-based approaches usually produce unappealing re-
constructions, due to the voxelization of the space, and
they need a very high resolution to capture fine details of
the scene, trading off their efficiency. In Computer Vision
community, different volumetric representations have been
explored, in particular many algorithms adopt the 3D Delau-
nay triangulation [13], [5], [6], [14]. Delaunay triangulation
is self-adaptive according to the density of the data, i.e., the
points, without any indexing policy; moreover its structure
is made up of tetraedra from which it is easy to extract
a triangular mesh, widely used in the Computer Graphics
community to accurately model objects. These algorithms are
consistent with the visibility, i.e., they mark the tetrahedra
as free space or occupied according to the camera-to-point
rays, assuming that a tetrahedron is empty if one, or at least
one, ray intersects them.

Among image-based dense photoconsistent algorithms,
the mesh-based algorithm [14], [15] have been proven to
estimate very accurate models and to be scalable in large-
scale environments. They bootstrap form an initial mesh
with a volumetric method such as [5] or [16] and they
refine it by minimizing a photometric energy function defined
over the images. The most relevant drawback happens when
moving objects appear in the images: their pixels affect the
refinement process leading to inaccurate results.

In our paper, in order to filter out moving objects from

Fig. 2. Textured mesh pipeline. In this paper we focused on the two red
boxes.

the lidar data and the images, we need to explicitly detect
them. A laser-based moving objects detection algorithm has
been proposed by Petrovskaya and Thrun [17] to detect a
moving vehicles using model-based vehicle fitting algorithm;
the method performs well, but it needs models for the objects.
Xiao et al. [18] and the Vallet et al. [19] model the physical
scanning mechanism of lidar using Dempster-Shafer Theory
(DST), evaluating the occupancy of a scan and comparing
the consistency among scans. A further improvement of these
algorithms has been proposed by Postica et al. [20] where the
authors include an image-based validation step which sorts
out many false positive. Pure image-based moving objects
detection has been investigated in static camera videos (see
[21]), also for the jittering case [22], however it is still a
very open problem when dealing with moving cameras.

Once moving points have been removed and the photo-
consistent map is estimated, a texture can be computed from
the images. Computer Graphics literature investigated many
texuring algorithms [23], [24], [25], [26] which however
suppose the model to be very accurate. In our application
we estimate a realistic model useful for navigation purposes,
but it still does not capture the fine details of the scene,
which are required from these algorithms to work properly.
Especially the resolution is not comparable to the resolution
the Computer Graphics algorithm are used to deal with.

III. TEXTURED MESH RECONSTRUCTION

In Fig. 2 we depict the whole pipeline of our system, from
the laser and camera data, to the final textured reconstruction.
After an initial preprocessing of laser data, we first detect the
moving object, and, from these points, we create a moving
object mask corresponding to the images captured by the
cameras; then, we estimate a 3D mesh and we refine it
leveraging on the information carried by the images and the
moving objects masks. Finally, we texturize the mesh with a
novel efficient algorithm robust with respect to low resolution
meshes. The camera setting we considered is the monocular
one. The steps of the pipeline are described in the following.

A. Moving Objects Detection and Removal

In the first step of the proposed system we detect the
moving objects with the approach proposed in [20]. Here we
briefly describe how it works, but for an in-depth description
we refer the readers to the original paper [20]. We bootstrap
from an initial point cloud of the scene, i.e., the first laser
scan; as a new scan arrives, we align it to the existing



(a) (b) (c) (d)
Fig. 3. Reconstruction of Lidar data: (a) with the visibility consistency [6]; (b) with the car detection; (c) with the car detection and refinement and (d)
after texturing

point cloud through the Generalized Iterative Closest Point
(GICP) [27] algorithm and we neglect points too faraway
from the sensor, i.e., whose distance from the point cloud
center is greater than a given threshold τ = 30m. To avoid a
redundancies we downsample the point cloud by two orders
of magnitude; then we estimate and remove ground points.
To this extend we model the ground as a grid and we classify
points as ground by bootstrapping from the tile occupied by
the laser sensor and by applying belief propagation on the
grid; the detailed procedure is reported in [20].

As soon as a set of aligned and filtered scans is avail-
able, we detect moving objects as follows. Given a point
in the space we define a visibility-based rule to estimate
its occupancy with respect to a generic laser beam as
{empty},{occupied},{unknown}, then, for each point P
belonging to scan Sk we aggregate evidences for each beam
of a scan Si through Dempster-Shafer Theory (DST) and we
classify the point as {empty} or {occupied}.

Then, we classify a point P belonging to a scan Sk as
static or moving by comparing its occupancy values with
previous and future scans, and computing the probability of a
conflicting or consistent state according to DST: if a conflict
among states is detected, the corresponding point is classified
as moving, otherwise as static.

B. Laser-based 3D Mapping

Once the points belonging to moving objects have been
removed, we build a map of the environment. The 3D
laser data and sensor-to-point visibility rays perfectly fits
the visibility-consistent approach presented in [6] applied
to image-based Structure from Motion (SfM) data; more-
over, the algorithm ensures the manifold property of the
reconstructed mesh which is needed for the photometric
refinement. However, in real applications, laser beams pass
through transparent surfaces, while the SfM points natively
adopted by visibility consistent algorithms such as [28]
or [6], do not reconstruct what is behind windows. In general
this does not represent a big issue, but in the presence of cars,
laser-based reconstruction is not able to capture adequately
the geometry of the scene: rays traverse the interior of the
car from different points of view and a visibility consistent
reconstruction carves almost all the occupied space, leaving
only the lower part of the car in the reconstruction. To avoid
this undesired behavior, we propose to detect the cars in the
point cloud and replace their points with a 3D model, e.g.,
Fig. 3.

In our system we implemented a simple hand-crafted car
detector being interested here in the joint textured reconstruc-
tion from laser and image data. We discretize and project the
3D points on the 3D ground plane, then we cluster the set of
points which have a rectangular shape. Finally, we check if a
cluster projected along the longest dimension of the rectangle
has a silhouette similar to a car (see the Appendix for a
complete explanation). Learning based approaches could be
exploited, for instance, Russel et al. [29] or Visin et al. [30].

Once the points belonging to cars have been detected, we
remove them from the point cloud of the whole scene, and
we group them into a set of clusters:

Cars = {c1, · · · ,ci, · · · ,cNcars} , (1)

where ci represents a single cluster, i.e., a car.
To obtain a consistent reconstruction we also recover the

ground points removed for the moving object detection and
using the resulting point cloud, the sensor-to-point rays, and
the position of the lidar in metric coordinates after each GICP
registration, we are able to apply the visibility consistent
mesh reconstruction algorithm presented in [6]. This is a
space carving-based method which partitions the space into
tetrahedra, and classifies each tetrahedron as free space or
matter according to the visibility rays; the boundary between
the two classes is the resulting mesh.

In this context we do not need to map the environment
incrementally as in [6]; therefore, we apply the batch version
of the algorithm, i.e., we first add every laser center, 3D point
and visibility ray, then we estimate the mesh.

The 3D reconstruction does not contain the moving points
and the cars we removed previously. Since we aim at
mapping the static part of the scene, we might consider
parked cars as a part of it; these cars are then integrated
into the final reconstruction. Each cluster of points ci ∈Cars
represents a car; and to include it into the model of the scene,
we first compute its 3D convex hull then we add it to the
estimated 3D map. In Fig. 3 we show how the car detection
affects the final reconstruction.

C. Photometric Refinement without moving objects

The removal of points belonging to cars and the explicit
inclusion of their convex hull, allows a more consistent
reconstruction and it overcomes the issue related to the
transparency of the car windows. Now, mapped cars have
no more holes, and they are represented more coherently
by a convex shape; of course the convex hull is not able to



Fig. 4. Red regions corresponds to the moving objects

capture all the details, but it is close enough to the real scene
to allow for the photometric refinement.

To apply the refinement step, we estimate the mask of the
moving objects starting from the detection performed with
the algorithm of Postica et al. [20]. To compute the mask
corresponding to the i-th camera, we project the lidar points
detected as moving into the i-th image. Since the resulting
mask is very sparse, we first filter it with an all-1 11x11
kernel that grows the detected regions in the neighborhood;
then we refine the results by applying a 10px radius disk
dilation and a 7px radius disk erosion. In Fig. 4 we show an
example mask in red overlayed with the original image.

The refinement step described extends the ideas presented
in [14] to cope with moving objects. The goal is to minimize
the energy:

E = Ephoto +Esmooth, (2)

where Ephoto is the data term related to the image photo-
consistency measure, and Esmooth is a smoothness prior.

To define the energy Ephoto let consider two images I and
J, and the triangular mesh S. Let x and −→n be a point on this
mesh and the corresponding normal, and errI,J(x) a function
that decreases if the similarity between the patch around the
projection of x in J and I increases, then:

Ephoto = ∑
i, j

∫
ΩS

i, j

errI,IS
i j
(xi)dxi, (3)

where IS
i j is the reprojection of the image from the j-th

camera in the image I through the mesh S and Ωi, j represents
the domain of the mesh where the projection is defined. We
minimize Eq. (3) through gradient descent by moving each
vertex Xi ∈ R3 of the mesh according to the gradient:

dE(S)
dXi

=
∫

S
φi(x)∇Ephoto(x)dx,=

=−∑
i, j

∫
ΩS

i, j

φi(x) fi j(xi)/(
−→n T di)

−→n dxi,
(4)

fi j(xi) = ∂2errI,IS
i j
(xi)DI j(x j)DΠ j(x)di, (5)

where φi(x) represents the barycentric coordinates if x is in
the triangle containing Xi, otherwise φi(x) = 0; Π j is the j-th
camera projection, the vector di goes from camera i to point
x, the operator D represents the derivative and ∂2errI,IS

i j
(xi) is

the derivative of the similarity measure erri j(x) with respect
to the second image.

We modify the previous equation in order to discard the
moving objects. Let mi and mS

i j the mask of moving objects

TABLE I
RESULTS ON KITTI SEQUENCES: MAP ERROR

seq 0095 seq 0104
avg std avg std

Romanoni et al. [6] 0.089 0.131 0.194 0.311
after refinement 0.082 0.098 0.082 0.103

in the i-th camera and the mask of the moving objects in the
j-th camera projected through S in the camera i, we define
Λ = ΩS

i, j ∩mi∩mS
i j.

dE(S)
dXi

=−∑
i, j

∫
Λ

φi(x) fi j(xi)
−→n /z3

i
z3

i−→n T di

−→n dxi (6)

.
We minimize the energy Esmooth as in [14] by means of the

Laplace-Beltrami operator approximated with the umbrella
operator [31], which moves each vertex in the mean position
of its neighbors.

D. Mesh texturing

After the refined map is available, we run the texturing
process. Differently from the existing Computer Graphics
texturing algorithms, in the proposed method, we want to
be able to estimate incrementally the texture, such that it is
possible to color the mesh while the images are acquired by
the robot. Moreover we avoid to texture the map with the
moving objects by discarding the pixels corresponding to the
moving object.

The idea behind our method is to sum the color contri-
butions coming from different images according to a weight
given by the perpendicularity of the viewing ray from the
camera to the point on the surface. Given a point x ∈ S
belonging to the surface of the model, −→n the corresponding
normal, and the camera center c j we define:

w j(x) = (
−−−→x− c j) ·−→n = cosθ (7)

, where θ is the angle between the normal and the camera to
point direction. Let ck(x) be the color of the point x at frame
k, equal to 0 if x is not visible; at frame n+1 we estimate
the color of the texture at location x as:

Cn+1(x) =
Wn(x) ·Cn(x)+wn+1(x)α · cn+1(x)

Wn(x)+wn+1(x)α
(8)

where

Wn(x) =
n

∑
i=1

wi(x)α , C1(x) = c1(x) (9)

We raise the weight to the exponent α to increase the
importance of weighting, i.e., to increase the importance of
the contributions of the pixels which are more perpendicular
to the surface (by experimental evaluation we fixed α = 8).



Fig. 5. Ball Pivoting reconstruction: dark regions are caused by non
consistent facet normals

IV. EXPERIMENTAL RESULTS

We tested our approach against the publicly available
KITTI dataset [32]; in particular we used the sequences 0095
and 0104, captured by a Velodyne 64HD with respectively
268 and 313 1392x512 gray scale frames. The algorithm runs
on a 4 Core i7-2630QM CPU at 2.2Ghz (6M Cache), with
6GB of DDR3 SDRAM and NVIDIA GeForce GT 630M.

A. Mapping

To provide a quantitative evaluation of the reconstructed
mesh, we compare it against the full point cloud, i.e., without
the downsampling needed for moving object detection (see
Section III-A). Lidar data are dense and accurate enough to
be considered as ground truth at least locally. We removed
from the full point cloud both the moving point and the
interior of the cars we do not want to map. The mesh to point
cloud comparison was computed by the tool CloudCompare
[33] which averages the distances from each point of the
ground truth, to the nearest triangle in the estimated mesh.

We compare our algorithm against different approaches
applied to the same downsampled point cloud to provide a
fair evaluation: the method proposed in [6]; two widespread
algorithms for mesh reconstruction from point clouds (i.e.,
Poisson Reconstruction [34] and Ball Pivoting [35]); and
OctoMap [3], i.e., state-of-the-art laser-based mapping al-
gorithm.

In Table I we show the result of our comparison with [6].
The average errors are below 0.1 m which is enough accurate
for a wide variety of robotics tasks, such as localization and
navigation. The proposed algorithm improves the accuracy
of [6], and both car detection and photometric refinement
have contributed to this enhancement; since the number of
cars in the 0104 sequence is greater than those in sequence
0095, the improvement is more evident in the former case.

Poisson Reconstruction was not able to produce a proper
reconstruction due to the sparsity of the downsampled laser
data; for the same reason Ball Pivoting produces big holes
in the reconstruction and Octomap was not able to recover
a dense structure. In addition to holes, Ball Pivoting re-
constructs a mesh whose normals are not consistent and
contains severe self intersections (see Fig. 5). Moreover,
while the appearance of the results of the proposed algorithm,
of [6] and, to some extent, of the Ball Pivoting are realistic,

(a) Without cars detection (c) With cars convex hulls

(d) After refinement (d) Refinement and texturing

(e) corresponding frame
Fig. 6. Results on frame 16. Let notice that moving objects (the people
by bicycle) do not affect the reconstruction

Octomap reconstructs a voxelized map in which many details
are lost (see Fig. 7).

The algorithm reconstructed and refined the 0095 (268
frames) sequence in 73 minutes and the sequence 0104 (313
frames) in 80 minutes.

Since we rely the reconstruction on laser scans which have
been georeferenced, the final map is in turn georeferenced
and could be useful for classical robotic localization or
navigation tasks.

B. Texturing

We tested our texturing method against the widely adopted
texturing approaches proposed by the Computer Graphic
community, i.e., Mask Photo Blending algorithm proposed
in [36]. Here we evaluate the results by visual inspection
since no quantitative evaluation is possible. We observed that
our method, applied to a typical Computer Graphics dataset,
achieves results comparable with the Mask Photo Blending
algorithm, even if it is aimed to texturize lower resolute
and less accurate meshes. In our scenario the proposed
texturing algorithm obtains much better results with respect
the Mask Photo Blending: it keeps the color continuity
among neighboring facets. In Fig. 8 and Fig. 9 we show two
examples of the comparison between the two approaches.

The algorithm texturized the sequence 0095 (268 frames)
in 0.95187 seconds per frame and the sequence 0104 in
1.0374 seconds per frame.

V. CONCLUSIONS AND FUTURE WORK

In this paper we proposed for the first time a complete
framework to extract a 3D textured map of the environment
by exploiting both accuracy of the lased data and the dense
appearance captured by images. We were able to recover a
continuous 3D map consistent with the visibility of the laser
beams, and refine it by relying on the images. We explicitly
removed moving objects from the laser-data and we detected
and modeled independently the cars, which windows are
usually traversed by laser beams. Finally, we textured the



Whole 0095 sequence

Detail of a car
Fig. 7. Reconstruction of 0095 sequence with Octomap (first column) and with the proposed approach with and withoud texture (second and third
columns)

Masked Photo Blending [36]

Proposed texturing
Fig. 8. Texturing results

map: both refinement and texturing have not been affected
by the presence of moving objects, since we infer their image
positions from the laser-based data.

In the future we are interested in improving the con-
vergence of the refinement algorithm adapting the method
presented in [16] and we would exploit the semantics of
the scene, e.g., as extracted by deep learning segmentation
proposed in [30], to further improve the reconstruction. We
could extend the method presented here to recover the cars to
multiple class of objects, e.g., trees and poles. Moreover, we
could increase the accuracy of the texturing, with an ad-hoc
method which exploits the photometric scores to properly
weight the per-triangle texturing.

ACKNOWLEDGMENTS

This work has been supported by the POLISOCIAL Grant “Maps
for Easy Paths (MEP)”, the “Interaction between Driver Road In-
frastructure Vehicle and Environment (I.DRIVE)” Inter-department
Laboratory from Politecnico di Milano, and the “Cloud4Drones”
project founded by EIT Digital. We thank Nvidia who has kindly

Masked Photo Blending [36]

Proposed texturing
Fig. 9. Texturing results

supported our research through the Hardware Grant Program.

REFERENCES

[1] A. Shashua. Autonomous driving, computer vision and machine
learning (kenote). Computer Vision and Pattern Recognition
(CVPR). [Online]. Available: https://www.youtube.com/watch?v=
n8T7A3wqH3Q

[2] W. Maddern and P. Newman, “Real-time probabilistic fusion of sparse
3d lidar and dense stereo,” in Intelligent Robots and Systems (IROS),
2016 IEEE/RSJ International Conference on. IEEE, 2016, pp. 2181–
2188.

[3] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “Octomap: An efficient probabilistic 3d mapping framework
based on octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189–206,
2013.

[4] S. Khan, D. Wollherr, and M. Buss, “Adaptive rectangular cuboids for
3d mapping,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2015, pp. 2132–2139.

[5] V. Litvinov and M. Lhuillier, “Incremental solid modeling from sparse
structure-from-motion data with improved visual artifacts removal,” in
International Conference on Pattern Recognition (ICPR), 2014.

[6] A. Romanoni and M. Matteucci, “Incremental reconstruction of urban
environments by edge-points delaunay triangulation,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2015, pp. 4473–4479.

https://www.youtube.com/watch?v=n8T7A3wqH3Q
https://www.youtube.com/watch?v=n8T7A3wqH3Q


[7] C. Wu, “Towards linear-time incremental structure from motion,” in
3D Vision-3DV 2013, 2013 International Conference on. IEEE, 2013,
pp. 127–134.

[8] G. Grisettiyz, C. Stachniss, and W. Burgard, “Improving grid-based
slam with rao-blackwellized particle filters by adaptive proposals and
selective resampling,” in Proceedings of the 2005 IEEE International
Conference on Robotics and Automation. IEEE, 2005, pp. 2432–2437.

[9] M. Herbert, C. Caillas, E. Krotkov, I. S. Kweon, and T. Kanade,
“Terrain mapping for a roving planetary explorer,” in Robotics and
Automation, 1989. Proceedings., 1989 IEEE International Conference
on. IEEE, 1989, pp. 997–1002.

[10] H. P. Moravec, “Robot spatial perceptionby stereoscopic vision and
3d evidence grids,” Perception, 1996.

[11] J. Ryde and H. Hu, “3d mapping with multi-resolution occupied voxel
lists,” Autonomous Robots, vol. 28, no. 2, pp. 169–185, 2010.

[12] I. Dryanovski, W. Morris, and J. Xiao, “Multi-volume occupancy
grids: An efficient probabilistic 3d mapping model for micro aerial
vehicles,” in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on. IEEE, 2010, pp. 1553–1559.

[13] A. Romanoni and M. Matteucci, “Efficient moving point handling for
incremental 3d manifold reconstruction,” in International Conference
on Image Analysis and Processing (ICIAP). Springer, 2015, pp. 489–
499.

[14] H. H. Vu, P. Labatut, J.-P. Pons, and R. Keriven, “High accuracy
and visibility-consistent dense multiview stereo,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 34, no. 5, pp. 889–
901, 2012.

[15] Z. Li, K. Wang, W. Zuo, D. Meng, and L. Zhang, “Detail-preserving
and content-aware variational multi-view stereo reconstruction,” arXiv
preprint arXiv:1505.00389, 2015.

[16] A. Romanoni, A. Delaunoy, M. Pollefeys, and M. Matteucci, “Auto-
matic 3d reconstruction of manifold meshes via delaunay triangulation
and mesh sweeping,” in Winter Conference on Applications of Com-
puter Vision (WACV). IEEE, 2016.

[17] A. Petrovskaya and S. Thrun, “Model based vehicle detection and
tracking for autonomous urban driving,” Autonomous Robots, vol. 26,
no. 2-3, pp. 123–139, 2009.

[18] W. Xiao, B. Vallet, and N. Paparoditis, “Change detection in 3d
point clouds acquired by a mobile mapping system,” ISPRS Annals of
Photogrammetry, Remote Sensing and Spatial Information Sciences,
vol. 1, no. 2, pp. 331–336, 2013.

[19] B. Vallet, W. Xiao, and M. Brédif, “Extracting mobile objects in
images using a velodyne lidar point cloud,” ISPRS Annals of Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, vol. 1,
pp. 247–253, 2015.

[20] G. Postica, A. Romanoni, and M. Matteucci, “Robust moving objects
detection in lidar data exploiting visual cues,” in Intelligent Robots and
Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE,
2016.

[21] A. Sobral and A. Vacavant, “A comprehensive review of background
subtraction algorithms evaluated with synthetic and real videos,”
Computer Vision and Image Understanding, vol. 122, pp. 4–21, 2014.

[22] A. Romanoni, M. Matteucci, and D. G. Sorrenti, “Background sub-
traction by combining temporal and spatio-temporal histograms in the
presence of camera movement,” Machine Vision and Applications,
vol. 25, no. 6, pp. 1573–1584, 2014.

[23] M. Callieri, P. Cignoni, and R. Scopigno, “Reconstructing textured
meshes from multiple range rgb maps.” in VMV, 2002, pp. 419–426.

[24] Y. Alj, G. Boisson, P. Bordes, M. Pressigout, and L. Morin, “Multi-
texturing 3d models: How to choose the best texture?” in 3D Imaging
(IC3D), 2012 International Conference on. IEEE, 2012, pp. 1–8.

[25] M. Waechter, N. Moehrle, and M. Goesele, “Let there be color! large-
scale texturing of 3d reconstructions,” in European Conference on
Computer Vision. Springer, 2014, pp. 836–850.

[26] I. Garcia-Dorado, I. Demir, and D. G. Aliaga, “Automatic urban
modeling using volumetric reconstruction with surface graph cuts,”
Computers & Graphics, vol. 37, no. 7, pp. 896–910, 2013.

[27] A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp,” in Robotics:
Science and Systems, vol. 2, no. 4, 2009.

[28] V. Litvinov and M. Lhuillier, “Incremental solid modeling from sparse
and omnidirectional structure-from-motion data,” in BMVC, 2013.

[29] C. Russell, P. Kohli, P. H. Torr, et al., “Associative hierarchical crfs
for object class image segmentation,” in 2009 IEEE 12th International
Conference on Computer Vision. IEEE, 2009, pp. 739–746.

[30] F. Visin, M. Ciccone, A. Romero, K. Kastner, K. Cho, Y. Bengio,
M. Matteucci, and A. Courville, “Reseg: A recurrent neural network-
based model for semantic segmentation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
2016, pp. 41–48.

[31] M. Wardetzky, S. Mathur, F. Kälberer, and E. Grinspun, “Discrete
laplace operators: no free lunch,” in Symposium on Geometry pro-
cessing, 2007, pp. 33–37.

[32] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012,
pp. 3354–3361.

[33] D. Girardeau-Montaut, “Cloud compare, (last access mar, 22 2015).”
[Online]. Available: http://www.cloudcompare.org/

[34] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface recon-
struction,” in Proceedings of the fourth Eurographics symposium on
Geometry processing, vol. 7, 2006.

[35] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin,
“The ball-pivoting algorithm for surface reconstruction,” IEEE trans-
actions on visualization and computer graphics, vol. 5, no. 4, pp.
349–359, 1999.

[36] M. Callieri, P. Cignoni, M. Corsini, and R. Scopigno, “Masked photo
blending: Mapping dense photographic data set on high-resolution
sampled 3d models,” Computers & Graphics, vol. 32, no. 4, pp. 464–
473, 2008.

APPENDIX

In this appendix we give the details of the car detection
algorithm adopted after the reconstruction step. First, we
project the point cloud on the ground plane and we aggregate
the points according to a 2D grid on the XY plane similarly
to what we do in the ground removal step; the cell dimension
is 0.1x0.1m. Then we empty the cells containing points
higher than a threshold τ = 2.2m to neglect most of the
walls and trees, very common in urban environments. We
treat the resulting grid as an image and we apply the closure
morphological operator, to close small holes and gaps and
to filter out isolated points. We finally extract connected
cells with at least one point and we keep only the regions
whose bounding box has a shape compatible with a car, as
detected by a template. Let lBB and wBB be respectively the
length and width of the bounding box around a connected
set of cells, and ρBB the radius circumscribing the box; we
filter out all the regions which do not satisfy: ρ̂min < ρBB <
ρ̂max and r̂min <

wBB
lBB

< r̂max, where, in our case, we take
into account the average dimensions of the cars and we
choose ρ̂min = 1.5m, ρ̂max = 5.5m, r̂min =

1.2
5.0 r̂max =

3.5
5.0 .

As a further filtering, we take into account the Z dimension
that the previous projection has neglected. For each 2D
bounding box we project the points along the direction
parallel to the longest dimension between lBB and wBB in a
discrete grid, which is again composed by 0.1mx0.1m cells.
We compute the convex hull of the projected points and we
treat the result as an image. For each column we collect the
number of white pixels in a vector γ; we compute the discrete
derivative of γ; then, we compute a three bin histogram of it.
The group of points is classified as car if the first and third
bin represent respectively an increasing and a decreasing
ramps of at least π

6 and the second bin is almost flat (at
most π

3 ). The method runs in 0.19s for a sequence of around
300m, almost all the cars are detected, moreover, even if
some false negative exists, i.e., some cars are not detected,
they are going to be reconstructed anyway, at least partially.

http://www.cloudcompare.org/

	I Introduction
	II Related work
	III Textured Mesh reconstruction
	III-A Moving Objects Detection and Removal
	III-B Laser-based 3D Mapping
	III-C Photometric Refinement without moving objects
	III-D Mesh texturing

	IV Experimental Results
	IV-A Mapping
	IV-B Texturing

	V Conclusions and Future Work
	References

