Learning Externally Modulated Dynamical Systems

Nicolas SOMMER, Klas Kronander and Aude Billard

Abstract— Dynamical Systems (DS) are often used to represent
motion, with the advantage of being easy to learn from demonstrations.
We present a method to modulate DS depending on an external signal,
extending our previous work on Locally Modulated DS (LMDS [1]).
We present two applications of our system, which would not have been
possible to achieve without taking external sensing into account in the
DS motion formulation. The first application is a task of localization
and grasping of objects, using our previous work on compliant tactile
exploration. We successfully localize and grasp objects whose position
is unknown, using touch in a simulated environment. In the second
application, we teach a robot how to react to collisions in order to
navigate between obstacles while reaching.

I. INTRODUCTION

With robots moving into human-centered environments, the use
of sensory information becomes more and more important to
interact with everyday objects. In order to generate robot motion,
the traditional methods based on planning and execution are not
well suited to uncertain and quickly changing environments. For
instance, grasping traditionally relies on several distinct steps:
computing a grasp configuration, planning a collision-free robot
trajectory and executing that grasp [2], [3]. If the object moves, or
the pose is uncertain, the whole process may have to be started over.
Also, because planning methods can yield very different results with
small configuration differences, the new planned trajectory might
be completely different.

Dynamical Systems (DS) offer an efficient way to encode reach-
ing [4] and grasping motions [5], which do not require to re-
plan when the configuration changes. This allows to continuously
and instantaneously update the trajectory. Furthermore, DS can be
learned from demonstrations, instead of programming the robot
explicitly. Instead of defining robot tasks as timed trajectories, or
as dynamical systems that are indirectly driven forward by time, it
is possible to define tasks as time-invariant dynamical systems. The
latter have been shown to have numerous advantages for tasks that
involve temporal and spatial perturbations [6].

In order to successfully model the robot motion, the possibility
to incrementally perform the demonstrations allows the teacher
to refine her demonstrations depending on the robot’s current
performance. In our previous work [1], a way to locally reshape
an existing, stable nonlinear autonomous DS, while preserving im-
portant stability properties of the original system, was offered. This
approach also included a method to enable incremental learning
algorithm based on Gaussian Processes, for learning to reshape
dynamical systems using this representation.

When executing a motion in a real environment, there is also a
need to react to external sensory events, besides simply re-planning
after a perturbation. For instance, when reaching for something
and detecting contact with the robot arm, the trajectory of the
robot may need to be adapted online, by modulating the arm
dynamics depending on the sensed contact. One way to introduce
a dependency from an external signal is through coupling across
DS. However, we target here dependency on an external signal
whose dynamics may not be known and hence cannot be done

The authors are with the Algorithms and Systems Laboratory (LASA),
Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland.

through coupling with another DS. Approaches to DS control with
external sensing is used primarily for free-space motion and to
update the state of the robot and the state of the attractor. Only
a few attempts used an external sensing, force, as an input to the
system [7], [8]. However, this was used to generate the desired
trajectory and was then combined into a traditional impedance
controller. Moreover, the sensing modulation was global. Here,
we generalize this approach to enabling modulation from different
types of sensing, not just force, and to allow the modulation to
act locally, so as to provide modulation only in relevant parts of
the task. Another approach consists in directly including external
sensing to the inputs of the regression when learning a DS from
demonstrations. By learning a mapping between end-effector po-
sition, tactile sensing, and velocity from demonstrations [9], we
were able to generate behaviors based on tactile sensing, including
grasping. However, because the resulting system is not autonomous
and there are no constraints on the DS formulation, it is hard to
ensure stability in this case. We address this by proposing a novel
DS representation, called Externally Modulated Dynamical Systems
(EMDS). We extend previous work (LMDS) to integrate external
input in the DS and use it to reshape its dynamics. We also propose a
method to learn how the dynamics are modulated depending on the
external signal. Although introducing a dependency on an external
signal, we can still guarantee preservation of the stability properties
of the original dynamics.
In summary, the main contributions of this paper are:

1) Introduction of the EMDS framework, allowing the mod-
ulation of DS based on external signals while conserving
important stability properties.

An interactive learning method for capturing how the DS
should be modulated by the external signal.

The application of EMDS to several challenging tasks, in-
cluding blind reach-and-grasp, using only tactile input for
object state estimation, and navigating through obstacles
using contact information only.

2

~

3

~

The remainder of this paper is organized as follows: In section II,
we present related work. In section III, we introduce the EMDS
formalism and a possible design of the modulation function. We
also illustrate the possibilities offered by this formulation in several
2D examples. In section IV, we detail a complete framework
used to autonomously localize and grasp objects, in which the
EMDS plays a key role, with experiments and results. Finally,
section V is dedicated to experimental validation on a different but
equally important manipulation skill — navigation through unknown
obstacles.

II. RELATED WORK

In robotics, Dynamical Systems (DS) have proven to be an inter-
esting approach to motion generation, as an alternative to classical
methods relying on separate planning and execution. They offer a
simple way to integrate both steps into one formulation [10], [11].

Dynamical Movement Primitives (DMPs) have recently gained
popularity [12], [13]. They are a set of differential equations that
can compactly represent a large variety of robotic tasks. Their

mechanism also make it easy to incorporate in Reinforcement
Learning, and learning without risking unstable behavior. They
however rely on a phase variable acting as an implicit clock, forcing
the system to converge to a linear system as the phase converges.

Autonomous DS formulations [6] allow to represent motions
in a time-independent manner, in contrast with time-varying rep-
resentations. Because stability is a major concern when dealing
with DS, this has been addressed in our previous work [14] for
a specific parametric form of DS, Gaussian Mixture Regression
(GMR). To increase the flexibility of learned motions and to allow
non-parametric learning, we later introduced LMDS [1]. This
formulation does not base the stability analysis on a known Lya-
punov function, therefore incremental demonstrations do not need
to comply with an energy function. In this paper, we build upon
this formulation to create DS with equivalent stability properties
while depending on external signals.

Recently, [15] introduced a framework to react to sensory input
while performing reaching-type motions with DMPs. In this work,
the DMP’s trajectory is adapted in order to match previously learned
sensory signal, i.e. force information. This is done through a pre-
defined mapping between sensing and end-effector accelerations,
using the task Jacobian of the sensor. This approach is directly
applicable to situations in which such mappings between sensory
signals and control signal can be manually defined. This includes
sensors with low-dimensional inputs such as force-torque sensors,
but cannot be extended well to a tactile skin on multiple fingers
for instance. For tactile data, it is generally not possible to define
generic mappings from sensor signature to appropriate control
response. More recently, the authors generalized their work in the
Associative Skill Memory framework [16], which switches between
learned motor primitives based on sensory signature (using hard
switches). This is based on the assumption that task representations
should be stereotypical with as little variation as possible in order
for the associated sensory recordings to have little variance. Iaf[17]}
the robot adapts its learnt behaviour according to a predefined low-
level controller that depends on sensory input. In this paper, we
suggest to learn the mapping from external signal to modulation of
the dynamics, which are provided by a time-invariant DS.

In our previous work [18], we developed a compliant controller
to adapt the robot’s fingers to unknown shapes, with an application
to grasping. Using tactile sensors to detect contacts, this controller
maximizes the surface in contact, using the null-space of existing
contacts to keep the contact forces low. In addition to classical
tactile-based grasping controllers, this controller can create addi-
tional contacts on the same kinematic chain. For instance, while
a finger is in contact at the fingertip, other contacts are made on
the first phalanxes by sliding the fingertip on the surface, without
loosing contact. This controller is used in the experiment presented
in section IV in order to both increase the number of contacts
points, thus speeding up the localization process, and to provide a
compliant enclosing mechanism when the object is finally grasped.

III. APPROACH

A. Locally Modulated Dynamical Systems

In [1], the Locally Modulated Dynamical Systems (LMDS)
formulation was introduced. Since this paper extends that work,
we first provide a brief overview of the LMDS formulation in this
section. LMDS allows to apply arbitrary local learning algorithms
to reshape motion dynamics without loss of stability.

Let z € R" represent a N-dimensional kinematic variable, e.g. a
Cartesian position or a joint angle vector. Let a continuous function

f: RY — RY represent the original dynamics (OD): & = f(z). We
define the Locally Modulated Dynamical Systems by multiplying the
previous equation by a matrix-valued continuous function M (z) €
RN yielding:

&= M(z)f(x) (1)

Using modulation functions that depend only on the state variable
x € RY allows us to prove a number of interesting properties of the
reshaped dynamics, including boundedness preservation of stability
properties [1]. Importantly, with an appropriate parameterization
of the modulation function M, LMDS can be used with non-
parametric learning algorithms without constraints.

B. Externally Modulated Dynamical Systems

In the LMDS formulation, the input to the system is the state
of the robot, x. In many tasks, it is necessary to be able to
react to sensory input in a task-specific manner. The goal of the
Externally Modulated Dynamical Systems (EMDS) is to provide
a DS formulation that allows to learn reactions to sensory events
such as contact detected with tactile sensing arrays or force-torque
Sensors.

Let s € RM be a M-dimensional external signal, independent
of the state of the DS. In EMDS, the dynamics are reshaped by a
modulation field M (z, s). The form of the dynamics follows the
same reshaping structure as LMDS:

= M(z,s)f(z) 2)

where M(z,s) € RY*Y is a continuous matrix valued function
that modulates the original dynamics f(z). The difference to LMDS
in formulation is hence that we allow the modulation to be a
function not only on the DS state but also on our external signal.
As the resulting DS is not autonomous, we cannot expect
the same stability properties as in the case of the autonomous
LMDS formulation. However, by constructing the modulation ma-
trix appropriately, we can achieve guaranteed boundedness and
convergence of the dynamics by ensuring that M is full rank and
locally active. Stability properties can easily be derived by adapting
the proofs in [1] to include the external signal:
o The reshaped dynamics has the same equilibrium point as the OD.
o The reshaped dynamics is bounded.
o Assuming that the equilibrium point is centered at the origin and
that the OD is stable, the reshaped system is stable at the origin.
o The reshaped system is locally asymptotically stable at the origin.
o The reshaped dynamics has the same equilibrium point as the OD.

C. Design of the modulation function

The modulation field M (x,s), as introduced in the previous
section, has few design constraints. In this section, we introduce
one possible way to design and parametrize this function.

1) Modulating rotating and speed-scaling dynamics: In [1], the
modulation function was proposed to be defined as a composition
of a speed scaling and a rotation matrix. It is always possible to
represent this modulation function compactly as a parameter vector
6 € RY, where L > D will depend on the chosen parameterization
and the dimension of the state z € R”. Complex reshaping of the
OD can then be learned by using non-linear regression to learn a
function mapping from the state to this parameter vector.

In EMDS, we let the external signal s modulate the rotation
angle and the speed scaling before reconstructing M and applying
the modulation to the OD:

0(z,5) = hs(s)[¢(x) R, r(x)] 3)

0.5 e 105 Pt TR 7405 \
l/ ‘/ \/ - N \‘\
{ { A Uil =
0.0) 0.0 0.0) 0.0 o C
A } \ (.-.\",f A=
\\ N\ //
-0.5/ {-05 e -0.5/ 05 N
) I) .) =05 00 05

05 0.0 0.5

0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
timestep timestep timestep timestep

(b) Late s chg. (c) Limit cycle (d) Different OD

(a) Early s chg.

Fig. 1: Top: Examples of the DS modulated by an external signal. Bottom: Corre-
sponding profiles of the external signal s and the function h,(s) which inhibits the
rotational modulation. The DS is the same in (b)-(a) but the external signal’s profile is
different in each plot. (¢) Example of a modulation of the DS, using ¢. = 90°. The
system does not converge while s is O (i.e. the external activation function h(s) is
1). If that is the case, the system stays in a limit cycle. (d) An example with different
OD and a modulation that also applies a speed-scaling.

with pr the normed rotation vector defining a rotation axis. The
mappings ¢(z) : RY — [—m, 7] and k(z) : RY — RY are
continuous functions from a robot state to respectively a rotation
angle and a speed-scaling. As in standard LMDS [1], the state
dependent maps ¢(z) and x(x) should be locally active. The
parameters are also influenced by the continuous external activation
function h,: R — [0, 1], which depends on the external signal s.
The modulation function M (z, s) is defined as:

M(z,s) = k(z, s)R(x, s) 4

with R(z, s) the associated rotation matrix, hence full rank by con-
struction. So does M (x, s) and therefore all the stability properties
are guaranteed for any z and s.

D. Illustrative examples

Here, we give a few 2d illustrative examples of how the external
input in EMDS can influence the dynamics of the original DS, using
the modulation matrix design presented in the previous section.
Consider the following linear original dynamics:

t=—Az=—-[Q 0z 5)

Let the function I: R? — [0, 1] describe the influence of the
modulation and impose the locally active property around 0. The
value of I(z) is visible in Grey-scale for the examples in fig. 1.
The external signal s influences the local modulation according to
a smooth activation function hs: R — [0,1] from 1 to 0, with
hs(0) =1 and hs(1) = 0.

Introducing the local activation function ¢(x) = ()., with
¢c € [—m, 7] a constant angle, the rotation angle ®(z, s) is given
by ®(z,s) = hs(s)l(x)¢c. This results in a spiraling behavior
where and when the DS is modulated. When the external signal is
active, the rotation is inhibited and thus the system converges much
faster with the OD — a straight line.

The resulting dynamics are given in figs. 1(a) and 1(b) using
¢ = 81° and different arbitrary profiles of external signal s. The
evolution in time of the external signal s and consequently of the
activation function hs(s) is drawn on the plots below the evolution
of the DS in 2d, and the value of s is also represented on the top
figures by the color of the arrows. When the signal s becomes high,
the activation function hs(s) goes to 0 and the system switches
from spiraling to the original linear dynamics, converging rapidly.
The resulting behavior can be used for instance to switch between
searching and reaching motions on a robot. In fig. 1(a), s is activated
early and so do the dynamics, changing from spiraling to reaching
directly. In fig. 1(b), s is activated late and at a slower rate, hence

the system follows the modulated dynamics, spiraling, for a long
time until gradually changing. We also provide an example where
the system is not globally asymptotically stable in fig. 1(c), by
setting the maximum modulation angle ¢. to 90°. When the external
signal is 0, the DS goes into a limit cycle. Boundedness is however
enforced thanks to the locally active property. In fig. 1(d), we
illustrate another example behavior of our modulated system using

different original dynamics (with A = [%P3 (%2] in eq. (5)), a
maximum modulation angle ¢. = 160° and a signal s varying

between O and 1. The modulation also applies a speed-scaling of
factor 3, visible on the top figure from the length of the arrows
changing with s. Depending on s, the direction of the rotation is
changed.

a) Comments on local modulation: The local property ensures
boundedness and local asymptotic stability for any chosen modu-
lation matrix. It may thus be useful to keep locality even when
not required by the desired dynamics, but only for the provided
stability purposes. In a searching task such as illustrated in the
above examples, it also makes sense to only activate the searching
behavior in a subregion of the state-space corresponding to the
searching region, hence the local activation around the attractor
at 0.

E. Learning EMDS

Using the design of the modulation function presented above, it is
possible to retrieve a normal LMDS by removing the dependency
on the external signal, i.e. by replacing hs(s) with 1 (i.e. never
inhibiting the local modulation). Conversely, an EMDS can be
created by associating an existing LMDS with the function h(s).
Therefore, an EMDS can be based on an LMDS learned the same
way as in the original LMDS formulation, using GP-MDS based
on Gaussian Processes Regression (GPR), or any arbitrary local
learning algorithm. The external signal activation function hs(s)
can then be provided or learned separately to form the EMDS. To
sum up, one way to learn a complete EMDS from scratch with
training data can be the following procedure:
1) Learn a DS, the original dynamics, from demonstration data,
e.g. with SEDS [14].

2) Learn new dynamics from other demonstration data to rep-
resent different dynamics, expressed as a modulation of the
OD, using a local learning algorithm or GP-MDS as presented
in [1].

3) Learn the function hs(s).

See the following sections IV-A and V-A.2 for examples of learning
hs(s) as a non-linear regression problem using Gaussian Process
and human demonstrations to train the model on.

IV. EXPERIMENT 1: AUTONOMOUS LOCALIZATION AND
GRASPING

As an application of EMDS, we consider a highly challenging
autonomous search-and-grasp task. We rely entirely on tactile
sensing to localize the object to be grasped. In such a task, there are
two subtasks involved: 1) to estimate the pose of the object and 2),
when certain enough of the object’s pose, to attempt to grasp the
object. The searching and grasping behaviors are first modeled by
LMDS (search as the original dynamics, and grasp as the reshaped
dynamics, see fig. 2). Then, to incorporate our confidence in the
object pose’s estimate in the dynamics, we learn an activation
function hs(s) from demonstrations and use the EMDS as described
in section III.

During the exploration motion of the arm, tactile data [(position
and normal) from contacts with the robot is fed to a particle

PO

(b) Modulated dynamics

(a) Original dynamics

Fig. 2: Exp 1: In green, reaching trajectories for the original and modulated dynamics.
The modulated dynamics force the trajectory to approach the object from above in order
to avoid collisions with the fingers.

filter (PF) responsible for localizing the object. The state of the
estimation is fed back to the EMDS: the variance of the object
pose’s distribution is used to modulate between searching and
grasping behaviors, see fig. 3. The hand and finger’s behavior
is controlled by a coupling mechanism [5] between the EMDS
generating the arm motion and a coupled DS generating the finger
motion, which is given as a subtask to our contact controller
from [18]. This controller provides a compliant mechanism to
maximize contact points, thus speeding up the localization process.

We use the design presented in section III-C.1, based on modu-
lating rotation dynamics, to generate the arm motion. The attractor
of the EMDS is translated to the latest expected value of the
robot’s pose, i.e. the weighted average over each particle from the
particle filter (PF). The external signal is chosen as the norm of the
covariance matrix of the object’s position estimate.

Both the original dynamics (OD) and the modulation of the
LMDS are provided as modeled reaching and grasping behaviors'.
A searching behavior is implicitly provided by the evolution of the
PF’s best estimate. [When'the'hand goes torarlocation and thereis
no sensed contact, the particles become depleted in that area. The
robot then goes to the new best estimate at a different location and
this process results in a searching behavior. An illustration of this
behavior can be seen in fig. 6.

In the modulated trajectory corresponding to the grasping behav-
ior, the hand approaches the current attractor from above in order to
implicitly avoid collisions with the fingers and to properly enclose
the object. Typical trajectories of the original and the modulated
dynamics can be seen on fig. 2. The output of the EMDS is the
desired velocity of the end-effector, connected to a passive DS
controller [19], designed to perform closed-loop control of DS while
ensuring passivity, and ideally suited for uncertain manipulation
tasks such as this.

A. Learning the external activation function

The function h(s) mapping the external signal to the activation
of the modulation can either be programmed or learned, with
the constraint that its values lie between 0 and 1. We chose to
learn this function since the values of the covariance matrix are
not necessarily easy to link to the task. On the contrary, our
graphical visualization (see fig. 6 for instance) of the object’s pose
estimated distribution is easy to interpret. It provides a way for
the user to perceive the current particle’s filter uncertainty value
s through the visualization of the particles. In order to learn the
function hs(s), we go through a short learning phase during which

'In our case, the OD — reaching — is a simple linear DS. The grasping
behavior is coded as a modulation of the OD to generate a grasping behavior,
approaching the object from above. While the motion for search and
grasping can be learned using existing methods (as described in section III-
E), the biggest challenge of a blind search-and-grasp task is how to switch
between these two behaviors. This is related to the exploration/exploitation

trade-off in reinforcement learning. Here, we use a human to support the
acquisition of this skill.

a teacher manually selects the desired behavior while the task is
being executed. During this phase, the teacher chooses how much
to inhibit or not the local modulation of the original LMDS system
using a graphical user interface (GUI) with a slider control. The
teacher chooses continuous values between 0 (reaching approach)
and 1 (grasping approach).

The recorded data are used to train a Gaussian Process Regression
(GPR) model, using the squared exponential covariance function.
The kernel’s hyper-parameters are determined manually by using
prior knowledge from the training data. Such a learned function
hs(s) and the training data can be seen on fig. 4.

The value of h, starts to increase from 0 to 1 when s is below
0.2. During runtime, we use the stored GP model to predict the
value of h given an input s.

B. Experimental setup

The simulation environment is Gazebo, with a Kuka LWR robotic
arm with 7 degrees of freedom (DOF) and 16-DOFs AllegroHand,
see fig. 2. All 23 DOFs of the system are torque-controlled.

The PF for estimating the object’s pose requires the evaluation
of the likelihood of a measurement for a potential object pose.
This is achieved by generating a virtual measurement for the virtual
object pose of each particle. This virtual measurement is generated
by a second instance of Gazebo, running a copy of the simulated
world and keeping the robot’s configuration synchronized. For each
particle and corresponding object position, the object is moved in
the second world and the state of the contacts is updated to compare
it with the real simulated world.

We were able to run these measurements at a rate of about 1000
particles per second on one thread with a Core i7 cpu. This step
being the bottleneck for the PF’s update rate, our 300-particles filter
could run roughly at 3Hz.

The objects used in this experiments are presented on fig. 5(b), we
begin the experiment with a simple cylinder, then a more complex
artificial object, non convex, in the shape of a cross composed of
cylinders and spheres, and a drill.

For each trial, the object’s pose £ is randomly generated in the
simulation environment from a uniform distribution in a plane: £ €
[—xl,ml] X [—yl,yl] X [—9;,91], (CL‘[= 0.1, Y = 0.1, 0[= g)

C. Results

We compare the EMDS with using LMDS only, i.e. without
taking into account the external signal. This leads to the dynamics
always following the modulated system, i.e. the grasping approach.
For each tested condition, EMDS or LMDS, and object, cylinder,
drill or cross, the trials are carried out 50 times in simulation. Each
trial lasts 30 seconds. This represents 150 minutes of simulated
experiments. The results are reported on fig. 5(a) with boxplots.

We measure both the time to estimate the object’s position and
to reach to that position, with a threshold of 1.5cm. For each of
the explored objects, the EMDS strategy estimates and reaches
the real object’s position significantly faster than with LMDS. The
estimation takes 14.7+6.2s with LMDS, while only 9.6+5.6s with
EMDS. It takes a little more to reach the object, with 15.7s £ 5.0
for LMDS and 11.0s £+ 4.9 for LMDS. Because with LMDS, the
robot tends to perform a grasping approach even though the object’s
pose is not known with certainty, it is not surprising that this method
takes more time.

One example of a trajectory for localizing and grasping the
cylinder can be seen on fig. 6. The particles are represented as red or
black dots, the color representing their current respective weight.
The current object’s real and estimated positions are represented

L Object pose estimate Desired
Tactile e [(DSattractor) | estre Passive DS
World + robot ~contacts | Particle filter EMDS arm f Arm torques
[Variance of distribution—>| velocity controller

(external signal s)

Finger torques

Finger control

Desired Desired

Active compliance

Hand DS |— finger —¥|
position

DS coupling (— finger —¥|

attractor algorithm

Fig. 3: The framework for autonomous localization and grasping with EMDS.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14

Fig. 4: Learning h(s) from demonstration data in Exp 1. The blue envelope around
the mean represents the variance of the GP function.

35

20 p<0.05

0.00T

rQ<0.001

+

o H { B
£ 25 !
220
215
Eu
0

cylinder drill cross
35 p<0.0t p<0.00T
e . 1 <0.001
E’ 25
+ +
£20
< 15
g
S 10
£ s
0
cylinder drill cross
(@) (b)

Fig. 5: Exp 1. a) Results of the experiments: time to estimate and time to reach
the object’s position using LMDS only or EMDS, for the three objects. b) The three
objects used in Exp 1.

by RGB frames. The estimated trajectory given the current external
signal can also be seen as a thick black line. The corresponding
evolution of the external signal s, activation function h(s) and the
altitude of the hand during the exploration are given in fig. 7. On
frames (a)-(c), the hand approaches the current estimated pose of
the object directly, until it touches the object, the number of contacts
increases, and the object’s current estimated position is updated. On
frame (d), the particles have all gathered at the real object’s position,
hence the variance of the object’s estimated position distribution
decreases and h increases. Therefore, the DS automatically adapts
to a grasping motion, the altitude increases and the hand approaches
the object from above until grasping it on frames (g)-(h).

In this experiment, we showed that by training an EMDS, we
could teach the desired behavior of the robot depending on an
external signal, here the confidence over the object’s pose from
a PF, using only tactile data.

V. EXPERIMENT 2: REACHING WHILE AVOIDING OBSTACLES

In this section, we present another application of our algorithm
in which a task of reaching while avoiding obstacles is encoded.
The task consists in going from point A to point B for the robot
end-effector with the desired dynamics, while there are obstacles
with unknown position on the path.

We present two experiments: in the first experiment, the avoid-
ance behavior is achieved by going over the obstacles. This is
demonstrated both in simulation and on the real robot. In the second
experiment, the robot’s avoiding behavior depends on characteristics
of the collision: it takes a different trajectory depending on the de-
tected angle of the collision with the object. The second experiment
is performed on the robot.

A & : ok P B D
. . ‘ ' J (
(e) ® ‘ (& ' (h)

Fig. 6: Exp 1: Images of the exploration and grasping procedure with the cylinder.
On frame (d), the hand automatically switches to a grasping motion, and moves up to
approach the object from above, until grasping on frame (h). The references frames
made out of three RGB segments represent the real object’s position and the estimated
one. The estimated object’s pose can be seen moving towards the real one as the PF
converges using tactile information

=== hs(s)

= contacts

1
1
1
8
u—u—- - 6
4
2
0

Number of contacts

Time (s)

Fig. 7: Exp 1: Evolution of the external signal s, activation function h(s) and the
altitude of the hand during one exploration trial. The labels (a)-(h) correspond to the
steps of exploration in fig. 6.

A. Experiment 2a: Avoiding obstacles

The original dynamics used in Exp 2a are simple linear dynamics
— reaching in a straight line — while the modulated dynamics
correspond to a maneuver to avoid obstacles. Instead of trying to
reach through obstacles, the modified dynamics encode trajectories
for which the end-effector moves back and goes over them, thus
doing a detour while still reaching for the target at point B (see
fig. 8). This strategy allows to reach directly to the target while
only taking a detour when necessary. The start and end points are
60cm away from each other on the y axis. Obstacles are placed on
the path, see figs. 10 and 11.

Similarly as in Exp 1, the function h,(s) mapping the external
signal to the activation of the modulation is learned from demon-
strations. Because the robot cannot stay in contact when there is a
collision, and the system does not have a memory of the last contact,
we choose to encode as the external signal s the time since the last
collision. This allows the system to learn how to avoid obstacles
given the memory of the last time a collision occurred.

1) Learning the activation function from GUI demonstrations:
During the execution of the task in simulation, a teacher specifies
continuous values for the modulation signal hs(s) between 0
(reaching directly) and 1 (reaching indirectly with the avoiding

(a) Original dynamics (b) Modulated dynamics
Fig. 8: Exp 2a: In green, reaching and avoiding trajectories corresponding to the
original and modulated dynamics. The RGB frame on the right corresponds to the
target. The modulated dynamics force the end-effector to go above obstacles and avoid
collision with it.

1.2 1.2
1.0 «xx |— Mean 1.0 — Mean
0.8 « Data 0.8 « Data
0.6 0.6

< 0.4 < 0.4
0.2 0.2
0.0 0.0
-0.2 -0.2

01 2 3 4 5 6 7 01 2 3 4 5 6 7

S S

(a) hs simulation (b) hs real robot

Fig. 9: Exp 2a: Learning h,(s) from demonstrations. The blue envelope around the
mean represents the variance of the GP function. The external signal s corresponds to
the time since the last collision.

maneuver). The learned function hs(s) and the training points can
be seen on fig. 9(a).

The learned modulation function corresponds to choosing the
avoiding dynamics (hs(s) = 1) when a contact occurred less than
2 seconds ago, and slowly switching to the original linear dynamics
until 4 seconds after a contact. Then, the system converges again
in a straight line towards the target (hs(s) = 0).

2) Learning the activation function from real robot demonstra-
tions: On the real robot, we make an attempt at learning the
function h(s) from demonstrations, by back-driving the robot arm.
In simulation, there is no practical way to let a human guide or tele-
operate a robot easily while providing feedback, for instance about
collisions. Yet, it is crucial for the user to be aware of the external
signals on which depends the activation of the modulation.

On the real robot, we can however let a human perform demon-
strations by back-driving the robot’. The objective is to define a
mapping from the external signal s, chosen in this experiment as
the time since last contact, to an activation value hs. However, this
value is only implicitly given by the user through the demonstrated
trajectories. Hence, at each timestep, we need to find the value
hs which produces the demonstrated velocity & closest to the
demonstrated velocity .

One way is to look for an inverse mapping of the EMDS. s is
always expressed through the activation value hs, as in eq. (3) for
instance. The whole DS can then be expressed for a fixed = as a
function: © = G5 (hs). If the function G is injective, there exists
an inverse function G ' to retrieve hs from & at a given x. We
know with certainty that the function G is not injective for all
z. For instance at z = 0, f(x) is 0 since the OD is stable at the
origin, hence G, cannot be injective.

Instead of computing a closed-form inverse function, we estimate
the value of hs at each timestep by performing a line-search in the

2In standard position controlled/time dependent systems, it is not straight-
forward to handle demonstrations while the robot is already moving. Thanks
to our passive DS controller, users can safely interact with the robot during
task execution. Our controller also guarantees safety for the user: the max
velocity of the DS is set to 7em/s, and with the largest eigenvalue of
the damping matrix for the passive DS controller set to 130N/m.s, the
maximum end-effector force is 9.1NV.

Fig. 10: Exp 2a real robot: Trajectory of the end-effector during the task with two
objects or one large obstacle.

|
|

| .

| == Progression

I

Position

s, collision
%
\
Y
Cl N~

h
o
\
b
(
\

15 20 25
Time (s)

s (time since last contact)

Fig. 12: Exp 2a simulation. Top: Evolution of the altitude of the hand (normalized)
and the progression of the task (horizontal position between start and end points,
normalized between 0 and 1). Bottom: Evolution of the external signal s (time since
last collision), activation function hs(s), and the collision status. The vertical dotted
lines correspond to collisions with obstacles, see fig. 11.

input space of G (hs), and search for the closest output:

hs = argmin ||Gg(hs;) — 2| (6)
}

hsi€{0,...,1
We perform the line-search with values from O to 1 by increments
of 0.1, and interpolate between the two closest values.

Finally, we learn the function hs(s) in the same way as in the
method demonstrated previously, using Gaussian Process Regres-
sion. The result can be seen on fig. 9(b).

In comparison with the function learned in simulation, the
activation function goes back to zero only after 2 seconds, instead
of 4 seconds. The slope of the decrease is also much more abrupt.
This is probably due to the different method of teaching: while in
the first case teaching is done through a graphical interface with a
slider, in this case the user directly back-drives the robot arm.

3) Results, experiment 2a:

a) In simulation: The progression of the task can be seen
on fig. 11. The corresponding evolution of the external signal
s, predicted modulation hs(s), altitude of the hand, progression
towards the target, and collision status are given on fig. 12. The
predicted modulation hs(s) directly depends on s, following the
learning process described above. The altitude of the hand depends
mostly on the modulation or not of the dynamics: if the activation
function is high, the hand follows the avoidance dynamics and
altitude increases. The progression towards the target is the y
coordinate normalized between 0O (start point) and 1 (target point).
Objects from the first experiment (see fig. 5(b)), namely the drill
and the cylinder, are used as obstacles.

The change between the two dynamics can be seen through the
evolution of several variables on fig. 12. When a contact occurs,
s is reset to 0, and hs(s) goes to 1. Simultaneously, the altitude
starts increasing and the progression of the task starts regressing,
as the avoidance behaviour is triggered. Then, as the time since the
last contact increases and goes over 2 seconds, hs(s) goes back to
0 and the altitude decreases: the end-effector tries to reach for the
object directly again.

b) On the real robot: For the experiment on a real platform,
we use a KUKA LWR robot with 7 DOFs with a force-torque
sensor mounted at the end of the arm. We add a probe-like end-
effector after the sensor to be the contact point during collisions.

Fig. 11: Exp 2a simulation: Progression of the experiment in Gazebo. Collisions occur on frames (b), (f) and (i). Corresponding evolution of the variables on fig. 12.

(a) Original dynamics

(c) 0.25

(b) Modulated dynamics

(d) 0.40 (e) 0.50) 0.60 (g) 0.75

Fig. 13: Exp 2b: The RGB frames on the left and right correspond respectively to the
starting point and the target. Seen from above, in green, trajectories of the DS. Top:
The original and modulated dynamics. Bottom: The resulting dynamics with different
levels of activation hs. With hs = 0.50, the dynamics reach in a straight line.
The force-torque sensor is used to detect collisions. We ran the same
experiment on the real robot. We used objects from different sizes
as obstacles. The images of the experiments can be seen on fig. 10.
In the first one, the end-effector collides with the first obstacle,
then with the second obstacle. In the second one, the end-effector
collides first with the large box, then again on top of the large box.

Using external sensing only, we showed that the robot was able to
avoid obstacles when contact is detected, following behavior taught
during demonstrations.

B. Experiment 2b: Navigating between obstacles

In this experiment, we increase the complexity of the external
modulation by taking into account two variables: the time since
last contact, and the angle of the last contact. We aim at learning
how to avoid obstacles depending on information from the collision,
here the force direction during contact.

For this purpose, we encode the original dynamics and the
modulated dynamics as two opposite velocity fields in a central
region, where the experiment is taking place. Both dynamics
converge to the target when going far enough from that region.
The first one is directed perpendicular to the direction between
initial and target frames, in a horizontal plane. The second one
is directed in the opposite direction, see fig. 13. A whole range of
dynamics is reachable by changing the activation of the modulation.
For instance, by setting the activation to 0.5, the resulting trajectory
is a straight line. The angle of the deviation can be adjusted by
modifying the activation value between 0 and 1.

a) Learning the activation function: In order to learn the
mapping h(s), we perform demonstrations on the robot in a similar
way as presented in the previous experiment. Because the input
variable s is now two-dimensional (time since last contact and angle
of last contact), more demonstrations must be given, spanning the
whole input space. For this purpose, we perform 8 demonstrations
with different collision angles.

Fig. 14: Exp 2b: Schematic of the demonstrated trajectories. In red, the collision point
and the force sensed during the collision. The end-effector follows the shape of the
objects after contact, then continues again in a straight line after a few seconds.

15 15 -~ 1.0
5 1.0 1.0
8 0.8
c
o
S 05 0.5 0.6
17 -
o &
S 00 0.0 0.4
[
D pr——
<-05 ~05 0.2
———
-1.0 -1.0 0.0

0 1 2 3 4 5 6 0 1 2 3 4 5
Time since last contact (s) Time since last contact (s)

Fig. 15: Exp 2b. Left: Data from the demonstrations. Each horizontal line corresponds
to one demonstration. Right: Learned function hg(s), using Gaussian Process
Regression (GPR).

The behaviour taught to the robot is the following. When no
collision occur, the robot moves in a straight line, i.e. hs(s) = 0.5.
After a collision, the end-effector adjusts its trajectory depending
on the collision angle (see fig. 14). If the angle is small, the
robot does a large detour, hence picks an extreme value of the
activation function (0 or 1 depending on the direction of avoidance).
Demonstration data are plotted on fig. 15(a). Each horizontal line
of datapoints corresponds to a demonstration. We can see that the
input space corresponding to the angle of collision is not perfectly
spanned by the demonstrations, due to the demonstrated collision
angles not being spread perfectly evenly. Looking at the horizontal
axis, we can see that we recorded about 5 seconds of data after a
collision per demonstration. The color of each datapoint indicates
its corresponding h, value, estimated using the method described
in section V-A.2. We then learn a model with GPR, illustrated on
fig. 15(b).

From these plots, we can extract a few observations: a) The
collision angles are not centered on 0. The median value, for which
the output h4(s) switches from values below 0.5 to values above, is
at about 0.4rad. It corresponds to a frontal collision. This is due to
a mis-calibration of the force-torque sensor’s orientation. Thanks to
the learned mapping, this is not an issue. b) After a few seconds, all
datapoints converge back to a value of hs(s) = 0.5, i.e. a straight
line®. This is the desired behaviour. ¢) The learned mapping, visible
on fig. 15(b), corresponds to the desired behaviour: small angles
(close to the median value of 0.4) yield extreme values of hg, i.e.
trajectories close to either one of the original or the modulated
dynamics. Bigger angles yield less extreme values, leading to less
modified trajectories.

b) Results: The task is executed both activating the modu-
lation depending on the input s (fig. 16(a)), or fixing the value

3Qutput values are centered on 0 before learning, due to the GP values
falling back to O far from demonstrated data.

(a) hs(s) learned

(b) hs(s) = 0.5 (fixed)

Fig. 16: Exp 2b: Evolution of the obstacle avoidance task with the controller
activated (a) or not (b). The end-effector reaches from left to right. In both cases,
the desired velocity is tracked using a passive DS controller.

of the activation to 0.5, hence ignoring external signals for a
comparison purpose (see fig. 16(b)). When the external signal
is ignored, the end-effector moves in a straight line. Because of
the passive DS controller, the robot is compliant. However, when
ignoring the external signal, here the contact information, the robot
does not avoid the obstacles. The friction in the joints prevents it
to be really deviated from its trajectory, and the robot displaces
the obstacles while colliding with them. When using information
from the external signal, the robot adapts its trajectory after each
collision and navigates between the obstacles. Depending on the
collision angle, the robot adapts the avoidance trajectory. Therefore,
it sometimes slides along the object (here with the second obstacle),
or moves away from it (first and third obstacles).

VI. DISCUSSION

Here, we provide a practical framework for achieving robust
manipulation skills using external feedback. We have demonstrated
that EMDS can easily be tailored to different tasks.

Desired behavior is achieved by modifying local modulations
applied to an existing dynamical system. This allows to conserve
important stability properties for any external signal, assuming
that the modulation function is full-rank. Our proposed modulation
function design ensures that the modulation matrix is always full-
rank, and hence the system is stable for any external signal. As such,
this work can be directly applied to an existing LMDS, provided
a mapping between an external signal and the desired regulation
of the modulation. For this purpose, we also suggested a method
to capture how the dynamical system should be modulated by the
external signal, based on learning the corresponding mapping by
teaching the desired behavior during task execution.

We applied this algorithm to a task of simulated blind reach-
and-grasp, using only tactile data for estimating the object’s pose,
which is in general extremely difficult to use in practice. In this task,
the modulation between the reaching and grasping behaviors was
encoded as a learned function of the variance of the pose estimate.
The regulation of the modulation allowed to find and grasp the
object faster than when always modulating the DS and following
the grasping motion. To the best of our knowledge, this is the first
time that blind search-and-grasp has been achieved, without using
any vision.

We also applied this algorithm to tasks of reaching while avoiding
obstacles. The system learns when to bypass obstacles depending
on the last contact. We show that the task execution depends on
learning a proper activation function, otherwise the behaviour is
inadequate. The learned function depends on the time since the
last contact, and thus depends implicitly on the size and shape of
the obstacles seen during the task. The robot would perform less
well with different obstacles as it would either collide again before
bypassing (bigger obstacles), or make unnecessarily big detours
(smaller obstacles). The teaching hence depends on the type of
obstacles met during a specific type of task. We further studied

this task by introducing the angle of collision into our activation
mapping. With this two-dimensional external signal, our robot is
able to navigate between obstacles and choose its trajectory by
adjusting the level of activation of the DS’s modulation, depending
on the external signals.

In this work, the mapping from external signal to modulation
is learned by teaching. We specify that the function can also be
provided manually. An alternative to learning this function by
a teacher would be to use reinforcement learning (RL) because
the dimension of the problem is low and hence the problem fits
particularly well the RL framework.

ACKNOWLEDGMENT

This research was supported by the Swiss National Science
Foundation through the National Centre of Competence in Research
(NCCR) Robotics, and the European Commission (Horizon 2020
Framework Programme, H2020-ICT-643950) through the Second-
Hands project.

REFERENCES

[1] K. Kronander, M. Khansari, and A. Billard, “Incremental Motion
Learning with Locally Modulated Dynamical Systems,” Robot. Auton.
Syst., 2015.

[2] A. Bicchi and V. Kumar, “Robotic grasping and contact: a review,” in
ICRA, 2000.

[3] M. A. Roa and R. Surez, “Grasp quality measures: review and
performance,” Autonomous Robots, 2014.

[4] S. Mohammad Khansari-Zadeh and A. Billard, “Learning control

Lyapunov function to ensure stability of dynamical system-based robot

reaching motions,” Robot. Auton. Syst., 2014.

A. Shukla and A. Billard, “Coupled dynamical system based armhand

grasping model for learning fast adaptation strategies,” Robot. Auton.

Syst., 2012.

[6] E. Gribovskaya, S. Khansari-Zadeh, and A. Billard, “Learning Non-

linear Multivariate Dynamics of Motion in Robotic Manipulators,” Int.

J. Rob. Res., 2011.

E. Gribovskaya, A. Kheddar, and A. Billard, “Motion learning and

adaptive impedance for robot control during physical interaction with

humans,” in ICRA, 2011.

[8] A.L.P. Ureche, K. Umezawa, Y. Nakamura, and A. Billard, “Task Pa-
rameterization Using Continuous Constraints Extracted From Human
Demonstrations,” IEEE Transactions on Robotics, 2015.

[9] N. Sommer, “Learning with tactile feedback on a humanoid robot.”
Master thesis, INSA de Strasbourg, 2012.

[10] A. Billard and G. M. Hayes, “DRAMA, a Connectionist Architecture
for Control and Learning in Autonomous Robots,” Adapt. Behav.,
1999.

[11] A. L. Selverston, “Are Central Pattern Generators Understandable?”
Behavioral and Brain Sciences, 1980.

[12] S. Schaal, A. Ijspeert, and A. Billard, “Computational approaches to
motor learning by imitation,” Philosophical Transactions of the Royal
Society B: Biological Sciences, 2003.

[13] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors,” Neural Computation, 2013.

[14] S. M. Khansari-Zadeh and A. Billard, “Learning Stable Nonlinear Dy-
namical Systems With Gaussian Mixture Models,” IEEE Transactions
on Robotics, 2011.

[15] P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal, “Online
movement adaptation based on previous sensor experiences,” in /ROS,
2011.

[16] P. Pastor, M. Kalakrishnan, F. Meier, F. Stulp, J. Buchli, E. Theodorou,
and S. Schaal, “From dynamic movement primitives to associative skill
memories,” Robot. Auton. Syst., 2013.

[17] O. Kroemer, R. Detry, J. Piater, and J. Peters, “Combining active learn-
ing and reactive control for robot grasping,” Robotics and Autonomous
Systems, 2010.

[18] N. Sommer and A. Billard, “Multi-contact haptic exploration and
grasping with tactile sensors,” Robot. Auton. Syst., 2016.

[19] K. Kronander and A. Billard, ‘“Passive Interaction Control With
Dynamical Systems,” IEEE Robotics and Automation Letters, 2016.

[5

=

[7

—

	Introduction
	Related work
	Approach
	Locally Modulated Dynamical Systems
	Externally Modulated Dynamical Systems
	Design of the modulation function
	Modulating rotating and speed-scaling dynamics

	Illustrative examples
	Learning EMDS

	Experiment 1: Autonomous Localization and Grasping
	Learning the external activation function
	Experimental setup
	Results

	Experiment 2: Reaching while avoiding obstacles
	Experiment 2a: Avoiding obstacles
	Learning the activation function from GUI demonstrations
	Learning the activation function from real robot demonstrations
	Results, experiment 2a

	Experiment 2b: Navigating between obstacles

	Discussion
	References

