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Abstract— The demands from precision agriculture (PA) for
high-quality information at the individual plant level require
to re-think the approaches exploited to date for remote sensing
as performed by unmanned aerial vehicles (UAVs). A swarm of
collaborating UAVs may prove more efficient and economically
viable compared to other solutions. To identify the merits
and limitations of a swarm intelligence approach to remote
sensing, we propose here a decentralised multi-agent system
for a field coverage and weed mapping problem, which is
efficient, intrinsically robust and scalable to different group
sizes. The proposed solution is based on a reinforced random
walk with inhibition of return, where the information available
from other agents (UAVs) is exploited to bias the individual
motion pattern. Experiments are performed to demonstrate the
efficiency and scalability of the proposed approach under a
variety of experimental conditions, accounting also for limited
communication range and different routing protocols.

I. INTRODUCTION

Current advancements in remote sensing technologies—
especially exploiting small and efficient unmanned aerial
vehicles (UAVs) [1]—are revolutionising the agricultural
domain, providing loads of data to be exploited for process
optimisation in nearly every possible activity related to
agricultural production. In this way, the tenet of precision
agriculture (PA) to “produce more with fewer inputs” be-
comes possible. However, PA requires fine-grained data and
intervention abilities to maximise yields and minimise the us-
age of water, fertilisers and herbicides (e.g., through variable-
rate applications) [2], [3]. High-resolution satellite images
have been considered the main source of information until
recently, but the trend is changing thanks to the extensive
deployment of UAVs, which allow to reduce problems related
to high costs and limited availability of satellite imagery [4],
[5]. As soon as data are needed at the single plant level (e.g.,
to recognise the weed species and sizes and select the best-
performing herbicide type and dose to apply), strong con-
straints are imposed on the remote sensing technology to be
applied. Fixed-wing UAVs become unpractical as they cannot
hover and need to fly at a too high altitude, shifting the
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choice towards rotary-wing UAVs like quad-copters. These
are however limited in flight time, given the current state
of the art, demanding for time/energy-efficient solutions. PA
also requires higher levels of autonomy for UAVs largely
beyond the current usage as passive sensors with predefined
mission plans. Intelligent, real-time adaptation of the UAVs
sampling policies to reflect the information being gathered
allows to focus on areas of importance (e.g., where weeds
are concentrated), and avoid wasting resources on areas of
lower relevance (e.g., devoid of weed). Similar strategies can
be implemented on a UAV endowed with higher autonomy,
but are not flexible and efficient in terms of time and energy
expenditure. Additionally, it is important to note that, despite
hardware prices going down with the growth of the drone
market, high-end solutions for agricultural applications with
onboard autonomy and high precision sensors would still be
rather costly. As a consequence, an autonomous UAV is an
asset that does not allow to scale costs with different farm
sizes, and does not provide robustness against faults during
operation accomplishment. The above discussion motivates
the present study to exploit a swarm robotics approach [6],
[7], using groups of miniaturised low-cost UAVs that can
provide—collectively—similar precision as high-end solu-
tions, can be efficiently scaled to different farm sizes without
performance loss, and provide intrinsic robustness against
individual faults.

In this study, we focus on a field coverage and mapping
problem, whereby the presence and density of weeds must
be detected in a crop field, therefore creating a infestation
map that can be exploited for weed control optimisation.
We present a simulation study to compare the efficiency of
a swarm of collaborating UAVs capable of on-board weed
recognition and online mission adaptation, against the per-
formance of a standard remote-sensing approach by which a
predefined image-collection mission is followed by off-board
batch processing. Considering that the number and spatial
distribution of weeds is unknown, a complete coverage of the
field is a necessary condition. Additionally, weed infestation
is often heterogeneous in the field, with patches of plants
separated by regions devoid of weeds, requiring adaptive
information foraging abilities. Finally, the identification of
weeds could be prone to errors (e.g., due to varying weather
conditions), so much that a large resampling effort may be
required to obtain a sufficient accuracy.

Coverage and mapping are interrelated problems largely
studied in multi-agent systems and robotics, although not
specifically linked to agricultural applications [8], [9], [10].
Generally speaking, a certain number of points of interest
(POIs, i.e., weeds) must be reached (coverage) and processed



(mapping). This makes the problem similar to task allo-
cation in multi-agent systems, which has been approached
with different methods like Distributed Constraint Opti-
mization (DCOP [11]), Distributed Pseudotree Optimization
(DPOP [12]), the Contract Net Protocol [13] or bounty-based
auction methods [14], to cite some. Few studies take a swarm
robotics approach to coverage and mapping. In [15], the
coverage problem is tackled through a flocking algorithm
ensuring permanent connectivity among robots. Similarly in
[16], multi-robot coverage is performed to maximise spread
while maintaining connectivity among robots and reducing
the communication overhead. The focus on connectivity is
justified by the need to largely spread information within the
group. In this study, we relax this constraint to provide more
efficient coverage solutions, and we introduce re-broadcast
protocols to account for limited communication ranges.

In order to provide scalability and robustness to the
system, we devise a stochastic exploration strategy based on
a reinforced random walk [17], [18], [19]. Individual UAVs
follow a correlated random walk and interact with neighbours
to avoid interferences (see Section II-B). A mechanism to
avoid returning on previously visited areas leads to a very
efficient coverage strategy that is only slightly inferior to
the optimal case of a lawnmower strategy (see Section III).
Communication is exploited here to share information be-
tween UAVs so as to avoid re-visiting areas that have been
already visited before. Finally, mapping weeds in the field is
performed by UAVs recruiting each other towards areas of
possible interest—exploiting communication to create virtual
pheromones or “beacons” [20], [8], [21]—hence increasing
the sampling effort only where this is needed (see Section II-
C for details). Overall, the results obtained suggest that
swarm robotics can provide useful approaches to PA. Finally,
Section IV discusses the merits and limitations of the pro-
posed solution, and points to possible future improvements.

II. EXPERIMENTAL SETUP

A. Field simulation and weed detection model

We consider the case of a open field without obstacles,
defined by the field boundary. Without loss of generality,
we choose a rectangular field with dimension Lx ×Ly . The
field is divided in a single 2D n × m matrix. A single
i, j location is referred to as a cell cij , and may contain
zero, one or multiple weeds with overall density ρij . We
assume a heterogeneous distribution of weeds, which appear
in patches across the field, each patch being modelled as a
gaussian distribution. UAVs—hereafter also called agents—
move at constant speed v and can hover over a cell to take
images of the field and distinguish between background,
crops and weeds. We assume that the vision algorithm for
weed detection returns, for each image acquired for cell cij ,
the detected weed density ρ̂ij ≤ ρij , and a confidence value
zij ∈ [0, 1]. We do not consider here the possibility of false
positives. Indeed, the vision processing algorithm can be
affected by detection errors—e.g., due to variable weather
conditions or hovering fluctuations—that we model with a
fixed probability Pε of incurring in errors that result in a

lower detection ability, so that the estimated weed density
and confidence value are obtained as follows:

ρ̂ij(t) = ρij(1− εw(t)), εw(t) ∼ U(0, εM ) (1)
zij(t) = 1− εz(t), εz(t) ∼ U(0, εw(t)) (2)

where εM ∈ [0, 1] represents the maximum percentage of
missed weeds we consider possible, and U(a, b) represents
a uniform distribution in the interval [a, b].

Each agent maintains a local map of the field, where
to store, for each cell cij , the information acquired from
onboard processing or received from other agents through
communication. In case multiple observations of the same
cell are performed—by the same or different agents—we
assume that information is aggregated by discarding the one
with the lower confidence:

〈ρ̂, z〉ij = max
z

(〈ρ̂1, z1〉ij , 〈ρ̂2, z2〉ij) (3)

where 〈ρ̂h, zh〉ij represents the result of a single detection
process on cell cij . Different approaches can be taken in fu-
ture work to account for the actual processing performed by
the UAVs. We let the UAVs explore the field until complete
coverage, that is, when each cell has been visited at least
once by any UAV. We therefore record the coverage time
tc, which is the principal metric for evaluating the system
efficiency. To evaluate the mapping quality, we consider the
global detection efficiency, computed as follow:

dhij =
ρ̂hij
ρij

(4)

D =
1

nm

∑
ij

max
h

dhij (5)

where dhij is the detection efficiency of agent h in cell cij ,
and D is the overall, aggregated detection efficiency.

B. Swarm exploration strategy for field coverage

The basic strategy for field coverage adopted by the agents
is a simple correlated random walk [18], [19], on top of
which we implement several mechanisms to improve the
exploration efficiency. Given that the field is divided in
cells, the UAV motion planning is performed by selecting
a new cell to visit so that weed detection can be performed
according to the model presented above. A random walk
for each UAV is implemented by selecting, at each decision
step, a random cell to be visited in the neighbourhood. To
minimise the distance covered, the choice is made within
sets of cells at increasing distance, as depicted in Fig. 1
left, where cells belonging to the same set are identified
by the same ordinal number R. For instance, the set with
R = 1 corresponds to the cells directly adjacent to the agent’s
current one. To choose the next cell, an agent makes a two-
step decision. In the first step, it looks for a sufficient number
of valid cells, that is, cells that have not been previously
visited or that are not occupied/targeted by other agents, to
the best of the local knowledge available (see also Sect. II-D).
Validity of cells is checked sequentially for sets of increasing
distance R, until a given number V of cells is discovered (in



Fig. 1. Left. Distance-based exploration pattern. In the image the central
cell marked with an A represents the agent’s position. Numbers indicate the
priority of each location assigned according to the distance. Vector ~m is
the momentum of the agent, representing a possible directional bias. Cells
that fall in the shadowed region are accepted only if no valid cell is found
in the other semi-plane. Right: The wrapped Cauchy density function for
different values of persistence p.

this study, V = 1). At this point, a set V is defined including
all valid cells within the maximum distance reached. Note
that, in general, |V| > V , as all the cells within a given
distance are included, not limited to those that allow reaching
the threshold V . To avoid that the selection of valid cells
interferes with possible directional biases for cell selection
(i.e., when the first valid cells lay in the opposite direction),
an agent divides the exploration plane in two parts (semi-
planes), hence choosing valid cells first in the semi-plane
complying with the directional bias, and only if unsuccessful,
in the opposite semi-plane. More precisely, given the agent
h position ~xh, a directional bias ~b and the relative position
of the cell ~rij = ~xij − ~xh, the semi-plane with priority is
given by all cells cij for which ~b ·~rij ≥ 0. If no valid cell is
available satisfying this conditions, then also the remaining
cells are evaluated for inclusion in V (see Fig. 1 left).

In the second step, a random choice is performed within
V to select the target cell. To implement a correlated ran-
dom walk, we consider a unit vector ~mh representing the
momentum of the agent h. Each cell cij ∈ V is assigned a
utility according to the angular difference θij as follows:

uij = C(θij , p), C(θ, p) =
1

2π

1− p2

1 + p2 − 2p cos θ
(6)

where θij is the angle between the cell and the momentum
~mh, while C(·) is the wrapped Cauchy density function
with persistence p ∈ [0, 1[ which determines the function
skewness, as shown in Fig. 1 right. For high values of
persistence, the utility is very high only for cells aligned with
the momentum vector, while for a low value of persistence
the utility is more uniformly assigned despite the angular de-
viation. Additionally, the influence from neighbouring agents
shall be considered to avoid interferences and to bias random
movements in areas with low agent density. To this end, we
compute for each agent h a repulsion vector ~rh as follows:

~rh =
∑
k 6=h

S(~xh − ~xk, σa), S(~v, σ) = 2ei∠~ve−
|~v|
2σ2 , (7)

where the sum extends over all agents k in the neighbour-
hood that are known to agent h (see also Sect. II-D), and the
function S returns a vector pointing away from agent k, with

the module decaying according to a gaussian function with
width σa. To account for both momentum and repulsion, a
bias vector is computed as ~bh = ~mh + ~rh and a utility is
assigned to each cell cij ∈ V according to eq. (6) using the
angle between the cell and ~bh. A utility-proportional random
choice is then made among the cells in the valid set V .

C. Swarm Mapping Strategy

Similarly to field coverage, weed mapping is performed by
UAVs exploiting a reinforced random walk strategy. Here, the
decision about the next cell to visit is also influenced by the
mapping activity of other UAVs, that can recruit each other
towards areas of interest. We exploit the concept of virtual
pheromones or “beacons” [20], [8], [21], that is, attractive
points that bias the individual motion. A beacon is activated
within a cell by an agent, following the recognition of some
weeds. More precisely, an agent activates a beacon when the
confidence value zij < 1, meaning that additional monitoring
effort is required, and communicates its position to the
neighbouring agents. Agents maintain a list of active beacons
B—characterised by position ~xb and activation time tb—and
remove items from the list after a period Tb from activation.
To limit the proliferation of beacons, agents are restrained
from activating new beacons if their local list contains more
than Mb items. Whenever an agent broadcasts some message,
it also attaches the local list of available beacons B, so
that receiving agents can update their local list accordingly
(see also Sect. II-D). This ensures an efficient diffusion of
information with a small communication overhead, given the
limited number of active beacons Mb.

The motion strategy for mapping is similar to the coverage
case, with the following differences. The set of valid cells V
is built in a similar way, but now includes all cells cij that
have a confidence value zij < 1. We assume that uncovered
cells have null confidence. As for coverage, cells that are
occupied or targeted by other agents are excluded from V .

Given the set of valid cells, a random choice is performed
by agent h taking into account the agent momentum ~mh,
the repulsion vector from other agents ~rh and an attraction
vector resulting from the known active beacons:

~ah =
∑
b

S(~xb − ~xh, σb), (8)

where the gaussian function S from equation (7) is now
characterised by the width parameter σb. Hence, the resulting
bias vector is ~bh = ~mh + ~rh + ~ah, which is used to assign
the utility to each cell cij ∈ V according to eq. (6).

Every time an agent reaches a new cell, it maps weeds and
updates its local information following the model described
in Sect. II-A. Then, it shares the updated information with its
neighbours following the protocol described in the following.

D. Agents’ Communication

For activity coordination and efficient operations, com-
munication among UAVs is essential. By broadcasting their
absolute position, UAVs can implement collaborative avoid-
ance strategies (e.g., the hybrid reciprocal velocity obstacle



Fig. 2. Left: A graphical representation of the variables considered in
the broadcast utility function. Right: A visual representation of a possible
displacement of UAVs in a single quadrant. The dotted circle represents the
communication range (how far the transmitting agent can send the data). In
this example, b (the red UAV) is selected for rebroadcast while the other
two UAVs act as simple listeners.

method [22]). Additionally, UAVs broadcast information
about the visited cells and active beacons to support field
coverage and weed mapping. In this work, we neglect
collision avoidance issues, and we focus on the information
required for monitoring and mapping. We assume that an
agent h broadcasts a message after visiting a new cell. Such
a message contains: (i) the current cell cij , (ii) the estimated
weed density ρij and confidence zij , (iii) the next cell c′ij
chosen for visiting, (iv) the list of known active beacons B,
and (v) a unique identifier of the message.

The ability to spread such information widely within the
swarm is key for efficient coordination. It is therefore impor-
tant to study how communication affects both the behaviour
of the agents and the overall swarm efficiency. Information
spreading depends on the communication range Rc, and
on the chosen re-broadcasting protocol. The communication
range and the density of agents in the field determines the
features of the static interaction network, and the speed
at which information propagates [23]. The re-broadcasting
protocol determines how efficient the communication is in
reaching agents via multi-hop forwarding. In this work, we
adopt concepts from information-centric mobile ad-hoc net-
works (ICMANET [24]), in which the host-centric paradigm
is abandoned in favour of data content. To understand the ef-
fect of the chosen communication protocol, we implemented
three different strategies:

• Simple—A single-broadcast communication protocol
without re-broadcast, in which a message reaches only
the neighbours within range Rc.

• Flooding—A multi-broadcast protocol where messages
are forwarded as long as the same content—based on
the unique identifier of the message—was not already
delivered before [25].

• Geo-aware—A variant of the “geo-aware energy effi-
cient approach” [26], adapted to account for a custom
utility function. This function is computed by the origin
of the message, for each quadrant of the plane and for
each known agent, and selects a target agent on the basis
of the distance reached and the centrality with respect

to the quadrant bisector:

arg max
i∈Aq

uq(i) = |~xi| · (1− |
φ~xi,~vq
π
4

|) (9)

where Aq is the subset of known agents in the quadrant
q, the versor ~vq splits the quadrant q in two identical
parts, and φ represents the angle between the agent
position vector and ~vq . The agent with maximum utility
is chosen for rebroadcast (see Fig. 2). Also in this case,
agents never forward the same message more than once.

Note that, despite identical messages are not re-broadcast, an
agent processes any received message to update the infor-
mation about the neighbourhood. Here, we do not consider
any communication error, to focus on the effects of the
communication range and protocol over the efficiency. To
this end, we define two simple metrics: (i) the total number
of messages exchanged and (ii) the average utility of received
messages. The former is used as a proxy of the load on the
communication channel, and is computed as follows:

Etx =
∑
i

Ntx(i) (10)

where Ntx(i) is the number of transmitted messages by agent
i. The utility encodes the amount of redundant information
among all received messages, and is computed as follows:

Erx =
1

NEtx

∑
i

∑
m

1

Nrx(m, i)
(11)

where N is the number of agents and Nrx(m, i) ≥ 1 the
number of times a message m was received by agent i.

E. Reference lawnmower strategy

As a demarcation strategy, we consider here a lawnmower
agent that moves from one cell to a neighbouring one,
sweeping the whole field. Such a strategy provides an optimal
coverage time as it minimises the distance covered from
cell to cell, and sequentially visits all cells in the field. To
compare with the proposed approach, we simply divide the
coverage time t?c of a single lawnmower agent by the number
N of available agents, as if each agent was a priori assigned
an equal, non-overlapping portion of the field to be covered.
By comparing with such an optimal coverage time, we can
appreciate how good is the devised stochastic strategy.

For what concerns weed mapping, we assume here that
the reference lawnmower agent does not have any ability of
onboard processing, so that a number Ns of pictures are shot
for every cell of the field for off-board processing, each shot
taking a single simulation step. This constitutes a reasonable
assumption considering the range of commercial applications
for remote sensing with UAVs. We therefore compare the
proposed approach for mapping with the coverage time of
N lawnmower agents (possibly increased by the Ns steps
necessary to take additional images) and the global detection
efficiency D?, which results from exploiting the same vision
processing model described in Sect. II-A on Ns images,
ignoring possible correlations of errors between subsequent
samples.



III. RESULTS

To evaluate the merits and limitations of the proposed
approach, we use Mason [27], a professional framework for
multi-agent simulations useful to test our approach largely
varying the parameter set. For each experimental conditions,
we have performed 100 runs always using a field divided
in 50 × 50 cells. Agents are positioned uniformly random
within the field at the beginning of each simulation run.

A. Efficiency in field coverage

We consider a swarm of N ∈ {10, 50, 100} agents,
using an infinite communication range and a single-broadcast
protocol, which is sufficient to ensure that each agent has
perfect knowledge of the system state. We investigate how
the coverage efficiency is influenced from both presence of
neighbours and the persistence of the biased random walk.
The former is determined by σa in eq. (7): the higher the
value, the wider the influence range of an agent, so that even
very distant agents can influence each other. The persistence
parameter p in eq. (6) instead determines the importance of
the directional bias in determining the choice of the next cell.

Overall, the results presented in Fig. 3 indicate a good
efficiency for the proposed coverage strategy, with about 20%
overhead with respect to the optimal lawnmower coverage
for the best parameterisations. The best conditions gener-
ally correspond to high persistence p and low to medium
repulsion σa among agents. For persistence p = 0, the
directional bias has no effect and the next cell to visit is
chosen in the whole neighbourhood, disregarding the agent
momentum and the repulsion from other agents. In this case,
we observe that coverage efficiency is higher for smaller
groups, because larger groups tend to leave small portions
of the field uncovered, hence requiring large displacements

Fig. 3. Results obtained varying the number of agents N ∈ {10, 50, 100},
the spread of the repulsion among agents σA ∈ {0, 4, 8, 16, 32, 50} and
finally persistence p ∈ {0, 0.3, 0.6, 0.9}.

and longer times as the number of valid cells diminishes.
When σa = 0, there is no repulsion between agents, and the
directional bias is limited to the momentum ~m, resulting in
a correlated random walk. Larger persistence values produce
a kind of lawnmower strategy in which an agent goes
straight as long as valid cells are present in the motion
direction, otherwise choses a different direction of motion.
Very efficient coverage is observed in such condition for
N = 10, as the agents are initially spread in the field and
do not interfere strongly. A lower advantage is observed for
larger groups, in which more coordination is required to limit
interferences. Indeed, for larger groups more coordination is
required to limit interferences. Higher values of persistence
and repulsion allow to account for the presence of other
agents. The best conditions are observed for high persistence
(p ≥ 0.6) and medium repulsion (σa ∈ {8, 16}), for which
agents divide the field in non-overlapping territories within
which a lawnmower-like motion is observable. Higher values
of repulsion lead to an excessive segregation on the borders
and/or to the cancellation of the repulsion effects when the
density of agents is high (e.g., for N ≥ 50).

B. Effects of communication range and protocol

The coverage efficiency so far discussed assumes an infi-
nite range for communication (Rc =∞). When reducing the
communication range, the coverage efficiency significantly
decreases, due to the fact that agents have a partial infor-
mation of the world and tend to revisit areas that have been
already covered by other agents. We performed additional
simulations with Rc ∈ {5, 10, 20, 40} cells, and we also

Fig. 4. Results obtained varying the communication range Rc ∈
{5, 10, 20, 40,∞}, the type of communication protocol and number of
agents N ∈ {10, 50, 100}. These simulations are performed setting σa = 8
and p = 0.6. Top: coverage time relative to the reference lawnmower
strategy. Center: Utility of delivered message. Bottom: Total number of
messages transmitted.



tested the effect of different multi-broadcast protocols, which
can help diffusing information within the swarm (Fig. 4).
With a single-broadcast protocol, performance quickly de-
grades with shorter communication ranges, especially for
small groups (N = 10). The usage of a multi-broadcast
protocol alleviates significantly the problem, having efficient
coverage for Rc as small as 10 cells for N ≥ 50. The
advantage of the multi-broadcast protocols comes at the cost
of more messages transmitted and a lower overall utility
(see the center panel in Fig. 4). Utility decreases with larger
Rc because of the larger amounts of re-broadcasts from the
agents that are reached by a message. The “Geo-aware”
protocol proves much better in minimising the number of
messages transmitted (see the bottom panel in Fig. 4) and
maximising the utility Erx, without affecting the coverage
efficiency.

C. Efficiency in weed mapping

The weed mapping results build over those obtained for
coverage. Here, we introduce the possibility of agents to
use beacons to attract other agents towards relevant areas.
We run experiments for varying attractiveness of beacons as
determined by σb ∈ {4, 8, 16, 32} and for varying swarm size
N ∈ {10, 50, 100}. To also evaluate the effects of commu-
nication, we perform tests with the Geo-aware protocol with
Rc ∈ {10,∞}. We compute the coverage time tc and the
detection efficiency D, and we compare the obtained values
with the time taken by the reference lawnmower strategy
with Ns = 1 (i.e., a single image captured per cell) and
with Ns = 10 (i.e., multiple images to account for detection
errors). We use here a maximum number of beacons linked
to the number of agents: Mb = N . Additionally, we consider
the following detection errors: Pε = 0.75 and εM = 0.25.

Generally speaking, the detection accuracy is very high, as
the agents re-visit multiple times the cells containing weed
items, therefore substantially obtaining a mapping efficiency
close to 1 in all tested conditions (the average over all
the performed runs amounts to D = 0.9998 ± 0.0001 for
Rc = 10 and D = 0.9996 ± 0.00015 for Rc = ∞).
The reference strategy instead has an average error of 0.12

Fig. 5. Results obtained varying the number of agents N ∈ {10, 50, 100},
attractiveness of beacons σB ∈ {4, 8, 16, 32} and the communication range
Rc ∈ {10,∞}. These simulations are performed setting σa = 8 and
p = 0.6. The communication protocol is the geo-aware.

with Ns = 1, while the average error decreases to 0.04 for
Ns = 10. The high performance obtained for the detection
efficiency derives mainly from the ability to attract agents
towards cells that have not been correctly mapped. In this
way, a very good performance can be reached within the
time the whole field gets covered. The high performance
comes however at the cost of a longer coverage time tc
(see Fig. 5), given that agents tend to focus on unmapped
areas before visiting cells in zones devoid of weed. The
best conditions is for an infinite communication range and
small groups. Here, the proposed approach has comparable
performance with the lawnmower strategy with Ns = 1,
and provides higher detection accuracy. Coherently with
the coverage results, performance decreases for the small
communication range Rc = 10, where the best results are
found for N = 50 agents. It is worth noting that the system
is faster for lower attractiveness of the beacons, which means
that local attraction is sufficient for good mapping. The
comparison with Ns = 10 produces similar results, although
more favourable to the swarm robotics approach of about
30%, as the difference is limited to a longer time taken by
the lawnmower agents to terminate the coverage.

IV. CONCLUSIONS AND FUTURE WORKS

We presented a distributed, stochastic field coverage and
weed mapping strategy for a UAV swarm, and analysed its
efficiency in relation to a reference lawnmower strategy. We
deeply analysed the deployed system by systematically vary-
ing the parameters that have a bearing on the efficiency of the
collective coverage and mapping behaviour, explaining the
merits and limitations of different choices. We accounted for
limited communication ranges and for different broadcasting
protocols, hence providing valuable information for future
implementations with real drones. The obtained results are
satisfactory and confirm our expectations, that a swarm of
UAVs can represent an efficient solution for monitoring and
mapping problems compared to current approaches based on
image collection and off-board processing. We have shown
that the proposed system scales reasonably well with the
group size without requiring specific tuning. The decen-
tralised, self-organising nature of the system also leads to
intrinsic robustness against faults, which is a valuable prop-
erty for realistic applications. Note that the presented results
have been obtained under fair assumptions with respect to
the detection accuracy, as the reference lawnmower strat-
egy employs exactly the same methodology. Additionally,
assumptions about coverage in the lawnmower strategy are
rather optimistic, postulating a perfect linear scaling. On such
basis, the achieved performance can be positively judged.

One important limitation of the proposed methodology,
which requires further investigation, concerns the decrease in
performance for small communication ranges. Considering
that crop fields can be very extensive, the communication
range may be an issue especially when connectivity among
UAVs is sporadic and newly gathered information may get
lost or not efficiently spread within the group. Further studies
are required to determine how and with what frequency



the information available to each agent should be shared
with neighbours, so as to align as much as possible the
local knowledge about the world to the actual conditions,
and average out possible errors. This will also need to take
into account the requirements for efficient communication,
so as to avoid overloading the communication channel. A
possible solution can be given by trading data rate for
longer communication ranges. Indeed, by allowing for better
information sharing, the swarm robotics approach has very
good properties, as shown within this study when Rc =∞.

Future work will aim to improve the system in view of
deployment on real UAVs. To this end, the inclusion of
collision avoidance strategies is a requirement for testing
with real UAVs. Further improvements are sought to im-
prove the coverage efficiency and the mapping accuracy.
An interesting possibility in this direction corresponds to
introducing non-uniform coverage strategies [28], [29]. This
can be obtained by introducing different observation layers
(e.g., different flying altitudes for the UAVs), which provide
different detection accuracy. Coverage can be performed
mainly at the coarser level, hence providing basic infor-
mation for mapping, which can be instead performed with
higher accuracy by descending into fine-grained observation
layers (e.g., lowering the hovering altitude to obtain more
precise information). In this way, it could be possible to
further increase the coverage efficiency and the detection
ability. Finally, our approach has been introduced as specific
for the precision agriculture domain, but it can be relaxed
and modified to fit a great variety of contexts. A generalised
model for monitoring and mapping could be introduced and
adapted to different application domains.
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