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Abstract— Creating accurate models of stochastically self-
assembling systems is a key step in developing control strate-
gies, centralized or distributed, for the self-assembly process.
This paper comparatively studies several aspects of developing
probabilistic models for programmable self-assembling systems
of stochastically interacting modules. In particular, we system-
atically investigate Markov models as well as hidden Markov
models to predict the self-assembly process dynamics. We con-
sider a case study leveraging our fluidic self-assembly robotic
system. The ground truth is obtained through a high-fidelity
simulation, calibrated using real experimental data. We first
consider Markov models and employ the formalism of chemical
reaction networks. In order to compute the model parameters,
i.e. the reaction rates in the network, three different methods
are studied. We then investigate the validity of the underlying
well-mixed assumption, and thus the Markov property, for our
system through estimation of the diffusion coefficient, through
two different approaches. The system is shown to be borderline
well-mixed, motivating extension of the initial Markov models
to more complex models in order to achieve improved model
accuracy. We formulate an automatic method for creating a
hidden Markov model starting from a Markov model, based
on a previously existing systematic method. Sample trajectories
of the models are realized using the Gillespie’s method. The
resulting hidden Markov model is shown to achieve an improved
accuracy over the standard Markov model.

I. INTRODUCTION

Self-assembling robotic systems have garnered significant
interest for their robust performances in forming structures
of varied complexities and scales as well as their minimal
design of constituting modules [[1], [2l], [3]. These systems
employ Self-Assembly (SA) as a coordination mechanism
among the modules to put together desired target structures
of specific forms or functionalities in presence of typically
highly noisy sensing, actuation, and interaction dynamics [4].

This paper studies different aspects of developing Marko-
vian probabilistic models for a class of self-assembling
robotic systems where the constituting modules are randomly
stirred in a confined arena and interact to assemble structures
based on their embedded ruleset controllers. For a given de-
sired target structure, the engineering goal in programmable
stochastic self-assembling systems is to derive and program
proper ruleset controllers on the modules such that the target
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structure emerges in a reliable and predictable fashion [J3]].
The environmental features may also be controlled to assist
the assembly of the target structure [6], [7].

A key component in studying programmable stochastic
self-assembling systems is developing models that accurately
describe the assembly process dynamics. Such models would
help in: (1) accurately predicting the performances (assembly
rate and yield) of the distributed system, and (2) evaluating
and optimizing control strategies, whether distributed (e.g.,
ruleset controllers programmed on the modules) or central-
ized (e.g., modulating environmental features such as mixing
forces deriving random interactions among modules), based
on model predictions [8], [9].

Several works have addressed developing Markovian prob-
abilistic models for stochastic self-assembling systems to
date [, [5], (6], [10], [11]. The choice of employing prob-
abilistic modeling techniques for such systems is essentially
motivated by the randomness lying at the core of these
systems: random motion of the modules in the environment,
explicit random decisions made by the modules’ embedded
controller, and random interactions among the modules [12].
Additionally, probabilistic models can be employed to pro-
vide a high-level macrostate description of the system state
at each point in time by abstracting away low-level physical
details of the system state such as positions, velocities, and
internal states of all modules (i.e. microstate description). A
general methodology for developing accurate probabilistic
models of the dynamics of programmable self-assembling
systems is sought after to date.

In this work, our focus is on creating a general ap-
proach for developing a discrete-state hidden Markov process
model of programmable stochastic SA directly obtained
from (1) a description of the robotic modules’ embedded
ruleset controller, and (2) an estimation of the rate con-
stants defining the formation rates of different assemblies.
To demonstrate this approach, we consider the case of
our floating self-assembling robotic system, where the SA
process is controlled in a fully distributed fashion through the
programmable embedded ruleset controllers of the robotic
modules. We use a high-fidelity calibrated simulation of the
system as the ground truth and address different aspects of
developing probabilistic macrostate models for the system.
The contributions of this work are along three axes (1) a
new rate estimation method for computing Markov model
parameters is introduced and compared with two existing
ones [1], [5], (2) a new method for estimating diffusion
coefficient and evaluating the well-mixed condition is studied
and compared with an existing one [5], and (3) a systematic



method in the literature for refining Markov models using
Hidden Markov Model (HMM) formalism, presented in
[6l], is employed to develop an HMM through automatic
refinement of an initial Markov model of the system.

II. RELATED WORK

Formally defined as the reversible and spontaneous phe-
nomenon of an ordered spatial structure emerging from
aggregate behavior of simpler preexisting entities, SA has
been realized in engineered systems of both passive [6], [13]],
and active modules [14], [[15]. Stochastic SA, demonstrated
in [6], [7], [13]], [L4], is realized through taking advantage
of the stochastic ambient energy for module transportation.
This in turn allows for further simplification of the mod-
ules internal design. In [14]], [15], programmable SA has
been demonstrated where the shape of the forming target
assembly is determined by the controller programmed on
the robotic modules. Several applications are envisioned
for programmable SA, for instance, programmable matter
[L6], space-deployed self-assembling robots [17], and novel
manufacturing techniques at micro/nano-scales [18].

Diffusion derives the mixing in stochastically self-
assembling systems. Under the assumption that the system
is well-mixed, that is, the interacting modules are uniformly
distributed in the system and that they diffuse faster than
they react, the evolution of the system macrostate can be
described by a Markov process whose dynamics is described
by the Chemical Master Equation (CME). CME describes
a population model of the system, where the state of the
system is described by the copy number of each assembly
configuration, i.e. chemical compound type, rather than the
individual modules’ positions and velocities. A compact
description of the CME can be captured by the Chemical
Reaction Network (CRN) formalism, where the CME is
described from the modules perspective, i.e. by listing the
states they can be in [6]. The parameters of the CRN model,
i.e. the chemical reaction rate constants, can be computed
by initializing the system in specific states and observing the
time delay for specific reactions to occur [1], [LO]. Having
the Markov process model of the system, one can generate
sample trajectories of the macrostate evolution using efficient
exact and approximate algorithms [19]. However, the CME
formulation’s underlying assumption of well-mixed condi-
tions is not always valid in real-world systems. The Markov
model will thus fail to accurately predict the macrostates
evolution. In order to improve model accuracy, several meth-
ods based on HMMs have been proposed to augment the
system’s original Markov model and its corresponding CME
with hidden states [6], [10]. In [LO], the authors study a
system of programmable modules and propose to manually
augment the original CRN species with the types of previous
interaction partners, considering that two modules would be
more likely to interact next if they have interacted recently. A
systematic approach is studied in [6]] for modeling a system
of passive modules, where each species is augmented with
hidden species based on a maximum likelihood approach
regardless of the actual interpretation of the hidden species.

III. MARKOVIAN MODELS FOR PROGRAMMABLE
SELF-ASSEMBLY

We employ similar formulations as in [6]] and [10], and
provide formal definitions of several concepts in this section.

A. Markov Models

A discrete-time stochastic process can be defined as a col-
lection of random variables, { X, },,en. Similar to realization
of a single random variable, a realized trajectory w € N — X
generated by the stochastic process defines an assignment
of the random variables X, to particular values x in state
space X. A discrete-time discrete-state Markov process, i.e.
a Markov chain, has the following property, where z; € X:

Pr{XnJrl = xn+1|Xn = xnaanl = Tn-1, ~'~7X0 = xO}
= PT{Xn+1 = xn+1|Xn = xn} (1)

The transition dynamics of a Markov chain is specified
by the one-step transition probabilities, where matrix A is
independent of n for a stationary process:

Aij(n) = Pr{X,q1 = jlX, =i} forijeX (2

Consider a self-assembling robotic system consisting of
Ny individual robotic modules that may be in N, different
control states qi,...,qn, as specified in their embedded
ruleset controller. At the microscopic level, the state of the
system can be described by the vector:

X'micm(t) _ [Ql(t)’ Qa2(t), ..., QNo(t)]’ 3)

where Q;(t) = ¢1,...,qn, is the state of module ¢ at time t.
The embedded ruleset controller guides the modules to build
the target structure through building specific intermediate
assembly configurations. Assuming that the set of possible
assembly configurations as prescribed by the embedded
ruleset controller is cy,...,cn,. At the macroscopic level,
one is interested in the number of copies of the specific
assembly configurations. Therefore, the state of the system
can be described as:

)_(’macro(t) — [Nl (t)’ NQ(t)’ ey ]VNC (t)]a 4)

where N; € N is the number of copies of assembly
configuration c; at time t. We consider discrete-time, with
X}Tﬁcm indicating the system macrostate at the n*" timestep.
Assuming well-mixed conditions, the evolution of the system
state may be expressed as a discrete-time discrete-state
Markov process {ff macrol  en. Note that in order to fully
specify the model, one has to list all the feasible system
macrostates as well as the transition probabilities between
them.

B. Hidden Markov Models

An HMM can be defined as a stochastic process with state
space Y whose trajectories are described by a Markov chain
with state space X and an output function f : X — Y.
The function f can be many-to-one, therefore, the resulting
process Y can be non-Markov while the process X is. In
practice, HMMs correspond to the case where the system



state is not fully observable and as a result several underlying
Markov process states (hidden states) may correspond to the
same observable state of a non-Markov process.

C. Chemical Reaction Networks

A CRN N =(R,S) is a set of reactions R =
{R1,...,Rn,} acting on a set of species S =
{S1,...,5ns}. Each reaction R is then defined as two
vectors of nonnegative integers specifying the stoichiometry
of the reactants, 7r = [rg1,...,7RNg|, and the prod-
ucts species, pr = [Pr1,---,PR,Ns|, respectively. The
stoichiometry determines the number of copies of a given
reactant or product species that is required or produced
when a reaction occurs. The CRN provides a population
model, it thus keeps track of the number of copies of each
species present in the system at each given time. Consider
the case of the self-assembling robotic system. The CRN
species correspond to the assembly configurations induced
by the modules’ embedded ruleset controllers. The CRN
state is given by the vector X™*(t) ¢ NY: at each
point in time, where the vector elements specify the number
of individuals of each species. A reaction R may occur
provided that the number of reactants is sufficient, that is,
X macro > 7r element-wise. When reaction R occurs, the

new state XM is given by:

X;?é(vzﬁcro _ X’macro —Fp+ ﬁR (5)
A characterizing quantity for a reaction R is its propensity
function a, defined such that ap (7, .)dt is the probability
that one instance of reaction R will occur in the next time
interval [t,t + dt) as dt — 0, assuming the current state of
the system to be X (t) = 7. When the propensity function
ap is determined only by the current state of the system the
Markov property holds and the time ¢ until the next firing
of reaction R can be described by an exponential random
variable with mean 1/ag (), that is, its probability density
is given by:

£(t) = ag(@)eon(@r ©6)

where 7 is the state of the CRN (i.e., a population vector),
and ag(.) is the propensity function of the reaction R.
The specific form of ag(.), assuming that the system is
in dynamic equilibrium, is determined by the law of mass-
action [19], and can be thus expressed as below:

ar(T) = krag(7) (7)

where kg is the rate of reaction R and ag(7) has the
appropriate form according to the stoichiometry of R, and
does not depend on kr. As an example, for the reaction
R : 142 — 3 the propensity function is computed with
dR(ﬁ) = N;.Ny where N; and N5 denote the number of
reactants of type 1 and 2 in the system.

IV. SELF-ASSEMBLY IN OUR ROBOTIC SYSTEM

A. Procedure in the Real Setup

Our system consists of two main components: 1) the
floating Lily robotic modules [20], and 2) the experimental
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Fig. 1. An overview of the system: (left) The experimental setup: composed
of water-filled tank with peripheral pumps agitating the fluidic environment,
overhead camera and projector, wireless node for establishing radio link
between the workstation and the robots; (right) The Lily robotic module.

setup built around them [7]]. The Lilies are endowed with four
custom-designed Electro-Permanent Magnets (EPM) to latch
and also to communicate locally with their neighbors. Given
a target structure, an appropriate ruleset is derived as detailed
in Section [[V-B] and deployed on all robots through wireless
bootloading. The robots’ EPM latches are by default enabled,
resulting in a default latching upon meeting another robot.
Once latched, the EPM-to-EPM inductive communication
channel is physically established. The robots then exchange
their internal states and look for an applicable rule in their
ruleset. If no applicable rule is found, they unlatch by switch-
ing off their EPM latches; otherwise they remain latched
and update their internal states accordingly. The Lilies are
not self-locomoted, they are instead stirred by the flow field
produced within a tank by several peripheral pumps. The
evolution of the system is monitored through visual tracking
of passive markers on top of the modules.

B. Dynamics of Programmable Self-assembly

Here we describe a general mathematical model of pro-
grammable self-assembly of robotic modules based on the
extended graph grammars formalism [21]. The state of our
programmable self-assembling robotic system is described
by an extended labeled graph over a fixed set of extended
vertices representing the modules, and a dynamic set of edges
representing the forming bonds.

Definition: An extended vertex has ordered link slots
which correspond to the latching connectors of a robotic
module, indexed following a counter-clockwise (CCW) rota-
tion convention. We assume rotationally symmetric modules;
for an isolated module the connectors are thus anonymous.

Definition: An extended label is a pair | = (lo,1,)
encoding the internal state of a module. [, represents the
control state of the robotic module and [,, represents the
index of the most recently engaged connector.

Definition: An extended labeled graph is a quadruple G =
(V,E,S,£) where V = {1,...,M} is the set of extended
vertices, E C V' x V is the set of edges, K = {1,...,N}
is the set of link slots available on each of the extended
vertices, S : I — K x K defines which slots are involved
in a link between two vertices, and £ : V' — ¥ is a labeling
function, with X being a set of extended labels.

We employ a dedicated software framework which al-
lows for automatically synthesizing rulesets directly pro-
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Fig. 2. Formation of a chain structure employing ¢.pqin on six Lily robotic modules. The most recently engaged connectors are marked in blue.

grammable on robotic modules [21]. The synthesized rules
describe interacting modules’ states using a combination of
a control state variable and a relative hop number. The idea
is that the robotic modules can only take part in a reaction
defined by a certain rule if they have the right control state
and are participating in the reaction with the appropriate
orientation. Once a latching connector is engaged, the robot
communicates its internal state in the form of a relative
extended label of I = (I,,l;) with [, being the robot’s
control state and [; being a relative hop number which
represents the relative orientation of the currently engaged
connector with respect to its predecessor, assuming a CCW
hop convention. For a module with an internal state of (I, l,,)
and N connectors, [, = [(I, — l.) mod N| + 1, where
l, and [, are the indexes of the most recently and the
currently engaged connectors, respectively. For an isolated
module the connectors are anonymous in terms of interaction
possibilities, thus [, = 0. In this work, we consider a
case study on a chain shape target structure. Assuming that
robotic modules are all initialized with a state of (0,0),
the ruleset below allows for formation of a chain shape as
depicted in Fig. |Zl The forward rules, r; to rs, advance
structure formation, while the reverse rules, 71 to 75, allow
for avoiding deadlocks [14] when executed probabilistically.

(0,0) (0,0) = (L,1)—(2,1)  (r,71)
0,00 (2,3) = “H-GB1) (r,m)
Gehain = { (0.0) (4,3) = (6,1)=(5,1)  (r,m)
(01 0) (67 3) = (87 1) - (71 1) (T1> fl)
(0,0) (8,3) = (10,1)—(9,1) (r1,71)

For further simplification, we represent the simplified ruleset
using the type of the configuration the robotic modules form
(i.e. the structure size), as below:

1+1 = 2 (r,71)
142 = 3 (r2,72)
¢chain =41+3 = 4 (r3,73)
144 = 5 (ra,Ta)
145 = 6 (rs5,75)

V. SIMULATION METHODOLOGY

Figure [3] depicts the submicroscopic simulation of the
system. In this context, submicroscopic reflects the fact that
the model provides a higher level of detail than a canonical
microscopic model, faithfully reproducing intra-robot fea-
tures (e.g., body shape, individual sensors and actuators).
With this level of details, a submicroscopic simulator can
keep track of a number of state variables such as the exact

Fig. 3.

The submicroscopic simulation of Lily robots in Webots [22].

pose of the robotic node, the specific forces exerted by
one of its actuators, or the signal perceived by one of its
sensors. In order to faithfully recreate our self-assembling
system in simulation, we use Webots [22], a physics-based
robotics simulator. Webots uses the Open Dynamics Engine
(ODE) for simulating rigid body dynamics. Additionally, in
order to simulate specific non-natively supported physics, it
is possible to employ custom-designed physics plugins. The
Lily robotic modules’ CAD design as well as the robots’
controller software are imported into the Webots simulated
world. The rulesets programmed on the simulated robots are
also identical to the case of the microscopic simulation in
the previous section. The latest version of Webots supports
a basic fluid node which allows for a simple uniform stream
velocity, but is not capable of simulating a complex fluidic
field. We used a similar approach as [23] to reproduce the
complex flow field and the corresponding hydrodynamic
forces. In particular, we developed a dedicated physics plugin
for the simulated world in Webots that applies the drag force
to the simulated Lily robotic module based on the velocity
of the module and the flow velocity at its location at each
time instant. The details of this development can be found
in [24].

VI. DEVELOPING MARKOV MODELS

We use the CRN formalism as detailed in Section [T
[C] to express a Markov model of our system and estimate
the reaction rate constants of the network. The structure of
the CRN model is fixed, with the species determined by
the assembly configurations built by ¢cpqin, the parameters
are estimated through different methods. It can be shown
that for a given set of observations of the system, i.e. a
sequence of events (eq, ..., e,), with e; = (Ri,ti,7i), the
Maximum Likelihood (ML) estimator of the rate vector
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Given the high-fidelity simulation framework described
in Section [V] one can evolve the system dynamics from
any desired initial condition and for any desired duration
of time. The essential idea for estimating the rate constants
is to observe and record the different reaction events and the
corresponding waiting times in between.

Different methods have been proposed for gathering the
statistics necessary for the rate estimation. We exploit the
high-fidelity submicroscopic simulation framework described
in Section [V] and study two existing methods and pro-
pose a third new method for gathering statistics. The main
difference between these methods is the conditions under
which they sample an event occurence and also the statistical
composition of the dataset they gather. Methods 1 and 2
initialize and reinitialize the system to various macrostates
upon occurrence of different events. Method 3, on the other
hand, gathers observations from a full-length simulation
of the system, initializing the simulation to fully isolated
modules for each set of observations.

Method 1: This method has been originally proposed in
[L]. The authors propose to run simulations for a wide variety
of initial macrostates, covering all the states traversed by the
system during the SA process. Formally, the initial conditions
are defined as follows:

sm(t=0)=(S51,52,...,5,)

for all feasible macrostates in the system. The simulation
is initialized and run for each initial macrostate distribution,
as soon as a reaction R occurs, the time of that reaction is
noted and the simulation is reset.

Method 2: This method has been originally proposed in
[5] and is similar to the Method 1 in that it also considers

only a simulation period until a reaction occurs in the
system. However, the number of different initial conditions
is reduced. For computing the reaction rate for a specific
reaction R, the initial macrostates used in the simulations
are only the ones containing the reactants of reaction R.
For instance, given the stochastic reaction equation 1+ 3 —
4, which describes the formation of substructure 4 from
substructures 1 and 3. This would consequently require the
following corresponding initial conditions:
SM(t:O):(Sl,O,Sg,O) y 51:0 VZ#{].,S}

The values of the number of copies of substructures
S; are randomly varied within the feasible macrostates.
The simulation is thus initialized and run for each initial
macrostate distribution, as soon as reaction R occurs, the
time of that particular reaction is noted and the simulation
is reset but the time is not reset.

Method 3: This is our proposed method. The idea is sim-
ply that observing entire simulations starting from different
initial conditions (all the agents separated at start) until the
target structures are ultimately built. This should provide a
wide variety of interactions between the agents distributed
according to the natural tendency of the system, allowing
therefore to collect enough relevant statistical information to
determine rate constants. All initial conditions are defined as
follows:

SM(t = 0) = (N()70,...70)
where the first element in the macrostate vector indicates the
species corresponding to an isolated module, thus, S7 = Nj.

For gathering the statistics, our simulation setup consists
of 12 robotic modules that are stirred in the fluidic arena
of 1.2 m diameter. The evaluation was performed for the
Dchain Tuleset that builds the target structure of a chain using
six robotic modules as described in Section [V-Bl All the
forward rules are set to be executed with probability 1, for
the reverse rules the probabilities were set to the following
values 0.05, 0.01, 0.002, 0.0004, O for {7y,7a, 73, 74,75}
respectively. Figure [] shows the statistics of the number of
sample points gathered while the estimated values of the
rates are shown in Figure [] It can be seen that the statistical
composition of the datasets gathered by the three methods
are very different. In addition to the different number of
samples per reaction rule, the system state at which the
reaction time has been sampled is also different for the
three methods, resulting in different rate estimates. While the
differences between the estimated rates as depicted in Figure
[3] seem minor, they describe substantially different system
evolution courses as depicted in Figure [f] We generate 1000
sample trajectories using the Gillespie method [19] with the
Stochkit software for each CRN model. It is also noteworthy
that Method 1 provides the most varied system state at the
sampling time, while Method 3 samples the reaction events
at system states through which the system has a natural
tendency to traverse.



Species 1

9
o

—&— Method 1

—+—Method 2

——&—Method 3
Ground truth

o

o

&

Number of copies of species [#]
o >

Number of copies of species [#]

Species 2 Species 3

—&— Method 1
—+—Method 2
——&—Method 3
Ground truth

—&— Method 1
—+—Method 2
——&—Method 3
Ground truth

Number of copies of species [#]

1000 1500 2000 2500 3000 3500 0 500
Time [s]

0 500

Species 4

o
o
=)
o

—&— Method 1
—+—Method 2
—&— Method 3
Ground truth

o
o

Number of copies of species [#]
o ° < <
N &~
Number of copies of species [#]
=
»

o

1000 1500 2000 2500 3000 3500 0

1000 1500 2000 2500 3000 3500
Time [s]

500
Time [s]

Species 5 Species 6

—&— Method 1
—+—Method 2
—&— Method 3
Ground truth

—&—Method 1
—+—Method 2
151 | —8—Method 3
Ground truth

05

Number of copies of species [#]

1000 1500 2000 2500 3000 3500 0 500
Time [s]

500

o

1000 1500 2000 2500 3000 3500 0

o L L L L L L
1000 1500 2000 2500 3000 3500

Time [s]

500
Time [s]

Fig. 6. Comparison of model prediction regarding the trajectory of each of the six species, averaged 1000 runs in Stochkit, formed by the ¢¢pqin using
the rates estimated by the three methods in Section The ground truth is obtained by averaging 90 runs of the simulated world in Webots (see Section

VII. EVALUATING WELL-MIXED CONDITION

The mismatch between the Markov model predictions and
the ground truth as depicted in Figure [6] can be ascribed
to two factors. First, the underlying CRN describing the
states of the Markov model has its species determined by the
ruleset. However, as a result of random interactions between
the robotic modules, temporary bindings can also form,
which are later severed as the modules switch their EPMs off
and drift apart. These temporary bindings/structures are not
explicitly modeled as the CRN species. Second, the phys-
ical dynamics of the system might be practically far from
the ideal well-mixed conditions, thus voiding the Markov
property assumption. In this section, we specifically look
into validation of the well-mixed condition. The well-mixed
condition is sufficient for guaranteeing that the underlying
process is Markovian and that each possible combination
of reactants for a particular reaction will be equi-probably
involved in the next instance of the reaction [J5]].

We use the definition of well-mixedness from [19]: The
rate at which new collisions occur should be greater than
the rate at which reactions occur [19]], in other words the
modules should diffuse faster than they react. Similar to the
work in [5]], we rely on diffusion for module transportation.
A measure of “well-mixed” as proposed in [5] is to require
that D /k,,, > A where D is the diffusion coefficient, k,, is a
nominal reaction rate in the system and A is the effective area
of the fluidic arena occupied by the interacting modules. We
study two methods for estimating the diffusion coefficient,
one proposed in the previous literature S]] and a new method.
In order to gather statistics, we exploit again our high-fidelity
simulation framework described in Section [V] and conduct
two simulated experiments with 12 robotic modules each for
a duration of 10 min. The robotic modules are programmed

with an empty ruleset controller and as a result unlatch right
after they latch.

A. Method 1

This method has been originally proposed in [5]. The
authors propose to estimate the diffusion coefficient for a
robotic module as below:

E(r*(t)
— ©)

where r(t) denotes the random displacement of the robot as a
function of time. We compute the expected value considering
all the robotic modules and all the time steps. The final
obtained estimated diffusion coefficient using this method
is 0.0016 m?/s. For the nominal reaction rate we consider
the order of magnitude of the rate of the rule r; in the ruleset
Ochain as computed by Method 3, 0.001. The condition of
D/kq, > A implies that the arena size should be smaller
than A,,,.. = 1.6m? while the area of our arena is 1.13m?.
We thus conclude that the system is well-mixed.

B. Method 2

Fick’s law of diffusion gives a relation between the dif-
fusion flux, the gradient in concentration and a diffusion
coefficient under the assumption of the system being in
steady state. It can be expressed as:

J=-DV,

D =

(10)

Where in the case of a 2D diffusion, J is the rate of
robot transfer per boundary length normal to the direction
of transfer, expressed in [robots/m.s], D is the diffusion
coefficient, expressed in m?/s, and V. is the gradient in
concentration, expressed in [robots/m?]. In order to estimate
the diffusion coefficient in the case of our 2D system, the
arena is partitioned by a square grid of 16x16 with each cell ¢



containing a concentration of robots ¢; (where ¢; € N*0). For
each simulation time step At, the modules’ flow is computed
across each cell boundary (e.g. from cell ¢ to cell j) of a 4-
connected neighborhood, using a discrete expression of the
Fick’s law:

Fi—>j = 7D(Cj - CZ)At (11)
To estimate the diffusion coefficient, we write:
F. ...
Dy = =i (12)

(Cj — Ci)Atc,—mj

The diffusion coefficient is thus computed for every pair of
observed concentrations (c;, ¢;). The result of this diffusion
coefficient estimation is a 2D matrix. To investigate the well-
mixed condition, individual values are then averaged to have
a single value for the estimated D. The final estimation for
the diffusion coefficient using this method is 0.00065 m?2/s.
Referring to the well-mixed condition described as D/kq, >
A, we should have an A, = 0.65m?. While the total area
of the arena is 1.13m?2, the effective area to which the motion
of the modules is limited is smaller, about half of the total
available arena size. We thus conclude that the system is
border-line well-mixed.

VIII. DEVELOPING HIDDEN MARKOV MODELS

The goal here is to construct a CRN corresponding to
an HMM. Based on an existing CRN A model of the
system, we provide a method to automatically obtain a
refined CRN N model, where the original species are
augmented with proper hidden species. We take the sys-
tematic approach in [6] and employ a metric in order
to provide for a fully automatic refinement method. The
original approach starts from a given CRN A = (R,S)
and an associated set of events (ey,...,e,), and attempts
to construct a refinement N' = (R,S) of N such that

the likelihood L(Kley, ..., en) > L(kle,. .. e,), ie., the
sequence of events is better explained by the refined model
than the original one. In order to refine a CRN, a species Sy
is selected. It is then split into two subspecies S¢ and S§.
All reactions involving Sy are then duplicated, with their
corresponding reactants and products updated accordingly.
Consider R;:

Rj: So+2A4, —34, (13)
it will be duplicated as below:

R} : Spa+2A1 =34 (14)

Rb: Sop+2A1 — 3 A, (15)

In contrast to the approach proposed in [10], the resulting
subspecies Sy, and Sy are not specifically associated to
the type of a previous interaction partner. More specifically,
if an event e; = (R;,t;, ;) is such that R; is duplicated,
one needs to re-assign this event to either R; = R} or R; =
R?, and update accordingly the population vectors Zj>; of
the upcoming events. To solve this problem, an expectation-
maximization (EM) algorithm is used, an iterative method
for finding maximum likelihood estimates of parameters in

statistical models that depend on unobserved latent variables
[6. We introduce modifications in the original method in
two ways: first, in order to automatically choose the species
to be refined we propose a metric based on evidence from
the observed set of events as below:

_ o(At)

(16)

Where for a reaction of interest, o(At;) is the standard
deviation of all the observed waiting times and m(At;) is
the median of the observed waiting times. h is computed for
all species in the CRN and the species with the maximum
value of h will be refined next. Additionally, we introduce
a stopping condition for the refinement procedure based
on the same metric: the refinement process would thus be
halted when the maximum A in the CRN is less than a
predefined threshold ¢, set to 0.3. In order to keep the
size of the CRN model tractable, here we perform one
round of refinements starting from the CRN corresponding
to the best model in Section [VI] i.e. Method 3. In order
to generate trajectories for the refined CRN, the original
initial condition of fully isolated modules should be also
refined to consider the initialization of the hidden species
as well. Using the Stochkit software, we generate 1000
sample trajectories for each initial condition of the refined
CRN corresponding to the HMM. This is a crucial part in
evaluating the HMM accuracy which has not been addressed
in previous works. The average trajectory of the HMM is
then compared with the ground truth provided by high-
fidelity simulations of the system as detailed in Section
The results are depicted in Figure It can be seen
that the model accuracy is significantly improved and the
average trajectories match the ones of ground truth very
well. Species 5 exhibits an interesting characteristics, the
sample trajectories corresponding to different initial states
differ largely compared to those of the other species, and the
HMM does not manage to capture the ground truth trajectory
peak. We speculate that a deeper refinement corresponding
to an HMM with more hidden species in combination with
a larger dataset should achieve better accuracy.

IX. CONCLUSION AND FUTURE WORK

In this work, we considered the case of our floating
self-assembling robotic system and investigated developing
macroscopic probabilistic models of programmable stochas-
tic self-assembly of our system through multiple methods.
A high-fidelity simulation of the system was used as the
ground truth. We utilized the CRN formalism to express the
SA mechanism in the system. The contributions of this work
are along three axes (1) a new rate estimation method is
introduced and compared with two existing ones, (2) a new
method for estimating diffusion coefficient is studied, and (3)
an automatic method for creating an HMM starting from a
Markov model is formulated based on a previously existing
systematic method. We show that assuming the well-mixed
assumption and starting from different Markov models of the
system, the hidden states augmented through our automatic
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Fig. 7. Comparison of model prediction regarding the trajectory of each of the six original species formed by the ¢4 Using the rates estimated by the
Method 3 in Section after the CRNs have been refined. The gray dashed curves are sample trajectories corresponding to different initial HMM states.

HMM refinement method improve the model prediction
accuracy, compensating the imprecise model assumptions. In
the future, we plan to formalize and consolidate the approach
investigated in this work and propose a methodology for
developing Markovian models for general programmable
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