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Abstract— Modern robotics is gravitating toward increas-
ingly collaborative human robot interaction. Tools such as
acceleration policies can naturally support the realization of
reactive, adaptive, and compliant robots. These tools require
us to model the system dynamics accurately – a difficult
task. The fundamental problem remains that simulation and
reality diverge–we do not know how to accurately change
a robot’s state. Thus, recent research on improving inverse
dynamics models has been focused on making use of machine
learning techniques. Traditional learning techniques train on
the actual realized accelerations, instead of the policy’s de-
sired accelerations, which is an indirect data source. Here
we show how an additional training signal – measured at
the desired accelerations – can be derived from a feedback
control signal. This effectively creates a second data source for
learning inverse dynamics models. Furthermore, we show how
both the traditional and this new data source, can be used
to train task-specific models of the inverse dynamics, when
used independently or combined. We analyze the use of both
data sources in simulation and demonstrate its effectiveness
on a real-world robotic platform. We show that our system
incrementally improves the learned inverse dynamics model,
and when using both data sources combined converges more
consistently and faster.

I. INTRODUCTION

Achieving reactive and compliant behavior is a corner-
stone of robotic applications involving safe interaction with
humans. A promising avenue for realizing reactive behaviors
is the representation of motions through acceleration policies.
Unfortunately, tracking accelerations is hard when we do
not have an accurate model of the inverse dynamics of the
system. Without a precise model of the systems dynamics,
we typically resort to tracking desired trajectories–potentially
generated by integrating the acceleration policy–employing
feedback control to reject modeling errors of the dynamics.
After careful tuning of the controller gains, this usually
results in good tracking performance. However, we have
to trade off compliancy and reactiveness of our controller
against accuracy.

Thus, considerable effort has been put into developing
machine learning methods that can learn or improve inverse
dynamics models [1], [2], [3], [4]. These approaches attempt
to identify a global inverse dynamics model, but collecting
data that covers the full state-space is typically not consid-
ered a viable approach for high-dimensional systems. Fur-
thermore, when considering motions with object interaction,
such as pick and place tasks, learning one global model
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becomes even more involved, if not impossible, since the
model has to be a function of contact and payload signals.
Thus online learning has been a focus in these settings.
However, online learning in this setting remains a challenge.
The key difficulties are computationally efficient learning of
models that are flexible enough to capture the non-stationary
data of inverse dynamics mapping, and doing so on streaming
data that is highly correlated.

To circumvent the issues of the aforementioned methods
we follow the path of learning task-specific (error) models
[5], [6], [7], [8]. This allows us to iterate collecting data
specific to a task, learn an error model in offline fashion and
then apply the learned model during the next task execution.
While this approach is iterative by nature, we aim at making
it as data-efficient as possible, such that only few iterations
are required, while achieving consistent convergence in the
error model learning process. Task specific models do not
mitigate the problem of using payload signals or contextual
information when trying to build a global model. However, it
simplifies the overall global problem into two subproblems,
finding a task specific inverse dynamics model and detecting
which task model to use.

In this context a typical issue of traditional inverse dy-
namics learning approaches is that they actually learn the
(error) model slightly off the desired trajectory. This comes
from the fact that the data points used to learn the model
are based on the actual achieved accelerations instead of the
desired commanded accelerations. Thus if tracking is bad
the collected data points are slightly off the desired trajectory
for which we wanted to identify the inverse dynamics model.
For instance, one extreme case of bad tracking is encountered
when the system cannot overcome static friction. In that case,
no useful data for inverse dynamics model learning is gen-
erated. Traditionally, this is circumvented by increasing the
gains of the feedback control term, at the cost of compliancy.
Alternatively, this issue is addressed by our recent work [9],
which employs a direct loss function, minimizing the error
between desired and actual accelerations, to learn feedback
terms online.

In this work, we explore the intuition that feedback
control can be viewed as an online technique to compensate
for errors in a given a priori inverse dynamics model, as
discussed in [9]. The feedback terms, compensate for errors
between what a given model predicts and what we actually
need. Therefore they naturally act as a convenient source of
training data. We show how the direct loss on accelerations,
as presented in [9], can be transformed into a loss on
inverse dynamics torques, measured at desired accelerations.
As a result, we now have two training data sources: the
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traditional inverse dynamics training data points measured at
actual accelerations, and this new training signal measured
at commanded accelerations. We show how this additional
data source leads to more consistent convergence of the task-
specific inverse dynamics learning process.

In the following, we first review the inverse dynamics
learning problem in Section II and discuss the differences
between indirect and direct learning in this setting. In Sec-
tion III we show how to combine the direct loss with the
traditional indirect loss for inverse dynamics learning, fol-
lowed by an overview of our complete task-specific learning
approach in Section IV. Finally, we evaluate our proposed
system in Section V.

II. BACKGROUND

Tracking desired accelerations with low feedback con-
troller gains requires an accurate inverse dynamics model.
The dynamics of a classical dynamical system can be ex-
pressed as

τ =M(q)q̈ + h(q, q̇) (1)

where q, q̇, q̈ denote the joint positions, velocities and ac-
celerations, M is the inertia matrix and h collects all the
modeled forces such as gravitational, Coriolis, centrifugal
forces, viscous and Coulomb friction. When possible, inverse
dynamics approaches [10] model the system dynamics via
the rigid body dynamics (RBD) equation of motions. Then,
given sufficiently rich data, the RBD parameters can be
identified using linear regression techniques [11], resulting
in the approximate RBD dynamics model

τ̂rbd = M̂(q)q̈d + ĥ(q, q̇). (2)

with approximate M̂ and ĥ. This has been extended in [12],
to additionally estimate payloads.

Unfortunately, the RBD model typically is not flexible
enough to capture all non-linearities of the actual systems
dynamics. As a result, the estimated RBD model is generally
only a rough approximation. Thus, when attempting to
track desired accelerations q̈d with τ̂rbd we achieve actual
accelerations q̈a differing from q̈d. Specifically when τ̂rbd is
applied on the real system, with the true unknown dynamics
model M,h, we can express the actual accelerations q̈a as

q̈a =M(q)−1[τ̂rbd − h(q, q̇)] (3)

=M(q)−1[(M̂(q)q̈d + ĥ(q, q̇)) − h(q, q̇)]. (4)

Note, if our estimated model M̂, ĥ were accurate, this
expression would evaluate to q̈a = q̈d. However, this is
typically not the case on real systems and because of this a
feedback term τfb is required. This feedback term measures
the error made and adds a corrective term to ensure accurate
tracking. Traditionally, this feedback term is realized through
PID control. The higher the gains, the better the tacking, at
the cost of compliancy.

A. Learning Inverse Dynamics Models

To this end, various approaches to learning either the full
inverse dynamics or an error model have been proposed.
When learning an error model the total torque command is
then a combination of any existing approximate model (τ̂rbd),
an error (torque) model (fiderr) and a feedback term (τfb),

τtotal = τ̂rbd + fiderr + τfb. (5)

One of the key challenges of inverse dynamics learning
is computational efficiency. Predicting with learned models
needs to be feasible within the real-time constraints of the
systems consuming torque commands. Furthermore, it is
typically assumed that the inverse dynamics mapping is non-
stationary and can change over time. Thus, approaches that
can incrementally learn and are computationally efficient
enough for real-time deployment [1], [2], [3], [4], [5], [13]
form one of the main research directions within the topic of
inverse dynamics learning. However, learning globally valid
models robustly on highly correlated data streams remains
a challenge. More in depth discussion about the challenges
and existing approaches can be found in [14], [15].

Some robustness can be achieved by using analytical
(parametric) models such as RBD models as priors, and
learning an error model on top of that [16], [17], [18]. Such
approaches can revert to this prior knowledge, when the
algorithm determines that the error model fit is uncertain.

Because of the difficulties of learning a globally
valid model, some research has moved towards learning
task/context specific inverse dynamics models [8], [6], [7],
[19], [5], [20], [21]. In this setting it is feasible to collect task
relevant data for offline learning, therefore simplifying the
learning process. However, this comes at the cost of having
to detect the correct context at run time such that the correct
task model can be chosen. Our work, fits into this category,
with the focus on effectively learning one task model.

Finally, learning inverse dynamics models is typically
motivated by being able to use low-gain feedback control.
However, traditional inverse dynamics learning approaches
initially need high enough gains to achieve good tracking,
such that relevant data is being generated. Little work has
been done towards automatically lowering the feedback gains
once a good model has been learned. An exception is work
presented in [22] which allows for variable gains, using high
gains, when the model is uncertain about its predictions and
low gains when it is certain.

All of these methods learn inverse dynamics models on
only the indirect data source measured at actual accelera-
tions. In this work, we make use of two different data sources
stemming from indirect and direct learning approaches to
train inverse dynamics models.

Thus, before going into the details of our proposed ap-
proach, we discuss the notion of indirect and direct learning
and present related work within that context.

B. Indirect vs Direct Learning of Inverse Dynamics

As mentioned above, most of the recent work on inverse
dynamics learning can be classified as indirect learning



methods. The objective function that these methods optimize
is given as

Lindirect(w⃗) = ∑
(xa,τtotal)∈D

∣∣τtotal − f(xa; w⃗)∣∣ (6)

where the input data point xa = (q, q̇, q̈a) is a combination
of the state (q, q̇) and the actual accelerations q̈a. The output
value τtotal is the corresponding applied torque that achieved
the accelerations q̈a. Here, the function that encodes the
mapping from x to torques is defined as f(x; w⃗), where w⃗
are the open parameters of the chosen model.

Online, the robot attempts q̈d from state (q, q̇). It calculates
torque τtotal and observes true accelerations q̈a. Rather than
training at input point xd = (q, q̇, q̈d), the data point xa =
(q, q, q̈a) is used with target τtotal. The drawback to indirect
learning is that convergence might be slow since the data is
off the trajectory/distribution we want to optimize for. This
is especially difficult when q̈a = 0 due to static friction since
many torques map to this value (i.e. the inverse function is
not one-to-one at this point).

Alternatively, it was shown in [9] that it is possible to
directly measure the gradient of the acceleration error of a
system, which enables a new class of direct online learning
algorithms. This approach aims to directly minimize the error
between desired and actual accelerations, by optimizing the
following direct loss function, for every pair of desired and
actual accelerations,

Ldirect(w⃗) = ∣∣q̈d − q̈a(w⃗)∣∣
2
M (7)

= ∣∣q̈d −M
−1

[τ̂rbd + fiderr − h]∣∣
2
M

where the actual accelerations q̈a are a function of the error
model fiderr. Note, traditional direct adaptive control methods
[23], [24] have similar motivations – they use Lyapunov
techniques to derive controllers that adjust the dynamics
offset model with respect to some reference signal. In [9]
we show how to effectively perform online learning on this
objective leveraging well established online gradient descent
techniques. However, this simple feedback term does not
capture any structure of the error model and requires a
relatively high learning rate to account for payload changes.
In [13] we thus use [9] as a feedback term on acceleration
errors and use the indirect loss function to learn a drifting
Gaussian process to model larger structured inverse dynamics
modeling errors. Note, [13] combines the direct and indirect
learning as two separate learning processes with two different
purposes: direct learning of an online adaptive feedback term
and indirect learning of a locally valid inverse dynamics error
model to capture larger errors. Also, [13] is a task indepen-
dent online learning approach and theoretically applicable
anywhere throughout the state space. However, on the flip
side it retains no memory of previously learned error models,
and thus is not able to improve over time.

Our work presented here is orthogonal to our previous
work: We show that we can use direct and indirect learning
within the same learning process of task-specific (feedfor-
ward) inverse dynamics (error) models, which can improve
over time.

III. COMBINING INDIRECT AND DIRECT LEARNING

To be able to learn the state-space dependent structure
of the inverse dynamics modeling errors, we assume that
the error model is identifiable in the space of x = (q, q̇, q̈).
Furthermore, since every task execution may slightly vary,
we also follow an incremental learning process, meaning that
each task execution generates a new training data set that can
be used to update and improve our error model. Thus, our
error models are indexed by k, indicating the kth learning
iteration. For k = 0, meaning that no error model exists for
the task at hand, we simply assume f0iderr(x; w⃗

0) = 0. Given
this, the total torque applied to the system is the approximate
rigid body dynamics model τ̂rbd(xd) (if available) plus an
offline learned error model fkiderr and a feedback term τfb:

τtotal = τ̂rbd(xd) + f
k
iderr(xd; w⃗

k
) + τfb. (8)

Here we show how the direct and indirect loss functions can
be combined into one loss function that uses two different
data sources. In order to do so we 1) discuss the loss
functions in the context of offline error model learning, 2)
show that the two loss functions create two different training
signals for the error model, and 3) use this result to combine
direct and indirect learning.

A. Indirect Loss Function

We start out with discussing the details of learning an
error model with an indirect loss. We compute the torque
command based on the current state (q, q̇) and desired
accelerations q̈d, apply this torque, and then measure actual
accelerations q̈a. Now we know what torque command
achieves these measured accelerations and can use this data
point to learn an inverse dynamics model. We collect all
of these data points over the course of one task execution,
for t = 1 . . . T , such that we have T data points to learn
parameters w⃗k, initialized with the parameters w⃗k−1.

In the indirect formulation, we try to optimize the param-
eters w⃗k such that the difference between the applied torque
τtotal and the inverse dynamics model fid at xa is minimized:

Lindirect(w⃗
k
) =∑

T

t=1 ∥τ
t
total − fid(x

t
a; w⃗)∥

2 (9)

Here we would like to utilize an approximate rigid body
dynamics model (if available) and learn an error model fiderr
in order to optimize the fid model. Notice, our approach does
not require a rigid body dynamics model, all derivations hold
when assuming a constant model τ̂rbd ∶= 0 as well. In this
case we would learn the full inverse dynamics model, not
using any domain specific knowledge. To compute what the
RBD error is at input xta, we have to evaluate τ̂rbd at xta and
subtract it from the total torque applied τtotal, such that, in
the kth learning iteration, we optimize

Lindirect(w⃗
k
) =∑

T

t=1 ∥τ
t
total − τ̂rbd(x

t
a) − f

k
iderr(x

t
a; w⃗

k
)∥

2

Thus, using the indirect learning approach we optimize
fkiderr(x; w⃗

k) on the following data set

D
k
indirect = {xt ← xta, y

t
← τ ttotal − τ̂rbd(x

t
a)}

T
t=1. (10)



The quality of this training data set depends on how well
we have tracked the task policy or trajectory. With accurate
tracking behavior, one learning run should already give us
a good approximation of the modeling errors. However, if
tracking is bad, it very well may be that we require several
learning iterations to estimate a good error model.

B. Direct Loss Function

To overcome the limitations of the indirect learning pro-
cess, [9] proposes to use a direct loss (Eq. 7) to learn
modeling errors. Here we use this loss in acceleration space
[9], to derive an additional data source for inverse dynamics
learning.

We start out with Eq. 7, drop the weighting of the accel-
eration error by the inertia matrix M , and instead multiply
the accelerations with M

Ldirect(w⃗) =∑
T

t=1 ∥Mq̈td −Mq̈ta(w⃗
k
)∥

2 (11)

=∑
T

t=1 ∥(Mq̈td + h) −Mq̈ta(w⃗
k
) − h∥2

where we have also added and subtracted h. The true dynam-
ics model M,h is never evaluated in our loss formulation, it
is merely used to derive the direct loss formulation as shown
in the following. We can now summarize the first term as
the true rigid body dynamics model τrbd(q̈

t
d), evaluated at

the desired accelerations, and we expand q̈ta(w⃗
k) as follows

Ldirect(w⃗) =∑
T

t=1 ∥τrbd(q̈
t
d) −Mq̈ta(w⃗

k
) − h∥2 (12)

=∑
T

t=1 ∥τrbd(q̈
t
d) −MM−1

[fid(q̈
t
d; w⃗

k
) − h] − h∥2

=∑
T

t=1 ∥τrbd(q̈
t
d) − (τ̂rbd(q̈

t
d) + f

k
iderr(x

t
d; w⃗

k
))∥

2

=∑
T

t=1 ∥(τrbd(q̈
t
d) − τ̂rbd(q̈

t
d)) − f

k
iderr(x

t
d; w⃗

k
)∥

2

where fid(q̈td) represents the state based rigid body dynamics
and error model without a feedback term which should
ideally be zero. We now have transformed the loss on
accelerations to a loss on torque commands at the input point
xtd. Note that this transformed loss intuitively means that we
want to minimize the difference between our error model
fkiderr(x

t
d; w⃗

k) and the true modeling error τ terror = (τrbd(q̈
t
d)−

τ̂rbd(q̈
t
d)) at input xtd = (qt, q̇t, q̈td). While intuitively pleasing,

we unfortunately do not have access to the true modeling
error τ terror. However, we can get an estimate of the modeling
error τ̂ terror = τ

t
fb+f

k−1
iderr (x

t
d; w⃗

k−1) by combining the feedback
term τ tfb and the error model fk−1iderr from the previous task
execution ( similar to feedback error learning [24]), which
results in the following loss

Ldirect(w⃗) =∑
T

t=1 ∥τ̂
t
error − f

k
iderr(x

t
d; w⃗

k
)∥

2 (13)

Similar to the indirect learning we can now construct a
data set

D
k
direct = {xt ← xtd, y

t
← τ tfb + f

k−1
iderr (x

t
d; w⃗

k−1
)}
T
t=1 (14)

which can be used to learn or update the new error model
fkiderr. We now receive data points directly on the desired
accelerations. However, also this data set’s quality depends
on tracking accuracy. With low feedback gains, the initial

τfb may not really capture the errors very well, such that the
first learning iteration may only capture part of the modeling
errors.

Thus, with low feedback gains, we may require multiple
learning iterations to learn an accurate error model. Whereas
increasing the feedback gains g would lead to improved
tracking, increasing the fidelity of the data, at the cost of
compliancy. Here we simply propose to do both: use glow to
compute the feedback terms τfb(glow) which are sent to the
system, and use ghigh to compute feedback terms τfb(ghigh)

which are sent to the learner. Notice, the feedback term
using τfb(ghigh) is never applied on the system, thus, we
maintain a very compliant system while obtaining better
error data for the portion of the state space reached with
the glow. This can be helpful to break stiction or counteract
high friction with fiderr after fewer iterations which otherwise
would not be possible with traditional inverse dynamics
learning approaches and low gains.

C. Joint Inverse Dynamics Learning

The key insight of this paper is that we can use the
feedback term as an error estimate for the desired accelera-
tions. Thereby the error model learning problem has two data
sources indirect and direct. Both exhibit the same structure
to optimize the error model. Hence, we can formulate a joint
function approximation problem of the form:

Ljoint(w⃗
k
) = ∑

(x,y)∈Dk
joint

∥y − fkiderr(x; w⃗
k
)∥ (15)

where data points for the actual accelerations q̈ta for every
timestep t can be used as well as data points for the desired
accelerations q̈td as described by

D
k
joint = D

k
direct ∪D

k
indirect. (16)

IV. TASK SPECIFIC INVERSE DYNAMICS LEARNING

Implementing our approach required several design de-
cisions on the levels of motion generation, control and
learning. Here we will give a short overview of our design
choices, and give an algorithmic overview of our iterative
approach to learning task-specific inverse dynamics models.

On the motion generation level, we assume that a kine-
matic policy for our task is provided, meaning that we
can obtain desired accelerations q̈td for every state qt, q̇t

relevant to our task. In particular, we use kinematic Linear
Quadratic Regulators (LQRs) [25] to provide us with the
acceleration policy that is being executed. On the control
level we use two types of feedback controllers: traditional
PID control and the recently introduced adaptive feedback
learning (DOOMED [9]). When tuned sufficiently well, both
approaches can result in good tracking performance. We also
have to choose a function approximator for the error model.
Because we are learning the error model offline, learning
speed is not our main concern. However, prediction speed is
important since the models need to be evaluated at 1000Hz
(hard real-time) on our robotic platform. We choose a simple
feedforward neural network which is capable of learning



Algorithm 1 Execute Task and Collect Data

Require: fk−1iderr , π(qt, q̇t), system(τ t), q0, q̇0

1: Dkjoint = ∅; t = 0
2: while not converged do
3: q̈td = π(q

t, q̇t)
4: xt = (qt, q̇t, q̈td)
5: τ t = τ̂rbd(xd) + τ

t
fb + f

k−1
iderr (x

t
d; w⃗

k−1)

6: t = t + 1
7: qt = system(τ t−1)
8: q̇t, q̈t−1a = finiteDiff(qt,qt−1)
9: update feedback term τ tfb

10: Dkjoint = D
k
joint ∪ (xt−1a , τ t−1 − τ̂rbd(x

t−1
a ))

11: Dkjoint = D
k
joint ∪ (xt−1d , τ t−1fb + fk−1iderr (x

t−1
d ; w⃗k−1))

12:
13: end while
14: return optimize(fkiderr, D

k
joint)

nonlinear mappings and predictions require only a simple
feedforward pass.

Finally our iterative learning approach (Algorithm 1) can
be summarized as follows:

1) task execution: Run task with approximate RBD
model, feedback control, and feedback error model
if existent (line 5). Construct data set’s with two
different sources of information (equation (10) (line
10) and (14)) (line 11) during the task execution, as
shown in Algorithm 1.

2) learning phase: Update the error model function ap-
proximators based on new data points, or construct and
initialize the error models if none exist (line 14).

3) repeat the task.
As we empirically show in the Section V, exploiting both

sources of information allows us to obtain a better fit of the
error model with less task iterations, compared to using a
single data source.

V. EXPERIMENTS

We evaluate our approach in two different settings. First,
we analyze the proposed usage of indirect and direct data
sources in order to learn a task specific inverse dynamics
error model on a 2D simulation. This allows us to extensively
test characteristics of the learning problems based on the
different data sources, using the same function approximator,
under various simulated noise levels, stictions, frictions,
and a wrong RBD model. This evaluation is focused on
investigating the importance and influence of the different
data sources rather then the function approximator itself.
Second, we report results on task specific inverse dynamics
learning using both data sources on the KUKA lightweight
arm of our robotic platform shown in Figure 3. We start out
describing the evaluation of our 2D simulation setting.

A. Simulation Experiments

1) System description: This evaluation is based on a
simple 2D example [26] of a system for which the ap-
proximate RBD dynamics model differs drastically from the
true dynamics. In this simulated system the true mass is

set to M = 5I , while the approximate mass is assumed
to be M = 0.5I . The system attempts to realize a simple
acceleration policy, defined as a PD-controller with desired
state at qdes = (1,1) and initial state qinit = (0,0) and
q̇init = (0,0). Furthermore, we simulate the true system to
experience friction and stiction which is not modeled by
the approximate RBD model. Finally we also add sensing
noise to the position trajectories to mimic noisy sensor
measurements. The source code of our example simulation
with all parameters, friction and stiction models used for the
experiments can be found at [26].

2) Details of error model learning: Every experiment in-
volves running the iterative learning process for 20 iterations.
After each cycle a neural network is trained on the collected
data and is then used to predict the modeling error in the
next cycle. The error model fiderr is learned via a neural
network structure which consists of fully connected layers
(200, 100, 50, 20, 1) with non-linearities (prelu [27]) after
every layer except the last. We optimize one network per
simulated joint of our system. The neural network is trained
on the indirect data set (equation (10)), the direct data set
(equation (10)), and as proposed in this paper the joint data
set (equation (16)).

3) Experimental Setup: To evaluate the use of the data
source variants (direct, indirect or joint) in a principled
manner, we simulate various system conditions:

● 4 maximum sensing noise levels in meters are reported:
low (0.0001), medium (0.0005), high (0.007), very high
(0.008)

● 2 friction levels: medium and high
● 2 stiction levels: medium and high

across different hyper-parameter settings:

● 2 different number of training epochs of the neural
network training per task iteration are evaluated (20,
50).

● 2 different gain settings (applied) for DOOMED and
PID: low and high. The PID gains have been tuned such
that even without error model we achieve convergence
to the goal. Low gains are one order of magnitude lower.

The friction model is discontinuous and changes through-
out the state space. The feedback term for learning is
exponentially filtered with the same value (0.1) for all
experiments. This is possible since the learning feedback
term is not applied to the system.

For the detailed noise, friction and stiction models as well
as the exact parameters to replicate the experiments please
check out [26]. For each data source variant (direct, indirect,
joint) a total of 16 system combinations were executed, 10
times each, with different random seeds. A total of 1280
experiments were performed to cover the different hyper-
parameter settings. To make results comparable, the random
seed was kept consistent across the data source variants. For
each of these runs we record the average magnitude of the
applied feedback torque, the desired and actual acceleration,
as well as the desired and actual position.



(a) PID, low system noise (b) PID, very high system noise (c) doomed, low system noise (d) doomed, very high system
noise

Fig. 1: Hand-picked simulation runs to illustrate (dis)-advantages of the direct or indirect data sources. On the top row we show position
tracking error as a function of learning iterations, for both low-gain PID and low-gain DOOMED feedback control on systems with low
and very high noise. In low noise settings, for both PID and DOOMED, the direct data source leads to improved position tracking with
increasing number of learning iterations. However, when using the indirect data source the NN cannot capture the error model, and thus
position tracking does not improve at all (with PID) or more slowly (with doomed) over time. In the very high noise setting, the learning
convergence with indirect data source is comparable to the low noise setting, but when using the direct data source alone, we see erratic
tracking convergence. The direct data is affected more by the noise. For both PID and DOOMED, the position tracking performance
converges more consistently when using the joint data set.

4) Illustration of Indirect vs Direct: We start out with
illustrating some hand-picked scenarios that showcase the
differences of learning on indirect vs direct data in Figure 1.
We choose examples with the same parameter settings, and
illustrate the difference when going from low to high noise.
For the chosen examples, the learning rates/feedback gains
were set to the low value, such that friction and stiction was
not so easily overcome with feedback terms alone. This has
the effect that for low-gain PID control we basically see
no improvement in position tracking over time when using
the indirect data only. With DOOMED, some improvement
can be observed (with indirect data) - but at a slower rate
compared to using direct data. The noise level does not affect
the indirect learning process much. However, it affects the
learning on direct data. In the low noise setting we observe
how position tracking improves over time, but in the high
noise setting this is not true. However, when combining
both data sources, we get consistently good convergence of
position tracking performance, even with low-gain feedback
control.

5) Extensive Evaluation: To provide a more extensive
evaluation we now present results obtained when averaging
across all system and parameter settings, see Fig. 2. These
results show that, on average, using both data sources results
in more consistent and faster convergence of the position
tracking error, when compared to using the traditional ap-
proach of using indirect data alone. Specifically, in the case
of low-gain PID control, the error model trained with the
indirect data alone does not improve the position tracking
error, whereas the joint learning process does.

In the high-gain setting, the improvements are less pro-
nounced. However, we want to stress that one important
goal of this work is to learn an accurate task specific inverse
dynamics model, while being as compliant as possible. Thus,
the high gain setting shows that our proposed approach
does not deteriorate in case of a less compliant system
configuration, but there is not much to gain in using the
additional data source. Intuitively, this makes sense, since in
a high gain setting, the feedback control term is expected

to provide good tracking performance in the very first task
execution already. Thus the indirect data collected during that
first run already provides very good data to learn a model for
that particular task. We want to emphasize that there exist
parameterizations and system settings that can lead to better
performance by a single data source. However, on average,
the direct data source seems to be most sensitive to the
system/parameter combination, and the indirect data source
requires higher feedback gains to be useful. The joint data
source, however, can achieve superior and more consistent
model learning performance, in low-gain settings.

B. Real robot experiments

We have evaluated our method with two real world robot
experiments, a quantitative and a qualitative one. Both ex-
periments were performed on the platform shown in Fig. 3
(top). Our platform consists of two KUKA lighweight arms,
each of which has 7 degrees of freedom. All experiments
were performed on one arm resulting in a 21-dimensional
input for the error model learning problem. The control
system operates on a hard real-time loop of 1 kHz, thus,
all predictions are performed in less than 1 ms. All our
experiments presented here, use DOOMED as feedback
controller. We optimize one neural network per joint with the
following structure: 4 fully connected layers (200, 100, 50,
1) with non-linearities (prelu [27]) after every layer except
the last. Furthermore, we bound the predicted torques to
±20Nm. For both real robot experiments we analyzed the
task-specific inverse dynamics learning based on the joint
data set, since this has shown to provide the most consistent
performance.

For our quantitative experiments we used a pre-planned
sequence of LQR policies to generate desired accelerations.
We execute the task 10 times, always starting in the same
position, up to the precision of the arm. After each run, the
collected data was used to re-optimize the neural networks.
Fig. 3 shows how the sum of squared feedback terms (τfb),
averaged across all joints, changes with each run. Notice, the
first run uses no error model, thus reflecting how much the



(a) PID: low-gain (b) PID: high-gain (c) doomed: low-gain (d) doomed: high-gain

Fig. 2: Average results for low-gain and high-gain feedback control, and averaged across all system and parameter settings. (top row)
shows the position tracking error convergence as a function of the number of learning iterations. (bottom row) shows the average feedback
term applied. We plot the mean and the mean plus one standard deviation of the results. low-gain: In this setting, even when averaging
across all system settings and parameters, we observe similar position tracking behavior for the data source variants as in our hand-picked
illustrations. Indirect data alone is not able to capture the error model, which also explains why higher feedback torques are required
in this setting. Using direct data alone, results have a higher variance. On average the mean tracking behavior degrades again after a
few learning iterations (PID) or is somewhat erratic (DOOMED). Using the joint data set results in the most consistent tracking error
convergence for both feedback controllers. high-gain When using high feedback gains, the joint data set method does not gain as much
in convergence performance (over using indirect data alone). However using both data sources also does not degrade performance.

feedback term has to compensate for the modeling errors.
Within one iteration we are already able to capture most of
the error with the learned error model. Hence, our learned
model in combination with the rigid body dynamics model is
now a reliable inverse dynamics model for this task. We want
to stress that after every trial the newly obtained data is used
to further refine our task specific error model, and despite
the data correlation between trials our updated model does
not degrade. In Fig. 4 we show the feedback term trajectory
for the first and last task execution, per joint. Again it can
be seen how our learned model compensates for the errors
such that the feedback term only has to adjust for system
noise.

In our qualitative example we show the data efficiency
of our approach for a real world manipulation task. The
robot has to pick up a heavy drill from a table and place
it on a different location on the same table. Since we are
interested in collaborative setting, we chose the learning rate
of DOOMED as low as possible such that the robot itself
is as compliant as possible while still being able to at least
lift the drill. As shown in the video at [28], the usage of the
joint data set, enables our system to significantly improve
the performance of the pick and place task after a single
iteration.

VI. DISCUSSION

In this work, we have proposed to use two different
data sources to learn inverse dynamics models. We have
evaluated the usage of both data sources, indirect and direct,
both in simulation and on a real system. Our evaluations
demonstrate that combining the indirect and direct data leads
to more consistent and often faster learning convergence,
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Fig. 3: (top) Our robot platform is shown in the top figure.
(bottom) Mean squared feedback terms (τfb) as a function of
learning iterations. Run 1 corresponds to Fig. 4 (top) and run 10 to
Fig. 4 (bottom).

compared to using the traditional indirect data source only.
Furthermore, this superior performance of the combined data
set is especially noticeable in the low-gain feedback control
setting, such that we can effectively learn error models while
being more compliant from the beginning.

Nevertheless some restrictions to our approach exist: The
proposed method is based on the assumption that we do not
visit the same part of the state space (q, q̇), with differing
amounts of payload. Since the input of the error model does
not contain any information about the payload change of the
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Fig. 4: (top) The initial feedback terms (τfb), per joint, without a
learned error model. (bottom) τfb after 10 learning iterations.

system other then the generated feedback τfb, such a task
would lead to data ambiguities. For example, picking up a
drill from a position on a table, placing it somewhere else and
repeating the pickup without the drill could not be expressed
by a single task-specific inverse dynamics model right now.
A potential extension to alleviate this problem would be to
provide additional inputs, either sensing, or more abstract
provided information to the learning system.

For this work we do not analyze how the system performs
when it is strongly perturbed. This could result in undesirable
predictions since the error model has not been trained on any
data for that input space. This is however a general problem
for task specific models. We want to emphasize that we have
bounded the output of the error model to a reasonable torque
limit for our system, but this limit has not been exceeded
during our experiments. Furthermore, we believe that this
problem can be addressed in future work as discussed in the
following section.

VII. CONCLUSIONS AND FUTURE WORK

It is important to note, that in individual experiments,
error models trained on the direct, indirect and joint data
have all shown superior performance for certain system and
learning parameterizations. Overall training on the joint data
set results in more consistent and faster convergence and
lower exerted torques. However, an interesting direction for
future work is to exploit the structure in the different data
sources in order to identify which source is more reliable.
Ideally this will allow to train an error model for which the
performance is always at least as good as the better one of
the two data sources.

We want to further investigate the scheduling of the gains
of the feedback term based on the performance of the
error model. This should enable our system to increase the

level of compliance even more over time. Being able to
lower the gains also enables better detection of structured
perturbations, e.g. when a user is pushing the robot arm.
The main reason for that is that our learned error model
can capture the modeling errors of the rigid body dynamics
and the feedback term only has to correct for sensor noise.
Therefore, it is possible to detect otherwise difficult problems
such as collision with objects.

To the best of our knowledge the usage of the two data
sources is a novel approach to inverse dynamics learning. We
have empirically shown, that even with a low-gain feedback
controller, this can lead to consistent and fast error model
learning. The effectiveness of this approach has further been
evaluated on a real system.
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