Learning How a Tool Affords by Simulating 3D Models from the Web

Paulo Abelha! and Frank Guerin!

Abstract— Robots performing everyday tasks such as cooking
in a kitchen need to be able to deal with variations in the
household tools that may be available. Given a particular task
and a set of tools available, the robot needs to be able to
assess which would be the best tool for the task, and also
where to grasp that tool and how to orient it. This requires an
understanding of what is important in a tool for a given task,
and how the grasping and orientation relate to performance in
the task. A robot can learn this by trying out many examples.
This learning can be faster if these trials are done in simulation
using tool models acquired from the Web. We provide a
semi-automatic pipeline to process 3D models from the Web,
allowing us to train from many different tools and their uses
in simulation. We represent a tool object and its grasp and
orientation using 21 parameters which capture the shapes and
sizes of principal parts and the relationships among them. We
then learn a ‘task function’ that maps this 21 parameter vector
to a value describing how effective it is for a particular task. Our
trained system can then process the unsegmented point cloud of
a new tool and output a score and a way of using the tool for a
particular task. We compare our approach with the closest one
in the literature and show that we achieve significantly better
results.

I. INTRODUCTION

Service robots will face many challenges when working
in unconstrained environments such as the home. Many of
the tasks they need to accomplish require the use of tools
which come in a great variety of shapes. On top of that the
usual tool for a task might not be available and the robot
will need to adapt what it knows in order to use a different
tool to achieve its goals.

Humans are able to exploit visual and physical similarities
to assess how good an unknown tool is for a task and how
to use it: where to grasp and how to orient. For example:
a wine bottle can roll dough; a broad-bladed kitchen knife
can lift a small pancake; the handle of a wooden spoon can
retrieve something that falls in the gap below a fridge.

This ‘everyday creativity’ with tools is the inspiration
behind our work as it makes us think of a tool’s affordance
and different ways of using it as open to interpretation given
an interplay between the goal task and the candidate tool’s
physical characteristics. We tackle the problem of how to
assess the affordance of a tool by considering many different
possible ways of using it given a goal task. A robot should
be able to learn what is important in a tool for a given task

*Paulo Abelha is on a PhD studentship supported by the Brazilian agency
CAPES through the program Science without Borders. Frank Guerin re-
ceived no specific grant from any funding agency in the public, commercial,
or not-for-profit sectors

IDepartment of Computing Science, University of Aberdeen, King’s
College, AB24 3UE Aberdeen, Scotland p.abelha@abdn.ac.uk

mug

P

Hammering
nail task

rolling pin

Fig. 1: If the usual tool is not available for a task the robot
should be able to find the best way of grasping and orienting
new tools. Here in red is the grasping part and in green,
the end effector; in grey are points not used in the tool
representation.

and then apply this knowledge to an unknown tool to find
the best way of using it for the task.

Work in the area of tool affordance for Robotics has been
mainly focused on RGB-D input and per-pixel [1] or per-
part [2] labelling of affordances. We believe it is important
to also consider where the tool is grasped and its pose when
learning/assessing affordances since the way in which a tool
affords is a big part of why it affords. Returning to the
examples above, the knife is only usable for lifting if its
blade is horizontal, and not vertical as it would be in cutting;
the wooden spoon might only fit in the gap if grasped by its
bowl with the handle becoming the end effector.

The main contribution of this paper is providing a pipeline
and framework to process 3D models for automatically
learning through simulation both a tool’s affordance and how
the tool should be held and oriented. The issue of providing
the appropriate grasp position and orientation is crucial if we
want to train semi-autonomously. For this a robot needs to be
able to assess the affordances of a set of tools (or models in
simulation) to label them itself. This requires an automated
method to set the grasp region and orientation in the best
possible way. There are usually many ways to make a tool
fail, but if there is one way to make it work then it should
be labelled positive for the affordance.

At test time, given the point cloud of an unsegmented
object and a task to accomplish, we output an ‘affordance
score’ for how good it is for the task and also how to grasp

and orient the tool. We assume the robot can gather a full 3D
point cloud from the object - for instance by rotating it to see
all sides [3], [4], [5], and also measure the weight by picking
it up. The main limitation of this work is not considering
agency, for instance, whether or not a robot could grasp a
tool at a certain place, and swing it, depends on its gripper
and arm strength.

We introduce three datasets: ToolWeb (Sec. III-D);
ToolArtec (Sec. IV-A); and ToolKinect (Sec. IV-A). ToolWeb
is made of 70 synthetic point clouds gathered from the web
and annotated with ground truth for 4 tasks. The other two
comprise scanned common household tools with annotated
ground truth for the same 4 tasks tried in the real-world.
ToolArtec has 50 point clouds scanned using Artec Eva
3D and ToolKinect, 13 point clouds using Kinect v2. We
compare our approach with the closest approach in the
literature [2] and show that we achieve significantly better
results. We also show results for ToolArtec and ToolKinect in
order to assess how the performance of the system changes
with different scanner quality.

II. RELATED WORK

There are many approaches tackling the problem of assess-
ing tool affordance for tasks. We can see them as differing
in their inputs, representation, grounding, and outputs. Con-
cerning inputs the approaches can use RGB [6], [7], RGB-D
[1]; or point clouds [2] and also added physical information
such as weight and material. Regarding representations they
can use purely Machine Learning to learn features [8], [6],
[1] or combine it with some hand-engineered features (e.g.
histograms [2]; model fitting [9]). The grounding of the
system concerns whether the approach is based on learning
from hand-labelled data [2]; simulation of tasks [6], [10]; or
a real robot trying out the tools [11]. As for outputs they can
be scores for pixels/regions of an image (RGB, RGB-D) [6],
[1] (in what is sometimes called pixel-wise labeling task);
or for ’parts’ of a point cloud [2], or a score for the object
as a whole [9]. The outputs also vary in giving out a binary
score (affords or does not afford) [12] or a graded score [1]
[2], [11], [13], [14], or additionally providing manipulation
cues that the robot could use to grasp [8], [1] and orient
the tool. This final output (how the tool would be grasped
oriented) is something we tackle in this paper, and is rarely
considered in the existing literature; Mar et al. [10] implicitly
considers how the tool is grasped and oriented as part of its
input, hence learning a function that accounts for how the
affordance differs depending on how it is used.

Given this varied landscape we situate our work closest to
that of Schoeler and Worgotter [2] as we both get as input
a point cloud, use some form of hand-engineered feature
(histogram and geometric models respectively) combined
with Machine Learning, and output where to grasp and
give it a graded score. Nonetheless, we go beyond current
approaches in our ability to output a graded score and both
where to grasp and also how to orient the tool for a task,
while considering both the visual and physical (weight)
aspects of an object. Relative to our past work [9] the

major difference is that we now learn a function relating
tool parameters to affordance by simulating different ways
of using tools that we gather from 3D Web models (whereas
previously the function was hand coded).

III. SYSTEM
A. Overview

There are four main parts to our approach (coloured in
Fig. 2): preparing training data; simulating a task; learning
a task function (that maps from our tool representation to a
real-valued score); and assessing a new tool. Below we first
explain our tool representation, the p-tool, and then we have
one section for each of the four parts.

We gather models from the web and construct a training
dataset that is labeled by trying the tool in simulation. The
training set is then used for learning a function from a p-tool
(Sec. III-B) to an affordance score. At test time the system
gets as input a task, a point cloud, and tool weight. It outputs
an affordance score for the task and what we call a grasp-
pose: how to grasp and orient the point cloud for the task.
At test time we are able to abstract the candidate tool in
different ways, by fitting different p-tools, and find the best
one for the task.

B. Tool Representation (p-tool)

For our tool representation we always assume a tool with
two parts: Grasp and action. We represent a tool as a p-tool:
a 21-dimensional vector storing information about the grasp
and action parts; the relationship between these parts and the
tool’s mass. The grasp pose is contained in the p-tool because
the first tool-part is the grasping place, and the orientation of
the second part is given relative to this grasping part. We use
superquadrics and superparaboloids to represent each part
due to their geometrical flexibility (Fig. 3). An important
aspect of our representation is that we can go from a p-
tool to a rendered mesh that can be used in simulation.
We render the mesh by first uniformly sampling from the
superquadric/superparaboloid and then applying convex hull
to the obtained point cloud. In the case of superparaboloids
we remove the faces that ‘close’ the superparaboloid at the
top.

We are able to extract p-tools from a point cloud by
fitting superquadrics and superparaboloids to its segments.
Superquadrics have been used in Computer Vision for their
ability to represent many different shapes and recovery of
superquadrics from range data has been widely studied [15].
We fit superquadrics as in our previous work [9] and extend
the idea to also recover superparaboloids. We refer the reader
to [15] as the main source of our approach to superquadrics.
To the best of our knowledge there is no recovery of super-
paraboloids from point clouds and we derived the equation
to get the cost function required for optimisation in a similar
form as used for superquadrics in [15]:

o= (@) @) (2) o

Training Data Sec. III.C

Set of 70 Interpolate + vary to
Upsample pointclouds \ augment training set
_. CADmodels —— b 5,000
G/ p-tools

Get 3D models
for training
(3D Warehouse)

Add ground truth labels
(human estimate of
affordance score for task)

|

—

Task Simulation - Sec. lll.D

Segment + Fit
superquadrics
to form “ptool”
(21 parameters)

Render meshed models

by convex hull ﬁ

&

Orient tool for action,

Calibrate simulatorto " ready for simulation

/ match ground truth
\

Task Function Learning — Sec. I1I.E

Train Gaussian

Well calibrated simulation :
Affordance score of tool
for task

Set up Gazebo
simulation as
proxy for task

Assessing a New Tool - Sec. III.F

Labelled
training data

Process Regression
(Function assessing
affordance score)

Output:
Affordance score of

|

— Sc.ore all f't_s the best fit/usage
N~ L ™ Segment + Fit with Gaussian | n
—_— Se— ‘ superquadrics process, grasp/action
3D scan of candidate tool and select best parameters

Fig. 2: Overview of the system; how it is trained and used.

Similarly to the one in [15], this is an inside-outside
function to measure how close to the surface a given point
x = (x,y,z) is. The parameters a;, as and as control
the scale and ¢; the curvature. Each superquadric/paraboloid
takes 13 parameters to represent: 5 for scale and shape, 2
for tapering 6 more for general orientation and position in
space [9].

Once the superquadrics/superparaboloids are fitted to the
point cloud’s segments we run the p-tool extraction, which
generates several possible p-tools for the pair of segments
(corresponding to the possible ways to use the object).
For each pair of segments, we alternately pick one of the
point clouds to be the grasp and the other the action part.
Then we get a vector that goes from the centre of the
grasping part to the centre of the action part and also get
the Euler angles representing the orientation of the action
part: this requires 6 parameters, 3 for the vector and 3
for the action orientation. Additionally, we rotate the action
superquadric/superparaboloid in steps of 90 degrees in each
axis, and if the fitting score remains below a threshold, we
also accept that fit as one possible way of orienting the action
part. This way, we can get many (typically 12) possible good
orientations of the action part in an efficient manner. The
choice of 90 degrees is arbitrary and could be less, which
would generate more p-tools for each point cloud. Finally,
this orientation is relative to a canonical frame of reference
for p-tools.

There are 7 parameters for the geometry of each tool-

part (scale, shape and tapering of the superquadric), 6 for
the geometric relationship between the parts, and 1 for the
tool’s weight leaving us with 21 parameters to represent a
great variety of two-part tools. Note that if the point cloud
has more than two segments we will extract every possible
combination of two segments and use each for the grasp or
action part.

C. Training Data

We gather ToolWeb (Fig. 5), a dataset of 70 3D synthetic
meshes from 3DWarehouse!. Each point cloud goes through
an automatic pipeline script in MeshLab? to up-sample the
number of points and re-generate faces. In MeshLab we run
two filters: Poisson-disk sampling to up-sample the points
with input 5000; and Ball-Pivoting, with default options, to
re-generate the faces. On top of that we run an automatic re-
scaling of each point cloud to bring it within the minimum
and maximum size expected for each class name (e.g.
‘spatula’, ‘knife’, ‘hammer’ etc.). We segmented the tools
automatically (see Sec. IV-A.4) but also manually inspected
and adjusted parameters to get a perfect segmentation. This
manual step is not strictly necessary, but improves results and
is feasible on a set of size 70. We then label the dataset with
a discrete ground truth affordance score for each task: 1 - no
good; 2 - could be used; 3 - good with effort; 4 - good.

Uhttps://3dwarehouse.sketchup.com/
Zhttp://www.meshlab.net/

-
A"

Fig. 3: Different p-tools: red and green represent different
segments than can be used as grasp or action part. We can
map a point cloud to one or more p-tools and, conversely,
render a p-tool into a point cloud/mesh. Here shown: ham-
mer; bread knife; Chinese knife and ladle (using a paraboloid
for the bowl part)

For labelling we consider the best possible grasping and
orientation for the tool. Once a starting set of tools is hand-
labelled and those examples used to calibrate the simulator
(see Sec. III-D.2) the system can autonomously label further
tools.

Our system is trained on each task by simulating 5000 p-
tools, which we get by augmenting the ToolWeb dataset; this
augmentation step is described here. Extracting p-tools from
ToolWeb (see Sec. III-B) resulted in 825 p-tools for 70 point
clouds. We run a simple interpolation sampling to get more
p-tools from the extracted ones. This works by sampling
100 points between two p-tools iff the Euclidean distance
between them is smaller than the mean distance between each
p-tool and its closest neighbour; a p-tool’s closest neighbour
is the one with smaller Euclidean distance to the p-tool (if
there is more than one closest neighbour than a random one
is chosen). Finally, we filter the sampled p-tools so that their
values fall into a pre-specified range of valid tools.

D. Task Simulation

We have four tasks that we simulate using Gazebo’:
Rolling dough; cutting lasagne; hammering nail; and lifting
pancake (Fig. 4).

At the end of a simulation the output is always a single real
number, e.g. relating to: how much the nail went down for
hammering nail; the variance of the dough in rolling dough;
the median difference in distance for moved pieces in cutting
lasagne; and for lifting pancake: how close the pancake is to
a plane and how close the action part is to the pancake.

All p-tools go through our generic procedure for position-
ing and orienting for each task. For each task, we use a

3http://gazebosim.org/

(a) Rolling dough

(c) Hammering nail

(d) Lifting pancake

Fig. 4: Task simulation in Gazebo. Each simulation outputs
a single real-valued score for the outcome.

cluster of 20 machines to run 3 simulations for each of the
5000 training p-tools (Sec. III-C). The 15000 simulations for
each task took between 1 — 3 hours to complete; tasks that
simulate many elements, such as cutting lasagna, are slower

1) Tool Positioning: 1t is possible to orient and position
any p-tool in the simulation environment by using a generic
positioning procedure for each task. This allows us to run
any number of required simulations automatically for a
given set of p-tools. The p-tool parameters such as size and
orientation of the action part and relationship between the
parts determine, for each task, how to position it in the
simulator. Each point cloud produces several p-tools both
due to switching of grasp and action for each segment and
orientation possibilities. Therefore, each point cloud is put
in simulation in several different grasp-poses.

-

Fig. 5: ToolWeb dataset examples. Different colours repre-
sent different segments (colours here do not code any grasp
or action part). Point clouds in ToolWeb are automatically
up-sampled, re-meshed, re-scaled and segmented.

2) Automatic Calibration: ToolWeb (Sec. III-C) is used to
calibrate the simulation of each task. We extract p-tools from

the segmented ToolWeb and try all of them in simulation
getting a real-valued score for each one. The best score for
each tool is used as a label for automatic calibration

In order to automatically calibrate the simulator we need to
compare its output on ToolWeb with the labelled ground truth
scores. We run a brute-force algorithm to discover the best
thresholds for the real values to be discretised to a [1, 4] range
of affordance scores; we can do this by trying 3 threshold
parameters (in between the minimum and maximum possible
values for the task simulation) and making the value fall into
each discrete score if it is less than one of the threshold
parameters in order. This is run for all possible thresholds
between the minimum and maximum possible real values
from the simulation and given a pre-specified step size.

E. Training

In order to improve training, we perform a balancing of our
training data to have an approximately uniform distribution
over affordance scores. To accomplish this we have a pre-
training step where we learn from the 5000 p-tools a function
to map from a p-tool to a real-valued score. We then
keep generating more p-tools (with the method in Sec. III-
C), assessing them with the learned function and throwing
away excess p-tools until we achieve 5000 p-tools with
an approximate uniform distribution over affordance scores
(i.e. no affordance score has more than 5% more p-tools
than another one). These balanced 5000 p-tools are then
simulated. After simulation we learn the final task function
(Sec. III-A) on the balanced 5000 p-tools.

For learning the function in both pre-training and training
we use Gaussian Process Regression with the well-known
ARD squared exponential kernel, using Matlab’s Statistics
and Machine Learning implementation®.

F. Affordance Assessment

Our system is able to assess the affordance of a new
point cloud by extracting p-tools and assessing them using
the trained GP for that task. We can either deal with
segmented or unsegmented point clouds. When the point
cloud is unsegmented we plant 10 random seeds used for
starting points for fitting the superquadrics/superparaboloids
and constrain the fitting to be at +20% of the ‘ideal p-tool’
parameters. We get the ideal p-tool as one at random from
all p-tools that have maximum value on the trained GP for
the task. If the point cloud is segmented we extract the p-
tools as in Sec. III-B and use these together with the ones
from planting seeds. We pick the p-tool with the best score
on the GP to be the one selected for the point cloud being
assessed.

IV. EXPERIMENTAL EVALUATION
A. Test Sets

We evaluate our system on three datasets: ToolArtec,
SmallArtec and ToolKinect. The first two obtained with the

“https://uk.mathworks.com/help/stats/gaussian-process-regression-
models.html

high-end Artec Eva 3D scanner and ToolKinect with the low-
end Kinect 2. Artec Eva 3D is a structured light scanner
and provides a much higher resolution than Kinect 2. It also
performs much better on shiny objects such as glossy mugs
and metal knives etc. We constructed two datasets using
different scanners in order to better evaluate our technique
and its dependence on high-resolution and full visual input.
Both datasets contain only point clouds of real objects and
also labels for each task. Labels were obtained by trying
out many of the objects in the real world tasks, and for
the remainder, extrapolating from very similar tools that had
been tried.

1) ToolArtec Dataset: We scanned 50 full-view point
clouds of real household objects with the Artec Eva 3D
scanner, using real-time fusion and moving the scanner
around all accessible sides of the object while it was fixed
on the ground, often in an upright orientation. All tools are
hand-labelled for the four different tasks (Sec. III-D). More
details about this dataset can be found in [9].

2) ToolKinect Dataset: We scanned a subset of 13 tools
present in ToolArtec. Each tool was positioned alone in a
table and scanned by moving Kinect 2 in an arch over the
tool to simulate what a robot could do by moving a mounted
sensor (e..g looking over the tool with its head or arm-
mounted scanner). We then applied a RANSAC method for
fitting and removing the plane (i.e. table) and also everything
below it. Labels are inherited from ToolArtec. More details
about this dataset can be found in [9]

3) SmallArtec Dataset: This is simply the subset of the
ToolArtec that has the 13 tools of ToolKinect. This allows
us to compare the results on the same tools scanned by two
different scanners.

ToolKinect is small because Kinect is unable to obtain
models of any shiny tools, e.g. metal or glossy ceramic, or
any small parts, e.g. chopstick or thin tool shaft. We gave up
on trying to get a large set of Kinect tools and include a small
set just to test if our technique also works on lower quality
sensor data. ToolKinect is too small to provide a thorough
evaluation on a representative range of kitchen tools. As
sensor technology improves and costs reduce we expect that
higher quality data will be the norm, and hence the ToolArtec
results are more relevant for roboticists.

4) Automatic Segmentation for Test Sets: We segment
all point clouds in each test set using CPC (Constrained
Planar Cuts) segmentation [16] which is part of the PCL
library [17]. CPC makes use of local concavities to perform
cuts through the object and partition it in segments; it
requires a set of three main parameters: seed resolution,
voxel resolution and smoothing. We perform the automatic
segmentation in two steps: segmentation and filtering.

During the first step we modify the original CPC code to
loop over the parameters: seed resolution going from 0.01
to 0.015 in a 0.001 step size; voxel resolution going from
0.001 to 0.005 in a 0.0001 step size; and smoothing going
from 0 to 50 in a 2 step size.

The brute-force stepping may produce bad segmentation
outcomes since it is searching over a large space of parameter

TABLE I: Comparison of our system with ScW [2] on ToolArtec

Accuracy Accuracy Accuracy Accuracy
Metric 1 Random ratings Aff. score 1 Aff. score 2 Aff. score 3 Aff. score 4
ours | ScW o o p<0.05 | ours | ScW | ours | ScW | ours | ScW | ours | ScW
ToolArtec | 0.89 | 0.84 | 0.72 | 0.04 0.77 055 | 054 | 056 | 027 | 033 | 043 | 052 | 0.23

values. To overcome this, for each segmentation outcome
we perform a superquadric fitting to each segment and
keep only those outcomes below a pre-specified fitting score
threshold. Segmentation is necessary for running Schoeler
and Worgotter’s system® [2] with which we compare our
results. Here we call this system ScW and it needs the
segments to consider them as parts of the object.

B. Metrics

In all of our experiments we are dealing with four possible
scores for the affordance (Sec. III-D) going from 1 to 4. We
have two metrics for measuring performance: accuracy and
Metric 1. Accuracy is calculated separately for each of the
four affordance scores 1 to 4. Accuracy is the proportion
of tools that a system guessed precisely the right affordance
score for. Metric 1 measures how well the system estimates
affordances and is calculated as follows:

(c—1)2-1

n
= i1 ISi
(c— 1)
where ¢ > 1 is the number of possible discrete scores
(in our case 4), n is the number of scores (size of s and
g), s is the vector containing the system’s scores, g is the
vector containing the ground truth scores. Metric 1 is always
between 0 and 1 and quadratically penalises the distance
between the scoring vector and the ground truth.

_gi|2

2

mp =

C. Experiments

We compare our system with that of ScW [2]. We train
it for each task with 15 objects® of affordance score 4
taken from the ToolWeb dataset (Sec. III-D) and test in on
ToolArtec, ToolKinect and SmallArtec, comparing with our
own results. The ScW system trains an SVM on ideal tools
for each task and evaluates newly presented tools by scoring
how close they are to the model it has generalised of the
ideal tool for that task.

In our comparisons we also include a baseline of random
ratings of the tools. For each task, we randomly score (1-
4) each tool in the dataset 10° times, each time computing
Metric 1 for the random ratings and ground truth for the task.
This results in 10° Metric 1 values for each task that roughly
follow a normal distribution. We take the mean and standard
deviation of the values and, assuming a normal distribution,
calculate the p-value (p < 0.05) for each task. That is, the
Metric 1 value above which there is only a 5% or less chance
of achieving that by randomly scoring each tool.

We present the mean (i), standard deviation (o) and the
p-value (p < 0.05) in all tables (I, II and III). In the case

5The authors kindly provided us with the full Matlab code.
5This number was recommended as a minimum by Markus Schoeler.

of random ratings for an entire dataset (Tables I and II), we
consider the mean and standard deviations for the dataset
to be the respective average for the means and standard
deviations of all tasks. The average and standard deviation
over all tasks are used for the normal distribution that we
use to calculate the p-value for a whole dataset. Finally, for
Table I we also present the accuracy in each affordance score
value in the [1—4] range, that is, the number of tools guessed
correctly for the value over the total number of tools.

TABLE II: Overall Metric 1 on all test sets

Metric 1 Random ratings
our | ScW o o p < 0.05
ToolArtec 0.89 | 0.84 | 0.72 | 0.04 0.77
SmallArtec | 0.88 | 0.85 | 0.79 | 0.05 0.85
ToolKinect | 0.84 | 0.78 | 0.75 | 0.03 0.80

TABLE III: Metric 1 on ToolArtec per task

Metric 1 Random ratings
ours | ScW o o p < 0.05
Hammering Nail | 0.94 | 0.79 | 0.77 | 0.03 0.82
Lifting Pancake 0.87 | 0.87 | 0.73 | 0.05 0.81
Rolling Dough 0.91 | 0.86 | 0.66 | 0.04 0.72
Cutting Lasagne | 0.81 | 0.83 | 0.70 | 0.05 0.78

V. DISCUSSION

Looking at the overall results for the three datasets in
Table IT we see that our system always performs significantly
better than chance, and ScW does so only on ToolArtec. The
drop in performance when moving from Artec to Kinect (i.e.
compare Kinect to ArtecSmall) is significant, but Kinect data
is still good enough for reasonable affordance assessments
with our technique. Superquadric fitting is more robust to
noise and missing data (e.g. underside of tool) than the
histogram approach. As can be seen in Table III we are better
or equal to ScW at every task except for Cutting Lasagne,
which may be explained by the superquadric/superparaboloid
fitting generating p-tools that are too thick, but this requires
further study. As shown in Table I we are better than ScW1
on the accuracy for all affordance scores except score 3.

It is important to note that ScW is only trained on
canonical uses of tools for tasks. ScCW can sometimes map
parts and find a creative use (e.g. in cutting lasagne with
several tools such as scraper or spatula), however it more
often misses creative uses such as frying pan or rolling pin
for hammering nail, or rice spoon for cutting lasagne. This
is understandable since it only considers the shape histogram
using angles between normals, it does not consider weight
nor absolute size. This is evident in Table I where we see
that ScW has a very poor success at affordance score 4.

One interesting observation out of the training was that
many times the Gaussian Process Regression could identify
a small number of parameters that dominated the predic-
tion. In future work we intend to devise more complex
tasks on which to further test the generalising capability
of our system. Another possible direction is making the
data augmentation more principled by using recent methods
of manifold learning [18] on the 21-dimensional space of
p-tools. Finally, we also intend to make our pipeline for
gathering a training set fully automatic by having automatic
segmentation such as the one we used for the test set.

VI. CONCLUSION

In this paper we presented a system capable of finding
good ways of grasping and orienting unknown tools for a
task and giving them an affordance score. We achieved this
by training from Web models. We gathered and segmented
a dataset ToolWeb of 70 point clouds of common household
tools from the Web and fitted geometric models to each
segment in order to abstract different ways of grasping and
orienting the tools. Our tool abstraction, p-tool (Sec. III-
B), captures the grasp and action part, the relationship
between them (orientation and distance) and also the tool’s
weight. We augment the data of extracted tool abstraction by
interpolating between similar p-tools and train 5000 of them
in simulations for each task.

We introduced three datasets, ToolArtec, ToolKinect and
ToolWeb of common household tools for tasks. Our results
showed a significant performance improvement relative to the
closest competitor approach, but more than this we output
information that the competing system does not: about how
to orient the tool for the task. This additional information
is crucial to facilitate our semi-automatic pipeline to process
Web point clouds. This pipeline is at the core of our system;
it can semi-automatically re-scale, re-sample and re-mesh
Web models and abstract their parts into possible ways of
grasping and orienting. These different ways of using the
tools can be then be all simulated in order to get a large
number of labeled tools for training. In our current times of
data-hungry approaches we believe this part of our system
could be of significant interest to the community.

VII. ACKNOWLEDGEMENT

Thanks to: UoAs ABVenture Zone, N. Petkov, K.
Georgiev, B. Nougier, S. Fichtl, S. Ramamoorthy, M. Beetz,
A. Haidu, J. Alexander, M. Schoeler, N. Pugeault, D. Cruick-
shank, M. Chung and N. Khan.

REFERENCES

[1] A. Myers, C. L. Teo, C. Fermuller, Y. Aloimonos, C. Fermiiller, and
Y. Aloimonos, “Affordance detection of tool parts from geometric
features,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA). 1EEE, may 2015, pp. 1374-1381

[2]

[3]

[4

=

[5]

[6]

[7

—

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

M. Schoeler and F. Worgotter, “Bootstrapping the Semantics of
Tools: Affordance analysis of real world objects on a per-part basis,”
IEEE Trans. on Autonomous Mental Development, vol. 8, no. 2, pp.
84-98, 2016

M. Krainin, P. Henry, X. Ren, and D. Fox, “Manipulator and object
tracking for in-hand 3D object modeling,” The International Journal
of Robotics Research, vol. 30, no. 11, pp. 1311-1327, 2011.

D. Kraft, R. Detry, N. Pugeault, E. Baseski, F. Guerin, J. H. Piater,
N. Kruger, E. Baseski, F. Guerin, J. H. Piater, and N. Kruger,
“Development of Object and Grasping Knowledge by Robot
Exploration,” Autonomous Mental Development, IEEE Transactions
on, vol. 2, no. 4, pp. 368-383, dec 2010

K. Welke, J. Issac, D. Schiebener, T. Asfour, and R. Dillmann,
“Autonomous acquisition of visual multi-view object representations
for object recognition on a humanoid robot,” in Robotics and
Automation (ICRA), 2010 IEEE International Conference on. 1EEE,
may 2010, pp. 2012-2019

A. Dehban, L. Jamone, A. R. Kampff, and J. J. Santos-Victor,
“Denoising auto-encoders for learning of objects and tools affordances
in continuous space,” Proceedings - IEEE International Conference on
Robotics and Automation, vol. 2016-June, pp. 1-6, 2016.

C. Wang, K. V. Hindriks, and R. Babuska, “Effective transfer learning
of affordances for household robots,” in 4th International Conference
on Development and Learning and on Epigenetic Robotics, no. 1.
Genoa: IEEE, oct 2014, pp. 469-475

A. Nguyen, D. Kanoulas, D. G. Caldwell, and N. G. Tsagarakis,
“Detecting object affordances with Convolutional Neural Networks,”
in 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 1EEE, oct 2016, pp. 2765-2770

P. Abelha, F. Guerin, and M. Schoeler, “A model-based approach to
finding substitute tools in 3D vision data,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, may 2016,
pp. 2471-2478

T. Mar, V. Tikhanoff, G. Metta, and L. Natale, “Multi-model
approach based on 3D functional features for tool affordance learning
in robotics,” in 2015 IEEE-RAS 15th International Conference on
Humanoid Robots (Humanoids), vol. 270273, no. 270273. 1EEE,
nov 2015, pp. 482489

J. Sinapov and A. Stoytchev, “Detecting the functional similarities
between tools using a hierarchical representation of outcomes,”
in 2008 7th IEEE International Conference on Development and
Learning. 1EEE, aug 2008, pp. 91-96

V. Chu, T. Fitzgerald, and A. L. Thomaz, “Learning Object Affor-
dances by Leveraging the Combination of Human-Guidance and Self-
Exploration,” in The Eleventh ACM/IEEE International Conference
on Human Robot Interaction. New Zeland: IEEE Press, 2016, pp.
221-228.

A. Agostini, M. Javad Aein, S. Szedmak, E. E. Aksoy, J. Piater, and
F. Worgotter, “Using structural bootstrapping for object substitution
in robotic executions of human-like manipulation tasks,” in 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), vol. 2015-Decem. 1EEE, sep 2015, pp. 6479-6486

W. Mustafa, M. Waechter, S. Szedmak, A. Agostini, D. Kraft, T. As-
four, J. Piater, F. Worgotter, and N. Kriiger, “Affordance Estimation
For Vision-Based Object Replacement on a Humanoid Robot,” in
Proceedings of ISR 2016: 47st International Symposium on Robotics,
jun 2016, pp. 1-9.

A. Jakli¢, A. Leonardis, and F. Solina, Segmentation and Recovery of
Superquadrics, ser. Computational Imaging and Vision. Dordrecht:
Springer Netherlands, 2000, vol. 20

M. Schoeler, J. Papon, F. Worgétter, and F. Worgotter, “Constrained
planar cuts - Object partitioning for point clouds,” in IEEE Conference
on Computer Vision and Pattern Recognition CVPR. IEEE, jun
2015, pp. 5207-5215

R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in 2011 IEEE International Conference on Robotics and Automation.
IEEE, may 2011, pp. 1-4

J. Wang, Z. Zhang, and H. Zha, “Adaptive Manifold Learning,”
in Proceedings of the 17th International Conference on Neural
Information Processing Systems, ser. NIPS’04. Cambridge, MA,
USA: MIT Press, 2004, pp. 1473-1480

