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Abstract— This paper is about enabling robots to improve
their perceptual performance through repeated use in their op-
erating environment, creating local expert detectors fitted to the
places through which a robot moves. We leverage the concept
of ‘experiences’ in visual perception for robotics, accounting for
bias in the data a robot sees by fitting object detector models
to a particular ‘place’. The key question we seek to answer
in this paper is simply: how do we define a place? We build
bespoke pedestrian detector models for autonomous driving,
highlighting the necessary trade off between generalisation
and model capacity as we vary the extent of the ‘place’ we
fit to. We demonstrate a sizeable performance gain over a
current state-of-the-art detector when using computationally
lightweight bespoke place-fitted detector models.

I. INTRODUCTION

Place matters in robotics. Mobile robots frequently tra-
verse the same operating environment over and over, such as
an autonomous car performing the same weekday commute,
or an autonomous forklift moving goods around the same
warehouse. In object detection for robotics, we care about
achieving the best possible performance on the data the
robot observes in its operating environment. We propose that
relaxing the need for detector generalisation in favour of
fitting to the operating environment enables better perception
performance using a computationally simpler detector.

Prior work in robotics has demonstrated that it is possible
to boost the performance of many vision-based systems
by using place dependent models. Examples of these place
dependent systems include object detectors [1], [2], terrain
assessment [3], and visual localisation systems [4], [5]. A key
question in considering all these environment specific models
is simply: what defines an appropriate ‘place’ for a model if
we want to improve a perception system’s performance?

We focus on environment specific models for object
detection, which we expect to see vary in performance
with appearance change due to viewpoint, lighting, weather,
season, and structural change in the environment.

Some of this performance variability will be spatially
dependent, with the general scene structure and image texture
remaining the same between images taken in the same
location. In addition to this spatial variability, there are
many temporal sources of environmental variation which will
affect image appearance (and thus detector performance).
This temporal variation includes appearance change from
seasonal change, lighting change, and other dynamic objects
operating in the same environment. In this paper we look at
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Fig. 1: We can use the knowledge of where our robot
is to improve object detection performance using a local
expert model fitted to that specific place. Using lightweight
detector models with limited model capacity we can boost
performance beyond more computationally complex state-of-
the-art detectors. We achieve this by limiting the variability
of the negative (background) class our model is trained on,
mitigating the model capacity limits of lightweight detectors.

the influence of spatial variability on detector performance,
and present a framework for improving performance through
experience-based methods.

This paper is structured in two parts. We expect image
data taken from the same location and time to have similar
structure, enabling us to construct bespoke detectors on
sequential images. Section III considers a scenario using this
spatiotemporal definition of a place. We use an ensemble
method: building a suite of local expert models for swathes of
a robot’s operating route using a nearest neighbour approach.
These models are retrieved at run time using localisation.
Section IV extends this bespoke model methodology to use
the nearest frames based on image appearance rather than
spatial location. We approach all these experiments using
pedestrians as the target object class as we have an interest
in autonomous driving, though we expect the principles to
hold across other object classes.

Our results demonstrate that overcoming limited model
capacity (the ability of a classifier to separate the data
classes) is the key benefit of using local expert detectors,
enabling a lightweight detector to achieve a substantial
performance increase over a more complex state-of-the-art
pedestrian detector. We are able to do this by limiting the
variability of the background (negative) class to local regions
of the robot’s operational envelope.
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II. LITERATURE REVIEW

The approach we present in this paper can be applied to
any object detection problem, but we focussed on pedestrian
detection due to our interest in autonomous driving. Pedes-
trian detection has an extensive body of literature. Much of
this work can be summarised as the development of progres-
sively better engineered features [6], [7], different classifiers
[8], deformable parts models [9], or adding additional data
or context [10], [11], [12], [13].

Recent developments in deep learning in the broader com-
puter vision community have lead to convolutional neural
networks being applied to the problem [14], [15], [16]. These
approaches are now achieving state-of-the-art performance
but tend to be slower at run-time, which makes these ill-
suited for use in resource constrained robotic applications.

Zhang et al. [17] presented a comprehensive failure anal-
ysis of state-of-the-art pedestrian detectors on the Caltech
pedestrian dataset [6]. They hypothesised that many of the
false negatives (i.e., cases where the detector fails to detect
a pedestrian even though the pedestrian is large enough in
the image) are due to dataset bias in training, which can be
solved by augmenting the training dataset. Their analysis of
common sources of false positives highlighted two categories
of error: localisation errors where the false detection overlaps
with a ground truth bounding box, and background errors
where there is zero overlap with ground truth. These back-
ground errors were the most common error type, spuriously
detecting parts of the background as pedestrians.

In previous work [1] we focussed on addressing these
background errors in object detection by applying the con-
cept of robot ‘experiences’ from localisation and navigation
[18], [19], [20], [21] to object detection. In an experience-
based approach we accept that the world has many different
forms of appearance and fit local experts to suit each
experience. For perception tasks such as object detection,
this means training our detector model to suit the class
of data (e.g., season, spatial location) the robot currently
experiences. We exploited the fact that mobile robots tend
to be constrained to a particular operating environment to
boost test performance by fitting models to data captured at a
similar time of the year for the same traversed route. Notably,
this experience-based detector outperformed a global model
which has been trained on data across multiple experiences,
highlighting the importance of defining the environment.

Geospatial bias in imagery has been highlighted by Doer-
sch et al. [22], who showed that it is possible to automatically
find distinctive visual elements for a certain geo-spatial area,
comparing data between major cities (for example, Paris
and London) and data between districts of a city (Paris).
We also know that dataset bias [23] is an influence on
the performance of our object detectors, with the training
data used being a systematic factor influencing performance
across different test datasets [24]. This data bias, however,
provides a potential tool to be exploited.

Malisiewicz et al. addressed bias in intra-class variabil-
ity (such as different types of buses) in general purpose
image recognition with Exemplar SVMs [25], an ensemble
approach which uses a nearest neighbour method to train a

unique model for each positive training datum, fitted to a
single positive sample and many thousands of negatives.

Various approaches have been taken to leverage data bias
to form scene specific classifiers, largely motivated by visual
surveillance tasks. Hattori et al. took the concept of scene
specific classifiers to one extreme, training a unique detector
model for a specific image location in a static scene using
synthetic data [26]. Wang et al. used a transfer learning
framework to adjust a generic pedestrian detector to a scene
specific detector [27]. They used visual cues to generate
scene specific data in a self-supervised manner, weighting
training data samples based on similarity to the observed
test data using an affinity graph.

In the domain of mobile robotics, Suzuo et al. divided a
driven route into a fixed number of scenes using visual bag-
of-words, then trained models using negative data gathered
from each scene [28]. This has some similarity to our
approach here; we build on the ideas from [1] and [28]
to understand what influences an appropriate resolution for
local expert detectors. Bewley and Upcroft presented similar
evidence for the need to adapt object detectors to their oper-
ating environment in [29], augmenting a generalised object
detector by validating each detection against a background
model trained on environment specific data. This approach
can also be viewed as exploiting place as context, with some
similarities to methods which use context within an image
to boost detector performance, e.g. [30].

The idea of experience-based local expert models has since
been applied to other perceptual tasks in robotics. Berczi et
al. [3] created bespoke terrain assessment classifier models
for finite patches of a route driven with visual teach and
repeat. These models detect when the path in front of a
mobile robot has changed from the initial teach pass and pre-
vious repeat runs. They demonstrated a marked performance
improvement over place-independent methods, comparing
their bespoke place dependent models to a place independent
learned classifier and a traditional heuristic based method.

Similarly, McManus et al. [5] and Linegar et al. [4] both
proposed using distinct scene specific patches to weakly
localise across large appearance change.

These methods all have similar motivation: solving a
simpler problem rather than a global one. However, why do
these work so well? Why can’t we simply use a generic
model? In this paper we present evidence for why place
dependent models work well for solving these sorts of
perception problems in robotics, and offer insight into how
we should approach the construction of local expert models.

III. FITTING TO A KNOWN LOCATION AND TIME

We evaluate how to build bespoke place dependent mod-
els by firstly adopting a fine-grained, strict spatiotemporal
definition of a place, where we construct a place dependent
model for every single frame in a known route. We then
immediately repeat the route, localise each image to our
mapping run, then retrieve and apply the detector model
associated with the localised map frame.

This is the best possible scenario we could hope for when
fitting models to similar data. By using a strict spatiotemporal
prior we are able to control most sources of variation in scene



content (as the images are from the same spatial location)
and appearance (as the images are from effectively the same
time). In addition, we use a very fine grained approach,
associating a model with every frame, rather than key frames.

In practice, this will form the upper bound in performance
for place dependent methods with this classifier and feature
type, though we expect to be able to get close to this
using experience-based visual localisation [18] with models
associated with mapping key frames.

A. Experimental Approach

We select an urban driving dataset consisting of two
consecutive loops of the same route in Oxford [31]. Each
loop is 1km in length and we fully annotated these with
pedestrian labels. For each image (or model index frame),
we fit a model to the closest N images in time (including the
frame itself), illustrated in Figure 1. At run time, we localise
each image to the alternate lap and retrieve that model, using
the models built on the second lap during the first and vice
versa.

B. Object Detector and Training

Our object detector is a lightweight sliding window im-
plementation using Aggregate Channel Features (ACF) on
LUV images [6], with a linear Support Vector Machine
(SVM) as the primary classifier. This is very similar to the
original work in [6], except we use our own implementation
of ACF with LibLinear [32], rather than the original boosted
decision trees. This is a lightweight general purpose object
detector, able to run at frame rate (20Hz) using a reasonable
selection of scales. The ACF feature descriptor consists
of ten channnels based on colour and gradient, making it
suitable for detection tasks such as traffic lights [33] and road
signs [34] in addition to the original purpose of pedestrian
detection.

We fit detector models to the nearest N frames in time
by performing hard negative mining (HNM) on each image
using ground truth labels. This process runs a candidate
detector model on the training images, adding the highest
scoring false positives to the training data, retraining and
iterating until convergence (or a maximum of 20 iterations).
The model is initially trained using the INRIA pedestrian
dataset [35] for positive samples and an initial seed negative
set (10 random patches from each INRIA negative image).
We heavily penalise misclassification of training data by
setting the SVM optimization parameter to a very large
number (C = 100), forcing the model to strongly fit to the
training data presented. The training data is weighted based
on the number of samples to ensure class balance.

C. Results

To assess the merits of a precise spatiotemporal definition
of a place, we compare our place-fitted detector to a generic
model for our pedestrian detector trained only on a canonical
dataset. This generic model is trained on the same initial
training data as the place dependent models, but with HNM
performed on the INRIA negative training data rather than
data from the robot’s environment. We refer to this baseline
trained on generic data as the SVM+ACF model.

Detector Model Average
Precision

Log-Average
Miss Rate

Maximum
F1 Score

Baseline: SVM+ACF 0.483 0.485 0.473
Baseline: FPDW [6] 0.481 0.440 0.491

Baseline: MSCNN [16] 0.588 0.371 0.579
P.D. Model: N=1 0.622 0.354 0.592
P.D. Model: N=10 0.689 0.292 0.651

P.D. Model: N=100 0.689 0.288 0.672
P.D. Model: N=1000 0.450 0.564 0.521

P.D. Model: N=∼4100
(full lap)

0.305 0.712 0.405

TABLE I: Performance metrics comparing our place depen-
dent (P.D.) detector models to a number of generic baselines,
where N is the length of image sequence used to train a
model. Higher is better for Average Precision and F1 Scores,
whereas lower is better for Log-Average Miss Rate.

Table I outlines the aggregate performance metrics on our
test dataset. We use three common metrics for comparing
detector models: average precision, log-average miss rate [6],
and maximum F1 score.

1) Benchmarks: Results from two publicly available de-
tectors are included to provide a baseline from which to
assess potential performance gains. These are FPDW [6], and
MSCNN [16]. We use models provided by the respective
authors, trained on the Caltech pedestrian dataset [6]. We
acknowledge that there will be some bias in performance
due to the training dataset, as INRIA has been shown to
perform well across a diverse range of benchmark datasets
[17]. Furthermore, as INRIA is a cropped dataset, it is
only applicable to sliding window approaches making it
unsuitable for training detectors like MSCNN.

FPDW is very similar to our SVM+ACF generic model,
using ACF features but with a boosted decision tree classifier
(AdaBoost) rather than an SVM. These two detectors are
largely equivalent in performance and speed, able to run
at frame rate (20Hz) for a reasonable range of scales on
our Bumblebee2 camera using only moderate computational
resources. MSCNN, a multi-scale convolutional neural net-
work detector, is currently one of the best performing object
detectors, but requires significant GPU based computational
power and is only able to run at approximately 2Hz on
a top end NVIDIA GTX graphics card. The authors state
a run-time performance of 0.4s per frame on KITTI data
(1242x375). Many robotic applications require a lower com-
putational budget or higher frame rate.

2) Detector Performance: The local expert detector out-
performs all the baseline generic models (including the
current state-of-the-art), with a twenty percentage point
improvement over the reference model of the same type
(SVM+ACF). Figure 2 shows the characteristic performance
curves for these models as the training sequence length
varies. The dotted lines on each plot give us an appreciation
for the model capacity, applying the model trained on each
image to itself. Model capacity refers to be ability of a
classifier to fit (separate) the data correctly without error,
which will be determined by the classifier type, feature type,
and the classes of data.

3) Training Swathe Size: Firstly, we note that using an
extremely tightly fitted model (spatially, where the model is
fitted to the single closest frame) offers a good improvement,
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Fig. 2: Performance of an ideal case place dependent detector compared to detectors using generic models. The place fitted
detector uses models fitted on a frame-by-frame basis to a sequence of N images centred on the closest matching frame
from a second lap (the solid coloured lines). The dotted line on each plot represents the model capacity of the place fitted
models, i.e., the performance when applying models to the same index frame they were trained on. This highlights the
necessary trade-off between the size of negative class we fit to and the point at which we need the model to generalise.



but this is outperformed by models which are fitted to a
slightly longer swathe (N = 10− 100). There are a number
of factors which will affect this.

Firstly, longer training swathes will inevitably add more
training data, which will generally help performance. In
addition, these longer swathes will also help to account for
the differences in pose between the image and the model
index frame. This pose error is small (as per Figure 3), but
will limit the efficacy of models fitted to a single frame due
to variation in perspective and scene content.

Fig. 3: Variation in pose between localised images on subse-
quent laps (a median of 0.4m for our dataset) will limit the
efficacy of models fitted to a single frame.

On the other hand, using a large sequence of frames
comes with a penalty. As we are forcing the model to fit the
training data firmly (using a high value for the SVM kernel
parameter), we begin to see a drop in performance due to
limited model capacity once the negative set is sufficiently
large such that we lose class separability.

We start to see the impact of finite model capacity on
performance at a swathe size of between 100-1000 frames.
At 1000 frames we have lost class separability, in which the
linear SVM classifier is unable to separate the positive and
negative training data with no errors (illustrated conceptually
in Figure 4). As we weight the training data for class balance,
this lack of class separability results in the hard negative
mining reaching the maximum number of cycles rather than
converging.

This performance drop due to model capacity is even
clearer in the global model case, where we fit the model to
the entire dataset. In this case, we only have a model capacity
plot as we train the model on every image (N = 9154). Even
though the global model is trained on the exact test data, it is
unable to separate the positive and negative class, requiring
the model to generalise.

4) Concluding remarks: With lightweight pedestrian de-
tectors performance is boosted by using local expert models
which have a very specific place of operation. The extent of a
place — measured by a fixed swathe size — should contain
multiple frames to avoid sensitivity to the pose difference
between training and testing data. Conversely, a narrow def-
inition of a place with minimal variation in the background
class is desirable to enhance class separability with finite
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Fig. 4: This illustration outlines a simple example of where
using a simpler (faster) classifier cannot separate the positive
and negative class perfectly due to finite model capacity,
indicated by the red dashed decision boundary. Reducing
the background class boosts performance by training models
for a single environment (e.g., the orange or green images),
giving full class separability with a collection of models.

model capacity. In our experiments, models trained with
sequences of 10 − 100 frames showed the most significant
improvement.

IV. LINKING APPEARANCE TO PLACE DEPENDENT
MODELS

Spatial location is important, but we also expect to see
image appearance change over time: seasons, lighting, and
other moving objects. From localisation literature we know
that image appearance change is significant, and has a
dramatic effect on the performance of perception systems
[18].

As we focus on boosting performance by reducing the
extent of the background class our model fits to, it logically
holds that we should build models on images with similar
appearance. In many cases this is influenced by spatial prox-
imity, as higher similarity is correlated with spatial proximity
(shown in Figure 7). The previous section (Section III)
addresses this. However spatial correlation is not guaranteed,
as appearance metrics vary with changes in scene content and
perspective. A key example of this is a sequence of images
taken driving around a corner: these will be dissimilar by
appearance metrics but are spatially close (Figure 6).

A. Experimental Approach
We adopt the same experimental scenario as in Section III,

where we have two consecutive laps of an urban driving route
with ground truth localisation and pedestrian annotations. For
every image, we localise to the closest frame in the alternate
lap, retrieving the detector model associated with the map
frame and apply it. The object detector setup and training is
as per Section III-B.

However, to build the detector models we now use the N
nearest frames based on image similarity metrics, rather than
N nearest temporal frames. We use two similarity measures:
the l2-norm between two GIST global image descriptors [36],
and mutual information [37] between two intensity images.

Our results in Section III indicate that our detector model
was able to fit well for a place definition of between 1 −
100 frames, with 1000 frame detector models suffering in
performance due to model capacity (Figure 5). This result
agrees with the data we see in Figure 7, which indicates
that the correlation between image appearance and distance
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(a) (b) (c)

(d)

Fig. 6: Images 6a through 6c are taken one second apart
(approximately 3 metres), but differ substantially when com-
paring the GIST descriptors. This is due to the rapidly
changing perspective rather than any substantive change in
scene content. The histogram in 6d shows the similarity
distribution for all image pairs in this route, with the red
lines showing the similarity between image pairs 6a-6b and
6a-6c. These fall in the 61st and 71st percentile, highlighting
the difference in similarity between spatially close images.

no longer applies beyond 100 frames at the average vehicle
speed. We focussed our experiments on models built using
the same number of frames as before (N = 1−100), starting
from a single frame and increasing by a decade at each step.

B. Results

To assess this approach, we use the same experimental
methodology as in Section III, using localisation to retrieve
the model associated with the map frame closest to the
current image.

In Figure 9 and Table II we see a performance boost over
the reference baseline detectors. Using the nearest images
based on GIST yields more or less equivalent performance.

(a) l2-norm between GIST

(b) Mutual Information

Fig. 7: Image similarity metrics correlate with the distance
travelled along the robot’s trajectory. The mean similarity is
shown by the solid line, and the filled polygons represent the
2σ and maximum extent. The red dashed lines indicate the
distance travelled within N = 1, 10, 100 frames during this
test route at the vehicle’s average speed of 4.3 ms−1.



(a) 10 frame models (b) 100 frame models

Fig. 8: These histograms highlight the spatial distance in
models’ training data when using different image similarity
metrics. For models built using the nearest N images (spa-
tially), a 100 frame model will on average have been trained
on data up to 22 metres from the index frame (as in Figure
7). In contrast, when using the nearest 100 frames by either
image similarity metric this can be up to 400 metres.

Model Average
Precision

Log-Average
Miss Rate

Maximum
F1 Score

Baseline: SVM+ACF 0.483 0.485 0.473
Baseline: FPDW [6] 0.481 0.440 0.491

Baseline: MSCNN [16] 0.588 0.371 0.579
P.D. Spatial: N=1 0.622 0.354 0.592
P.D. Spatial: N=10 0.689 0.292 0.651

P.D. Spatial: N=100 0.689 0.288 0.672
P.D. l2 GIST: N=10 0.678 0.303 0.652
P.D. l2 GIST: N=100 0.689 0.300 0.666
P.D. Mut. Inf.: N=10 0.594 0.382 0.584
P.D. Mut. Inf.: N=100 0.656 0.347 0.640

TABLE II: Aggregate performance metrics comparing our
bespoke place dependent (P.D.) detector models to a number
of generic baselines. A higher number is better for Average
Precision and F1 Scores, lower is better for Log-Average
Miss Rate. The N = 1 case is the same for all methods as
this model is trained on the closest localised frame.

This logically holds: for our dataset we expect the tempo-
rally adjacent frames to be very similar in appearance, with
the exception of perspective change when turning corners.
Using mutual information is less beneficial: this still helps
boost performance, but is not as informative as grouping
images based on time or GIST. In Figure 7b we note that the
correlation between mutual information and distance plateaus
at 5 metres, unlike with GIST. The mutual information
models are also trained on data which is much further from
the source frame than GIST (Figure 8). We expect that
mutual information between each colour channel rather than
intensity would be better, though this is unlikely to improve
significantly over the temporal sequence approach.

It is likely that we could use image appearance to fit better
models for larger groups of data, but we are limited by model
capacity before this effect is visible. With a higher capacity
model (e.g., deep learning approaches or different kernels)
we may be able to exploit image appearance to a greater
degree where we lack robust localisation.

V. CONCLUSIONS

In robotics we have the opportunity to exploit knowledge
of the world around our robot to improve performance of
vision systems. In this paper we demonstrate how prior

knowledge about what a robot will see (by repeated operation
along the same route) can be used to boost performance
beyond what a more complex state-of-the-art object detector
can achieve. However, defining the place of operation is
not trivial for mobile robots. We present an assessment of
approaches to building bespoke place dependent detector
models, investigating which factors influence performance.

Our results indicate that we can heavily leverage a strong
spatiotemporal prior, fitting models to a narrow window of
operation. Relaxing the need for generality aids performance
as we can ensure our models fit a smaller negative back-
ground class. This approach avoids the trade off between
model capacity and generalisation. When using appearance
to build models, we are able to achieve effectively the same
performance on groups of similar images.

As model capacity is a major influence on performance of
these local models, we anticipate that using higher capacity
classifiers (such as deep learning methods or more complex
SVM kernels) will enable fitting to larger operating environ-
ments. Computational requirements will dictate the choice
of classifier used in these local expert detectors. We also
only considered expert models fitted to a fixed number of
images. It is likely that larger visually uniform sections of a
route could be adequately fitted with a single model, whereas
more varied routes will need a more specialised model fitted
to a shorter section.

From a practical view, we see significant potential for this
approach to be coupled to experience-based visual locali-
sation systems [18], [19], [20], [21], using their ability to
localise to many parallel ‘experiences’ of the same location.
These bespoke detector models are sensitive to the data they
are applied to: if the scene content changes substantially
from the training environment, it is likely that the detector
will generate false positive errors due to the change in
background class. This brittleness could be addressed by
using models constructed from appearance rather than spa-
tiotemporal sequences, or by using the ability of experience-
based localisation to localise across different appearances of
the same place, with detector models associated with each
experience of the same spatial location.
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