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Towards Planning and Control of
Hybrid Systems with Limit Cycle using LQR Trees

Ramkumar Natarajan!-?

Abstract— We present a multi-query recovery policy for a
hybrid system with goal limit cycle. The sample trajectories and
the hybrid limit cycle of the dynamical system are stabilized
using locally valid Time Varying LQR controller policies which
probabilistically cover a bounded region of state space. The
original LQR Tree algorithm builds such trees for non-linear
static and non-hybrid systems like a pendulum or a cart-pole.
We leverage the idea of LQR trees to plan with a continuous
control set, unlike methods that rely on discretization like
dynamic programming to plan for hybrid dynamical systems
where it is hard to capture the exact event of discrete transition.
We test the algorithm on a compass gait model by stabilizing a
dynamic walking hybrid limit cycle with point foot contact from
random initial conditions. We show results from the simulation
where the system comes back to a stable behavior with initial
position or velocity perturbation and noise.

I. INTRODUCTION

Bipedal walking robots can easily access man-made envi-
ronments and enable friendly interaction with humans, but
such systems are highly nonlinear with hybrid dynamics pos-
ing a challenge to conventional control designs. Controllers
designed to track a trajectory for highly nonlinear systems
provide only a reflex policy and can at most succeed only in
a local region of attraction around the target trajectory being
tracked. To find a policy from any given initial state one
can discretize the state space and use dynamic programming.
However in the problem of stabilizing a hybrid system, which
has continuous dynamics punctuated by discrete transitions,
one must discretize the system using a fine resolution to cap-
ture the jump event with reasonable tolerance. An approach
to control a compass gait where many approximations are
made to adapt the existing methods to hybrid systems is
described in [10].

Also, there is a large variety of robots that consist of
a logical discrete event decision-making system interacting
with a continuous time process. The action capabilities of
such robots cannot be captured with a single controller.
These type of hybrid systems have multiple system dynamics
governing their behavior and can therefore have multiple
discontinuities in any of their trajectory in the state space.
With the increase in the development of highly sophisticated
robots, the need for a hybrid controller is imperative. Our
work focuses on extending a relatively new and a continuous
method of controller design to such hybrid systems.
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This approach is inspired by randomized feedback motion
planning methods, which cover a bounded region of the state
space with locally valid linear quadratic regulator (LQR)
policies [11] that lead to a target trajectory. Tedrake [11] has
mentioned LQR trees as a scalable algorithm that could avoid
the pitfall of discretization in dynamic programming and
also use continuous control actions. However, the original
algorithm did not consider a hybrid system in its formulation
and was tested only on a relatively simpler platform like
a pendulum. Also, the original method only stabilizes the
region of attraction of LQR controller around a stabilizable
fixed point. We focus on extending the LQR trees to stabilize
a periodic limit cycle of a hybrid system. That is, we
would cover a bounded region of state space with funnels
around sample trajectories that lead to the region of attraction
around the goal limit cycle of a hybrid system. The funnels
are regions of attraction around a trajectory created by a
controller that act as a vacuum tube and sucks any state
inside the tube so that they do not leave the tube while
driving the state towards the end of the trajectory. These
regions of attraction can be found using Lyapunov function
verification. Tedrake [17] shows that recent methods that
use Sums-of-Squares (SoS) optimization to verify Lyapunov
functions allow very fast determination of these regions of
attraction.

Reist et. al, [16] provide a very similar algorithm which
verifies the funnels empirically through simulation instead
of using SoS optimization. This method mainly aims at
simplifying the implementation of the verification process at
the cost of time complexity. It is tested on a more complex, 2
DoF cart-pole system. Here the size of a funnel is initialized
to a very high value and is trimmed for every sample that
fails to reach the goal under the time varying LQR policy of
the nominal trajectory. Hence the method requires a huge
number of samples, both to build the tree and to verify
funnels. However, the number of nodes in the tree and several
other results will be unchanged even while using the formal
verification. Hence we will be comparing our results to this
implementation[]

The original LQR tree algorithm ensures that any sequence
of such funnels ends at the region of attraction of the final
controller that stabilizes the system at a fixed point. In this
paper, we design sequences of funnels that end at the goal
limit cycle. For this, we ensure that the size of each funnel,
at their end, which directly connects to the limit cycle is

I'The original implementation only shows results tested on a pendulum.
A 2-DoF cart-pole system would be better to compare with since a compass
gait is a 2 DoF system too.



less than the funnel of the limit cycle itself. Also, we use
trajectory optimization to generate hybrid trajectories instead
of a single continuous trajectory which enables our algorithm
to work for hybrid systems.

II. RELATED WORK

Stabilizing the gait has been a great interest among
robotics researchers and falls into two broad classes: 1)
Based on the Zero Moment Pole (ZMP) principle 2) Passive
dynamic and limit cycle walkers. Robots like Honda ASIMO
uses the ZMP technique [7] to keep the dynamical degrees
of freedom fully actuated. The criteria in ZMP is to keep the
center of pressure within the support polygon of the stance
foot. However, the motions resulting from these techniques
are very unnatural and inefficient.

There is a large body of work that aims to find the most
stable limit cycle. Dai et al. [18] formulates an optimization
problem to find the limit cycle that maximizes its robustness
against external disturbances. They do this by minimizing
the mean controller costs of limit cycle states encountering
collision so that the reset states post impact lie close to the
limit cycle. But our method is indifferent to any such goal
limit cycle and brings the system back to a given goal limit
cycle trajectory from far outside the region of attraction.

To deal with states that are far outside this region of attrac-
tion, [5] and [12] plan trajectories beforehand which can act
as look-up table that provides a policy for any given initial
state. The recent trend in verifying a Lyapunov function using
convex optimization techniques gave birth to several effective
methods like [11] and [16] that did not exist before due to the
time overhead in verifying Lyapunov functions. Numerical
methods for computing regions of finite-time invariance [15]
(“verification of funnels”) around solutions of polynomial
differential equations is extensively used in this paper. In fact,
the idea is to cover the state space with the funnels around
the sample trajectories that lead to the region of attraction
of the goal trajectory. These funnels have non-zero volumes
in state space and hence can effectively cover a bounded
region filled with nominal trajectories . Moreover, it takes
relatively less number of funnels to cover the entire region
of state space compared to the number of nodes in other
methods like Probabilistic Road Map (PRM) [2] to cover a
given region.

There are several previous works that describe the usage
of sample paths as fundamental representation of policies.
Initial attempts to use sampling based planner to control
nonlinear hybrid systems uses Rapidly-exploring Random
Tree (RRT) [5]. Here, the nearest state in the tree to a
state sampled at random is forward simulated with a random
control input. Thus, due to forward simulation, every edge
in the tree is a feasible trajectory with which we have a
policy to go from the start node to any other node in the
tree (which may include goal if a path is feasible). Most
of the work in this field following [5] can be categorized
as improving the 1) Sampling distribution [12] 2) Distance
metric [11], [16], [21] and 3) Extend operation [11], [16].
LQR Tree algorithm [11] uses the controller cost function as

distance metric which improves the success rate of finding a
trajectory using direct collocation [1] from the nearest point
on the tree to the sampled point (extend operation). Our work
focuses on extending the capability of LQR Trees to stabilize
a hybrid trajectory.

The remainder of this paper is outlined as follows: Section
III sets the mathematical premise for the proposed extension.
Section IV explains the proposed method in detail, viz., the
basic principle of Time Varying Linear Quadratic Regulator
(TVLQR) and how it is used to stabilize a goal limit cycle,
the estimation of the limit cycle itself, the details involved in
using the direct collocation trajectory optimization for hybrid
trajectories and putting it together to cover the bounded
region of state space with recovery policies. The testbed and
the collision dynamics that is responsible for the discrete
jump in the state space are described in section V. The
algorithm is experimentally evaluated using the simulation
of compass gait in section VI. Section VII and VIII offer a
discussion and concluding remarks.

III. PROBLEM STATEMENT

Consider a hybrid system with continuous dynamics X =
f(x,u) and discrete transitions at Xg,,, With stabilizable goal
limit cycle given by {x)(¢),ul(¢)} where x)(¢) is the limit
cycle trajectory and uf)(t) is the open loop control law. Let X
be the entire state space of this system and Xg be the set of
stabilizable states of this space. The LQR tree algorithm has
a number of feedback stabilized sample trajectories which
we’ll denote using {x'(¢),u’(¢)} for i’" trajectory in the tree.
Let each trajectory start at time t(i) and end at time tj’}. We
use a controller ¢! to stabilize the system around every i
trajectory which results in a region of attraction F’ around
this trajectory such that F' € Xs. From the LQR trees for
any i we have, Xi(t}) € F/ for some j. We design the system
such that, the same holds for every trajectory and the system
always ends in the respective parent’s funnel at the end of
each child’s trajectory ultimately leading to the funnel of goal
limit cycle, F'. Our primary objective is that, as the number
of sample trajectories increase, the union of all the funnels
cover the entire stabilizable state space by also accounting for

n .
the discrete state transitions i.e., (limn_m UF |\Xs=0.
i=1

=

IV. METHOD
A. TVLQOR feedback stabilization for hybrid systems

We use a TVLQR to stabilize the system around a
given trajectory. We first explain the theory behind TVLQR
controller which is necessary to estimate the funnels. Let
us consider the sub-problem of designing a time-varying
LQR feedback based on a time-varying linearization along
a nominal trajectory. Consider a smoothly differentiable,
nonlinear system x = f(x,u) with stabilizable limit cycle

trajectory, x)(¢) and u)(t). Let A(t) = g—g ,B(t) = %‘ be
. o . 0 e

the linearization of system dynamics with respect to state and

input respectively. For now, assume we have the optimal cost-

to-go matrix of TVLQR controller (around the limit cycle)



S!(r) for the limit cycle trajectory. Determination of S'(r) is
discussed later in this subsection.

The optimal cost-to-go for any nominal trajectory
{x0(t),up(t)} of the controller is given by [11] as,
P& =5 OSOK0), SOH=S"(0) O
where S(7) is the solution to the Riccati equation
—S$=Q-SBR 'B’S+SA+A’S )

and the optimal feedback policy of TVLQR controller is
a*(r) = —R'BT (1)S(1)x(r) = —K(1)x(r) 3)

where X(¢), u(¢) are the state and input deviations from
the nominal values xo(7) and ug(¢), Q and R penalize X(7)
and a(z) respectively in the LQR cost function. From the
above description of obtaining S(¢) for a trajectory we can
conclude - 1) We need the cost to go matrix at final time
step, Q = S(t) from where we can integrate backwards to
obtain S(#). 2) The controller thus obtained promises only to
put the system finally within an ellipsoid X" (t7)S(/)X(t7) <
p(tf) (intuitively this means the cost-to-go is less than some
threshold p(zf)) for some p(t¢). The nominal trajectory
{xi(t), ui)(r)} stabilized by a controller ¢’ terminates at
a new nominal trajectory {x5"'(¢), ui'(¢)} stabilized by
a controller ¢/*!. It is required by condition 2) that ¢!
must be able to stabilize any state in the ellipsoid resulted
by applying ¢!. The same holds for trajectories following
{xiF(#), " (r)}. As we keep transitioning the system from
one trajectory to another, the system eventually must find
itself in a stabilizable state or the limit cycle.

Consider a limit cycle that starts at #o and ends at ¢7. Since
the limit cycle ends at its start i.e., x)(ty) = xh(t7), we also
have S'(ty) = S'(¢7). One of the methods to find S/(z) is
to initialize S'(t;) to some arbitrary So(t) [} and integrate
backwards to get So(#o). In the next iteration, we re-initialize
Si(tf) to So(to) and integrate backwards to get S;(fo). This
process is repeated till convergence i.e., till Sg(fo) = Si(tr)
E] for some k. The value of time varying cost to go matrix
S!(t) is initialized to this Sy (). This is explained in Alg.

For a hybrid system, such as the compass gait, we have
continuous dynamics and discrete transitions. Hence we
cannot obtain S(f) from a single Riccati equation since
a solution to a first order quadratic differential equation
must be smoothly differentiable. Therefore we have different
Riccati equations for different modes the system is operating
in. And we have a discrete ‘jump’ event in the Riccati
equation where we jump from one equation to another.
This is called the jump Riccati equation [14]. The collision
dynamics of the system is a function CD?¢(x) that maps
states in mode p just before the collision event (guards that
cause discrete transitions) to states in mode g just after the
collision. That is, x(t*) = CD?(x(¢t)), where ¢~ and 1"

%In Sk(f), k is the number of iterations. We can initialize it to penalize the
state dimensions we care about. A good choice would be Q from TVLQR
cost function

3In practice we would want them to be close under some tolerance.

are the instances just before and after the collision event.

We linearize the collision dynamics of the system to get
Z]

Ay = aCa]x) . The cost to go matrix during the jump event

is given by [14],

S(t7) =ALS(tM )AL 4)
B. Funnel around a trajectory

Consider a system x = f(x,u) with a closed loop limit
cycle x)(t),ul(r) whose region of attraction is given by
<'(1)S'(1)x(r) < p'(), where (1) = x(t) —xh(t). S'(¢) can
be determined empirically as described in subsection
Let { be a trajectory that takes the system from an arbitrary
start state to the state x)(z,) of the limit cycle. The closed
loop limit cycle requires { to end at a state x, such that
(xe — xb ()78 (1) (xe — xb(t.)) < p'(t). We can view this
as the allowed uncertainty at the tail end of the trajectory
{. Hence for a time varying system, instead of defining a
discrete region of attraction at every time step, we define
funnel E] as the region around the trajectory where any point
is guaranteed to be led by the closed loop system to the
region of allowed uncertainty at the end of the trajectory.
By stabilizing the system around a open loop trajectory
xo(t),up(¢), the TVLQR control design would give us the
time varying controller u*(¢) =uo(¢) — K(¢)(x(¢) —x0(¢)) and
also the cost-to-go function J*(%,¢) = %7 (t)S(t)%(¢). This
cost-to-go function is a candidate Lyapunov function for our
system locally.

Mathematically, we can define the funnel as the time
varying region % ,where

B(1) = {x|F(x,1) € B} (5)

where F(x,t) is the function that forward simulates the
closed loop trajectory from ¢ to ¢y and B! is the region of
attraction around the goal trajectory.

For any such trajectory {, we use the cost-to-go, which is
time varying here, as the Lyapunov candidate and find the
largest p(¢) in the interval[f, ;] using SoS programming and
binary search for p(¢) as in [11], which gives us the region

B(p()1) = {xl0 < V(x,1) < (1)} ®)

where V, the value function of the closed loop system, is
nothing but J*, the optimal cost-to-go from Eq.

This must satisfy Eq.[5] Similarly for the goal region, the
region of attraction is

B (p(),1) = X0 < V(x,1) < p' (1)} 7)

where p!(t) represents a constraint on the final value, p(ty)
such that p(t¢) < p'(t). For a time varying system, it is not
reasonable to talk about asymptotic stability as this can only
be defined for the system as time goes to infinity. However,
we can still say that the cost to go function is going downhill
and the system is converging to the trajectory for the duration

4We use the term *funnel’ for a trajectory which is analogous to basin of
attraction for a stabilizable state.



of the trajectory. The bounded final value condition can be
verified by proving that %(p(.),t) is closed over ¢ € [to,1/].
The set is closed if Vr € [to,7] we have,

V(x1) >0, VYxeAB(p()1) (8)
V(x,1) <p(t), vxe B (p(-),1) ©)

where %" is the boundary of the funnel %,

B (p(-).1) = {xIV(x,1) = p(1)} (10)

The first condition (Eq. [8) is satisfied by the LQR deriva-
tion which makes sure that S(¢) is positive definite. The time
derivative of the Lyapunov function is given by,

JH(%,1) = 2%7S(1) f(x0(t) + %, u0(r) — K(£)%) + X S(1)%
(11)

Tedrake verifies the second condition (Eq.[9) by formulating
a series of sums-of-squares feasibility programs just as in
original LQR Tree algorithm [11].

Building a funnel around the required goal trajectory gives
the system a little breathing area. It is impossible for a system
to track the trajectory obtained from direct collocation, as it
will be comprised of cubic splines. It is however reasonable
to ask for the dynamics of the system to evolve in such a
manner that it lies within the volume defined by the LQR
funnels.

Algorithm 1 CostToGoLimitCycle(x),u,Q,R) Sec. IV.A
1 Qr=Q

2: converged < false

3: while not converged do

4 [c,S] + tvlgr*(x{,u),Q,R,Q/) {Eqn
Qy, < Qy

S(tJT) + S(0)

xp X (ty)

Ay aCalx)”q |xf
S(17) + ALS(t))Aca {Eqn. i}

10: Qs < S(;)

11 if [| Qs —Qy, ||[F < threshold then

12: converged < true

R A4

13: return [c,S]

C. Estimation of the nominal limit cycle

The hybrid system under our consideration has a stabi-
lizable limit cycle behavior executing the trajectory {x}(z),
u))(t)}. That is, for some bounded perturbation < p’(t), the
system stays inside the bounded region around the limit cycle
trajectory. Dynamics of a hybrid system can be factored into
modes and the discrete transition is only due to resetting the
state governed by the dynamics of current mode to an initial
state governed by dynamics of the next mode. That is, a
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Fig. 1: The limit cycle, x)(t), is estimated using direct
collocation for hybrid systems. The dotted points show the
knot points used by direct collocation between which it fits
cubic splines. The red line represents the swing leg and the
blue line the stance leg [20].

guard event only resets the system in the current mode (in
dynamics sense) with another configuration.

The time instances just before and after this transition or
collision event are ¢t~ and ¢+ and the states are x(¢~) and
x(t1) respectively. Let the collision dynamics function CD"?
which takes you from mode p to g be such that x(¢r) =
CD?(x(¢7)) (Eqn.[17] &[18). To estimate the periodic limit
cycle trajectory of the hybrid system we perform point to
point trajectory optimization with k& knot points, Xi,...,Xg,
with the constraint that x; = CD”?(x;) which gives a set of
continuous trajectories.

A hybrid system might have more than one stable limit
cycle. This is attributed to the range of different possible
inputs — all of which achieve limit cycle stability. We choose
the limit cycle that results in a local optimum given the cost
function [; u’ (¢)Ru(t)dt. Although we can design an LQR-
tree algorithm which finds a policy from any initial state to
the region of attraction of this open loop limit cycle, it is
important to design a TVLQR controller which stabilizes the
system around this limit cycle itself to increase the region of
attraction of the open loop system. This region of attraction
is defined by X7 (r)S!(r)%(r) < p'(t) as discussed in section
and IV-B

D. Direct collocation for hybrid systems

We use direct collocation to give locally optimal trajecto-
ries from a given pose to the goal position. This is required as
we need a trajectory that connects a newly sampled state to
the nearest funnel in the TVLQR cost function sense. For the
hybrid trajectory optimization, we add the mode transition
constraint in the optimization problem. The transition can be
easily described using the collision event which occurs in
the hybrid dynamical system. We search for this collision
event between knot points so that the system dynamics at



Algorithm 2 LQRTreesAroundLimitCycle(Q,R)

1: [x}(t),u)(t)] + PeriodicDirCollocation®()

2: [¢,S] + CostToGoLimitCycle(x),ul))

3: [V,p] « FTV*(xh,ub,S,c)

4: T.init({x},u},V,p,NULL})

5: converged < false

6: iter <0

7: while not converged do

8: X; < Uniform Random Sample from State Space
9: Xpeqr <— Nearest Neighbor with CostToGo metric
10: parent < Pointer to node containing Xeq,

11: if x; in RegionOfAttraction®(X,eq) then
12: iter <—iter +1

13: continue

14: [X0, U0, Success] + DirCollocation®(Xuear,Xs)
15: if Success then

16: iter <0

17: Viear <— region of attraction of parent

18: [c,S] « tvlgr*(xo,up,Q,R,Viesr) Sec. IVA
19: [V,p] < FTV*(x0,u0,S,¢,Viear) Sec. IV.B

20: T.add({xp,u0,V,p,n})

21: else
22: iter <—iter +1

23: if iter > MAXITER then
24: converged < true

this event is accounted for. Once this transition is added into
the dynamic model, a normal use of the collocation gives
us the required nominal trajectory, xo(¢) and ug(¢). Another
problem to be addressed here is the mode sequence that is to
be given to the optimizer. We assume that we know the mode
sequence of our hybrid system and input it with an initial
guess for the time when the transitions occur. However, for
systems with several modes, the number of possible mode
sequences become enormously high. For such systems, we
can let the solver figure out the order of contacts using the
implicit trajectory optimization method proposed by Posa et
al. [19].

We cannot directly use the trajectory generated by the
optimizer (line 14 in Alg.[2) method as a sample policy since
the probability of a given initial state being one of the states
in this nominal trajectory, Xo(¢) and ug(t), is zero (a trajec-
tory in state space has zero volume). The TVLQR controller
however stabilizes the system around this trajectory and finds
the funnel of attraction which has a non-zero volume in state
space (and hence has a non-zero probability of occurrence).
For a hybrid trajectory, we have piecewise continuous sub-
trajectories punctuated by discrete transitions. We apply
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Fig. 2: The limit cycle of compass gait. The red and the
blue curves are the nominal trajectories of the swing and the
stance leg respectively. The grey region shows the verified
funnel the nominal limit cycle trajectory trajectory xj(t)
under the action of TVLQR controller.

TVLQR controller to stabilize the system around every piece
of continuous trajectories and find the funnel around each
trajectory separately. The jump Riccati equation finds a cost
to go S(t7) such that every state inside x’ (t7)S(t 7 )x(t7) <
p(¢7) lands in x” (+7)S(¢F)x(¢7) < p(¢+T). This ensures that
the system is stable throughout the hybrid trajectory.

E. Growing the LOR Trees

The LQR tree is initialized with the goal funnel of
the nominal limit cycle x}(r) and u)(z). Next, a state x;
is randomly sampled uniformly from the state space. If
the newly sampled point falls inside the funnel then it is
discarded (Alg[2 line 11). Otherwise, we find the nearest
point in the existing tree by using the LQR cost-to-go
distance metric[11]. This in a way means that the controller
requires minimum effort to bring the sampled point to this
nearest point. Once the closest node in the tree is identified
we perform trajectory optimization like direct collocation
connecting the sampled point and the nearest point (Alg[2]
line 14). Then we design the TVLQR controller for the
trajectory. Following this, the funnel around this trajectory
under the stabilization of TVLQR is verified using section
IV-B. We add the newly verified funnel to the existing tree.
Our algorithm terminates when a predetermined number of
consecutive sample points returns failure or fall in existing
funnels.

One can find the TVLQR controller for the given trajectory
using Eq. [3] We feed the piecewise continuous trajectory of
the hybrid trajectory and design separate TVLQR controllers
for each mode. Then we verify every controller separately
and determine the Lyapunov function V(¢) and the size of the
funnel p. Hence the region of attraction is given by V(¢) <
p(¢) with which we check if a sampled point falls inside a
funnel or not.



V. EXPERIMENTAL SETUP

The dynamical system in which we investigate our algo-
rithm is a minimalistic version of a compass gait. The com-
pass gait is modeled as a two link (L; and L) manipulator
with masses m concentrated at their center Fig[3]

Fig. 3: The compass gait. Link L, is attached to the ground
and L, is attached to L, by pin joints J> and J; respectively.
The model has a control input u at joint J; that exerts torque
between the two legs and a mass my, is attached at this joint.

We define the state of the system i.e., 0; for swing (L1)
and 6, for stance (L2) and their derivatives with respect to
the world frame attached to the ground as shown in Fig[3]
The state of the system is given by, x = [6;,6,,0,,8]". The
dynamics governing the compass gait model can be described
as M(x)x + C(x,x)x+ G(x) = Bu, where the matrices M(x),
C(x,%) and G(x) contain the inertial, Coriolis and the gravity
terms as given in [13].

M(x)% + C(x, %)%+ G(x) = Bu (12)

where,
M= [—mlb cr:j];@z —6) _(nn;flzl—cnijl(zeijn?zlz)} (13)
C= [mlb sin(G(; —-6)) 6, "t sm(eé o 6.2} (14)
G= {(mhz 5 ot 171519)2 sin(@z):| (15

where [ = a+b. The compass gait is placed on a flat terrain,
i.e., the acceleration due to gravity g is in the —Z direction.
During the walking cycle, when the swing leg collides with
the ground we generally assume conservation of angular
momentumE]about the hip joint and toe of the swing leg. The
pre-impact and post-impact state parameters can be linearly

SWe do not consider the change in the mechanical energy of the system
during this conservation. In [3], they prove that AE is always negative.

related using the collision dynamics as shown below [13],

SR

T+ — [mb(b—l cosy) ml(l—b cosy)—|—ma2—|—mhlz]

(16)

mb? —mbl cosy
(17)
B _ 2
T — mab —mab+ (mpl* +2mla) cos(y) (18)
0 —mab

where 6,7,6, and 0,",0," are the joint angular velocities
just before and after the collision, ¥y = 6; —8,, T~ and T+
are the transition matrices that contain the coefficients of
conservation of angular momentum. The size of T~ and T™
matrices are 2 X 2 because angular momentum is conserved
about two points and for two angular velocities. During
collision event, the mapping between joint angles before and
after collision is obtained by merely interchanging them i.e.,
91+ =0, and 0, = 0, . The complete collision dynamics
CD(x) is found using this and velocity mappings in Eq.

VI. EXPERIMENTS AND RESULTS
A. Compass Gait Model

The compass gait model whose dynamics are described
above is simulated with the following parameters. The mass
at the hip m;, = 10kg, link masses m = 5kg, link lengths
a=b=0.5m and g =9.8m/s*>. Here x = [0y,6,,6, 6] and
u = [7] at the hip. The joints are assumed to be frictionless
and the collisions are inelastic.

B. Direct Collocation and LOR Trees

The direct collocation procedure is a nonlinear trajectory
optimization problem which requires an initial guess for
x(¢) and u(r). The initial guess for x(¢) is a straight line
connecting the random sample and the nearest point in
the existing tree based on the TVLQR cost function. The
initial guess for input trajectory u(z) is a random value. The
mode transition constraint is given by the collision dynamics
(Eq. [T6) which occurs in the compass gait model when the
distance between the swing leg and the ground is zero. The
direct collocation function has very sparse gradients and the
constraints depend upon the values at knot points or adjacent
knot points. Solvers such as SNOPT [8] can very efficiently
solve such nonlinear programs with sparse gradients. Every
iteration of direct collocation is terminated and a new state is
sampled if there is no result after 40 seconds or if the solver
fails.

The parameters of the LQR tree algorithm are Q =
diag([10,10,1,1]), R = [15]. We terminate after 500 con-
secutive samples (MAXITER om Alg. 2) fall in the existing
tree or fail to find a trajectory to the tree. The LQR tree is
considered to have reasonably covered the entire region of
stabilizable state space for compass gait if 500 consecutive
samples either fall inside the funnels or outside and the direct
collocation fails.
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Fig. 4: Phase plane plot showing the recovery of the compass
gait with (a) velocity perturbation only (b) both velocity and
position perturbation. The curves in red and blue show the
nominal trajectory of the swing and the stance legs respec-
tively. The gray region shows the verified funnel around each
trajectory under the action of TVLQR controller.

System Pendulum | Cartpole | Compass gait
No. of Samples 146 - 252
6068 5821 -
No. of nodes 146 - 192
477 881 -
Time taken for Oh 2m - 6h 21m
planning 0.5h 2h -
TABLE I:

Results for pendulum and cart pole systems obtained from
[11] and [16]. The results of verification by SoS optimization
and simulation are shown in blue and red fonts respectively.
Note: A “-” denotes unavailability of data from [11] or [16].

The goal limit cycle trajectory x)(¢) and u)(t) are ob-
tained directly from the PeriodicDirCollocation()
method. Also, a TVLQR controller given a nom-
inal trajectory can be found using tvlgr(). The
sampledFiniteTimeVerification() (aka FTV) finds
the ratio of value of Lyapunov function V(x) to the size of
the funnel p(z). So to check if a point x is in a given funnel,
we just need to check V(x)/p(r) < 1.

All the function implementations denoted by the
typewriter typeface and asterisk (*) superscripts in the
Alg. [1| & 2] are available in DRAKE [20].

C. Experiments with Initial Perturbation and Noise

Once the state space is filled with LQR trees the compass
gait has a recovery policy to stabilize itself back to the
limit cycle’s region of attraction from any arbitrary and
stabilizable initial condition. It is to be noted that not all
states of the compass gait are stabilizable no matter what
input we apply. For example, a compass gait lying down
cannot pump energy to get itself up in any way to get back
up on two legs. We tested our algorithm by perturbing both
the position and velocity states of the system. The figure
shows the phase portrait of the case in which there was an
initial velocity perturbation and figure [(b)| shows the phase
portrait of the case in which there was both velocity and
position perturbation. Both the above cases are simulated by
considering a white Gaussian noise in the forward simulation
with 0.05 as standard deviation.

D. Inferences

TABLE I provides a comparison of the two methods to
generate LQR trees and the dynamical systems they were
applied to. It took around 381 minutes to completely cover
the state spaceﬂ with funnels for the compass gait system
being evaluated. The results reflect our intuition in that the
simulation methods take longer to build the LQR trees.
For the compass gait, 23% of the time was used up for
direct collocation and 58% for funnel verification. Trajectory
verification takes a big chunk of the total time because the
trajectories being verified are hybrid trajectories. There are
discrete jumps in the trajectories as the mode of the system
changes with time. The start of the next mode trajectory is
obtained using the jump Riccati equation.

VII. FUTURE WORK

One of the interesting future works would be to extend
the algorithm for the case of a high DoF compass gait
(Compass Gait with knees[9] — 3 DoFs). We have a more
efficient walking limit cycle with knees than keeping the
knees straight. To find a policy for kneed gait with LQR trees
of kneeless gait, a set of approximations could be made to
map a given state in kneed gait to a state in simple gait and
follow its policy given by the LQR-tree. Also the number
of possible mode sequences becomes intractable for high
DoF systems. For such systems (kneed compass gait) mode

61t was evaluated on a Intel Core i7-6700K 4 GHz Quad-Core Processor
with 32 GB RAM



sequence specification could be circumvented by using the
algorithm laid by [19].

When a perturbation causes the kneed compass gait to
go off the region of attraction of its limit cycle we can
approximate the instantaneous configuration by 1) making
the links move to a configuration with equal angles at the
knees and by locking the knee angles 2) stretching the knee
to obtain an equivalent low DoF configuration. In both cases,
we go to the described configurations using direct collocation
with the constraint that the knee angles are equal (or zero for
straight knees). Once we stabilize the system with the knees
straight or locked, the system will exhibit a stable kneeless
limit cycle. We just need one trajectory from one of the points
of this limit cycle to a point in the more efficient kneed limit
cycle. Moreover, we can use these trajectories obtained from
such mappings as seed trajectories to build trees in the state
space of kneed compass gait.

VIII. CONCLUSIONS

We presented a method to use LQR trees to control
hybrid systems like compass gait. We also devised a method
(Algorithm[T)) to find the region of attraction of TVLQR
controller around a dynamic limit cycle which is important
to find the funnel around every other trajectory of LQR Tree.
This method effectively covers the stabilizable regions in
a bounded state space with a series of feedback stabilized
sample trajectories that lead to the goal trajectory. The
algorithm was tested for a compass gait modeled as a two-
link manipulator. We also discuss how an LQR Tree built for
a lower DoF robot may be reused on a higher DoF systems.
While we probabilistically cover stabilizable regions of state
space to provide a policy beyond a controller’s region of
attraction, it takes more than six hours to do this for one
goal trajectory. For a new goal trajectory, one can reuse the
tree if a trajectory can be found between any two points —
one in the old and one in the new goal trajectory. Otherwise,
it could potentially take another six hours of planning.
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