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Abstract— In classical robot-camera calibration, a 6D trans-
formation between the camera frame and the local frame
of a robot is estimated by first observing a known cali-
bration object from a number of different view points and
then finding transformation parameters that minimize the
reprojection error. The disadvantage with this is that often
not all configurations can be reached by the end-effector,
which leads to an inaccurate parameter estimation. Therefore,
we propose a more versatile method based on the detection
of oriented visual features, in our case AprilTags. From a
collected number of such detections during a defined rotation
of a joint, we fit a Bingham distribution by maximizing the
observation likelihood of the detected orientations. After a tilt
and a second rotation, a camera-to-joint transformation can
be determined. In experiments with accurate ground truth
available, we evaluate our approach in terms of precision and
robustness, both for hand-eye/robot-camera and for camera-
camera calibration, with classical solutions serving as a baseline.

I. INTRODUCTION

Whenever a robotic system is to interact autonomously and
safely with its physical environment, a mapping between the
coordinate frame defining the position of the actuators and
the sensors is required. For example, in the case where a
robotic arm autonomously grasps an object that is sensed by
a camera, it is crucial to know the mapping from the joint
positions of the arm to the 3 rotational and 3 translational
degrees of freedom (6DOF) pose of its end effector in
the camera coordinate frame. To obtain such a mapping,
a so-called hand-eye-calibration process is needed (more
generally, a robot-camera calibration), and in the literature
there are a number of techniques presented that can achieve
this (see, e.g. [1], [2]). In such methods, images from a
precisely known calibration pattern are recorded at different
configurations of the robot. From a set of robot poses and
detected correspondence pairs between pixels and positions
on the calibration pattern, e.g. the corners on a checker-
board, the standard approach finds, apart from the intrinsic
camera parameters, extrinsic transformation parameters by
optimizing a set of non-linear equations. To obtain a well-
conditioned problem, a large range of robot configurations
must be available (ideally, covering two half-circles in front
of the camera that are perpendicular to each other [3]).
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(a) The DLR Lightweight Rover Unit (LRU) [4]
with the pan-tilt unit and base cameras marked.

(b) Justin [5] with the
base camera marked.

Fig. 1. Two examples of complex robotic systems where traditional hand-
eye and/or camera-camera calibration is difficult to apply.

Often, however, it is hard or even impossible to reach certain
configurations. Furthermore, the standard method gives poor
results if the positioning of the robot arm is imprecise.

Visual servoing can be used to cope with an imprecise
hand-eye calibration [6], [7], but this brings the additional
problem of more or less continuous occlusion-free visibility
and a higher computational complexity [8]; as for self-
tracking [9]. Therefore, in this paper we propose a different
approach. We use detections of AprilTag fiducial markers
[10], or any other 6DOF pose estimates of reference ob-
jects. These can either be attached to the moving robot
and observed by a static camera or, vice-versa, where the
camera moves and the targets are static. AprilTags are a good
alternative to checkerboards when multiple of them need to
be used and distinguished in a small area. Thus different tags
can be observed by the same camera during large rotations,
and/or different cameras can observe different tags, whereas
one or more checkerboard patterns are cumbersome to use.
When attached to a robot arm (e.g. on the LRU’s, see
Fig. 1a), small tags can be even left in place, allowing to
check the calibration online and recalibrate if needed.

Our approach has three major benefits over existing meth-
ods: First, it works with a comparably low number of
detections. Second, it is easier because no expert knowledge
of good camera to calibration pattern movements is needed.
And third, we can use our approach also to calibrate the
extrinsics between a camera and a kinematic chain, or two
cameras mounted without overlapping fields of view when
no joint encoder information is available, requiring only two
rotational joints. This paper builds on [11], where instead
of testing the method on the Justin robot, where traditional
calibration was not possible (see Fig. 1b). We obtained
various ground truth estimates and evaluated our method
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based on that. Moreover, we performed experiments with
different cameras and performed camera-to-camera extrinsic
calibration, comparing our method with a Simultaneous
Localization and Mapping (SLAM) based one as well.

II. RELATED WORK

Besides the mentioned classical supervised (i.e., with
a known calibration pattern, placed according to expert
knowledge) hand-eye calibration methods [1], [2], there exist
several other methods to obtain an intrinsic or extrinsic
calibration with limited or without supervision.

For the intrinsic calibration of depth sensors, Teichmann et
al. present a method called CLAMS (calibration, localization
and mapping simultaneously) [12]. The authors use the fact
that certain intrinsic parameters of depth sensors are myopic,
meaning the error gets larger with increasing distance to the
sensor. The main idea is to collect raw sensor data over time,
then iteratively estimate the ego-motion of the sensor during
this recording by SLAM methods, compute a near-sight map
from which training examples are extracted, with which a
model for the distance-variant parameters can be estimated.

For extrinsic unsupervised calibration Kümmerle et al.
[13] propose an approach based on Graph-SLAM methods,
where the camera position explicitly gets incorporated. This
however requires information about robot odometry and an
initial guess about the forward kinematics parameters of the
robot is needed. In the case of robots with imprecise forward
kinematics, like the iCub, a camera to robot calibration
can also be learned through experience. Leitner et al. [14]
propose an artificial neural network that is trained by ground
truth positions provided by an industrial robot, that are
detected by the iCub’s cameras and reached for by the hands.
While extremely deep neural nets can be efficiently learned
with today’s GPUs, the training required by another robot
makes only sense in such difficult to control robots like
the tendon-driven iCub. Levine et al. [15] follow another
approach to use deep learning methods in order to overcome
hand-eye coordination inaccuracies for grasping objects. By
training a large convolutional network with many grasp
attempts, robots can learn the spatial relationship between
gripper and objects. Thereby grasps with a high success rate
can be achieved without the need of a calibration. However,
much data is needed and the solution is robot configuration
specific, thus challenging to transfer to other target poses.

AprilSLAM is another approach which performs camera
pose estimations1. It is originally developed by Kumar
Robotics with the aim to estimate camera pose from one
AprilTag without initilization steps. The library uses the
AprilTag algorithm based on [10], while the mapping system
is build on the GTSAM library [16] and is available as
a ROS-Package. The method detects an AprilTag in the
first provided image that confirms the predefined AprilTag
parameters. However, one can define only one tag-family and
tag-size. Therefore, all other tag-families are not considered.
This leads to problems if there are AprilTags with the same

1https://github.com/ProjectArtemis/aprilslam

ID and tag-family. Moreover the program only considers
AprilTags that are in the center of the image which has
to be known during the image acquisition process. With
the detected AprilTag the approach associates the 2D points
in the image with 3D points in the world frame. The first
detected AprilTag is set as origin. The approach tries to find
the relative pose by using further detected tags. Therefore,
at least one AprilTag has to be continuously visible in two
consecutive images. Furthermore the algorithm experiences
problems if two consecutive images have a big relative
difference between their poses, in which case the SLAM
approach can probably not converge.

III. CALIBRATION BY MODELING ROTATIONAL JOINTS

The basic idea of our approach is to track visible features,
in our case AprilTags fiducial markers [10], while performing
a rotation around two axes with the robot. Each visible
AprilTag yields a 6D transformation from the camera’s frame
of reference to the marker’s frame of reference. If a marker
is visible in consecutive camera images a relative rotation is
calculated (see Section III-B). The key idea of our approach
is to first rotate the camera only around one axis and
collect all detected orientation vectors represented as unit
quaternions. Then, we fit a Bingham distribution [17] into
this data, from which the most consistent axis of rotation
can be estimated. This axis corresponds directly to the
physical rotation axis of the robot. The centers of rotations
are obtained by jointly optimizing the centers of multiple
concentric circles that are formed by the tag’s path in the
camera’s image. To obtain a second axis, and thus build a
frame of reference describing the rotated joint of the robot,
we perform a second rotation of the camera, fit again a
Bingham distribution, and determine the intersection of the
two estimated 3D lines.

In the case of the humanoid robot platform Justin, a
camera is attached to the robot, see Fig. 1b, and is rotated
around its vertical axis. By performing several rotational
motions of the robot (e.g. tilted in different directions), we
can estimate the intersection of the rotational axes, which
corresponds to the center point of the base [11]. But also
the other way around is possible e.g. in a mobile platform
like the LRU, see Fig. 1a. If markers are attached to the arm,
which is then rotated in front of the camera, the rotation axis
can be estimated in the same way. If this rotation is repeated
under a different pose, an intersection of the rotation axes
can be calculated. If the different poses only differ by a
rotation of one adjacent joint, the intersection point found
has a physical correspondence. If the joints lie on the axis
around which the rotation occurred, the intersection point
will be the joint adjacent to the joint which rotated. Even if
those joints do not lie on the rotational axis, the intersection
point corresponds to a known “virtual” point of the robot,
which can be obtained e.g. by CAD data.

A. Bingham Distribution for ML Estimation of Rotations

We describe rotations with unit quaternions, utilizing their
computational advantages in comparison to other represen-



Fig. 2. Example results of estimated rotation centroids and axes, depicted
as 3D cylinders and the plane of rotation of the samples around the centroid
(red), as well as the rotation axis (thin blue line) and the found markers in
green. The coordinate frame shows the frame of reference of the camera.

tations and their lack of singularities [18]. The Bingham
distribution describes an antipodally symmetric distribution
on a sphere [17]. This makes it very useful to describe a
distribution of 3D rotations with unit quaternions, which
represent a double mapping of SO(3) with two antipodally
symmetric half-spheres (i.e., x and −x represent the same
rotation). The general probability density function of a Bing-
ham distribution on a hyper-sphere is given by

B (x;K,V ) :=
1

F (κ1, κ2, κ3)
exp

(
3∑

i=1

κi(v
T
i x)

2

)
(1)

where x ∈ R4 with ‖x‖2 = 1 is a unit quaternion (i.e.
x ∈ S3), κ1, κ2, κ3 are concentration parameters and V =
{v1,v2,v3} are orthogonal 4D basis vectors. F (κ1, κ2, κ3)
is a normalization term, ensuring that the distribution inte-
grates to 1 on the surface of the hypersphere S3.

B. Robot-to-Camera Calibration

A rotation axis can be uniquely defined by an axis vector
(i.e a direction in 3D) and a support point for this axis.
Intuitively one can imagine a marker to be rotated lying
on a 3D circle. The perpendicular to this circle’s plane is
the rotation’s axis vector, whereas its center is the support
point. As evaluated in [11], to accurately find the direction
vector, it is more robust to consider the relative rotations
in consecutive frames of all AprilTags jointly instead (as
they all undergo the same rotation wrt the camera), and fit a
Bingham to them by maximizing the observation likelihood

argmax
K,V

p(x | K,V ) = argmax
K,V

N∏
i=1

p(xi | K,V ), (2)

where the likelihood p(xi | K,V ) of a single relative
orientation xi is given by (1). For more details on how to find
the parameters K and V , we refer to [19]. Then, the rotation
axis can be computed from the mode of the distribution,
and by finding a support point for it. To locate one, and
concurrently refine this direction, a non-linear optimization
is performed to fine a line crossing the centers of all the 3D
circles formed by the tags’ detections [11] (see Fig. 2).

Then, the camera is tilted differently, and performs a
rotation of the same joint. For each tilt the rotation axis
is estimated like described above. The intersection of these

(a) The Xtion was moving around the red and green lines, while the SR300
around the blue and orange one.

(b) Corresponding rotation axes are overlaid, resulting in a camera-to-
camera calibration without assuming overlapping fields of view.

Fig. 3. Estimated rotation axes and intersections (the large central
coordinate axes denote the local sensors frames of the two cameras). See
Fig. 4 and Fig. 5 for details on the cameras’ mounting and joint movements.

bundle of rotation axes is then corresponds to a fixed point of
the joint around which all the rotations occur (see Figure 3a).

C. Camera-to-Camera Calibration

When two or more cameras are attached to the robot, all
cameras can be calibrated to a common frame of reference
of the robot as described above, thus the transformation from
one camera to another can be easily obtained. This allows a
camera to camera calibration even in cases with no overlap
in the field of view of the cameras, a case where traditional
checkerboard based camera-camera calibration fails.

Fig. 3 shows the principle used: in Fig. 3a the resulting
rotation axes from two cameras can be seen, whereas the
red and green line depict the rotation axes from two robot
movements of camera 1 (Asus Xtion), and the blue and
orange one show the axes of camera 2 (Intel SR300). By
estimating the transformation of the intersection of one
line bundle to the other, one can obtain the camera-camera
calibration. This can be seen in Fig. 3b, where corresponding
rotation axes are overlaid, showing only a minimal mismatch.



Fig. 4. The two sensors used, an Asus Xtion (blue) and an Intel SR300
(green) RGBD camera, attached to the end effector of a KR16. Note that
we only use the RGB image of the sensor, not the depth image.

IV. RESULTS

For performing experiments with ground truth estimates,
we used an industrial 6 axis manipulator (KUKA KR16).
We attached two RGB-D sensors at the end effector of
the robot (Fig. 4). Please note that for our method we
only require monocular images and therefore don’t use the
depth information of the sensors. In the surroundings of the
robot mutiple AprilTags are placed. We then performed two
different motions with the robot, in which we rotate the axis
5 of the robot for different tilts of axis 6. During those
motions we track the surrounding AprilTags and obtain 6D
poses describing the rotations and translation of each marker
relative to the camera frame. See also Fig. 5, where (a) and
(b) show two time frames from the first movement, and (c)
from the second movement, i.e. for another tilt of axis 6.
Please refer to the accompanying video2 for details.

A. Rotation Modeling and Marker Selection

In a first pre-experiment a linear motion of the robot is
performed, during which AprilTags are tracked. This allows
a collection of rotational and translational error measures
because we can assume that during this linear movement
no rotational changes occur. Fig. 6 shows the distribution of
translational and angular errors for each marker.

This can be used for ranking the detected markers accord-
ing to their errors. Fig. 7 shows the effect of removing certain
markers on the error of the estimated rotation axis during a
rotational move. It shows two cases, a consecutive reduction
of the markers with the highest errors (solid blue line),
leading to reduction of the estimation error until only one
marker is left, which is not enough for a precise estimation
of the rotation axis. On the other side, when “good” markers
are removed, i.e. with a small rotational and translational
error in the linear motion, the rotation axis error increases
continuously (dashed green line).

Please note that this ranking and pruning step is not
required, but shows the robustness of the method to markers
of different quality. If there are at least two visible markers
available, a precise estimation of the rotation axis is possible.

2https://youtu.be/75zRNwA95xQ

TABLE I
TRANSLATIONAL AND ROTATIONAL ERRORS OF THE ESTIMATED

ROBOT-CAMERA CALIBRATIONS COMPARED TO THE GROUND TRUTH

OBTAINED BY CLASSICAL HAND-EYE CALIBRATION [20]

angular error (deg) trans. error (mm)
A5 to Xtion 0.422435 39.5144
A5 to SR300 0.220287 40.4163

TABLE II
ERRORS OF ESTIMATED CAMERA-CAMERA CALIBRATION COMPARED TO

THE GROUND-TRUTH STEREO CALIBRATION [20] FOR: CLASSICAL

HAND-EYE CALIBRATION AND KINEMATICS, APRILSLAM, OUR

RESULTS ON THE MARKERS USED BY THE SLAM APPROACH AND ON

ALL MARKERS.

angular error (deg) trans. error (mm)
classical (kin) 0.30390 0.3813
SLAM 0.69997 29.8605
our on SLAM 1.01798 15.6916
our on all 0.25334 3.9196

On the other hand, if a robot is available that allows for
precise linear movements, the overall quality of the method
can be improved by ranking the markers based on their
quality. An example result can be seen in Fig. 2.

B. Evaluation of Robot-to-Camera Calibration

Table I shows the result of the estimated hand-eye calibra-
tion, compared to the classical hand-eye calibration based on
the inverse kinematics of the robot, represented as the angular
and translational error from axis 5 (A5) to the sensors.

Note that a classical hand-eye calibration is not possible
for every robot, for example if no inverse kinematics are
available, whereas our method works for any manipulator
which can be rotated around two non-parallel axes. It can
be also seen that the Xtion produces slightly higher errors,
which can be explained by its lower resolution.

C. Evaluation of Camera-to-Camera Calibration

Table II shows the error of a camera to camera calibration
based on our method compared to a classical (stereo) camera-
camera calibration [20]. Note that a classical stereo cali-
bration is only possible with overlapping cameras, or more
cumbersome solutions, e.g., using custom built rigid mounts
with checkerboard patterns to be visible from the cameras.
Our method doesn’t need this, because it obtains a hand-
eye calibration for both non overlapping cameras and obtain
the calibration between the cameras through this common
robot frame. While this is possible with two traditional
hand-eye calibrations through the kinematic chain as well
(see “kin” results in the table), specific motions need to be
executable by the robot, while the requirement for rotating
a joint (interleaved with a small movement of another one)
is arguably easier to fulfill.

It can be seen, that our method can estimate the rotation
between the cameras very well (and even better than using
the individual hand-eye calibrations), but has a small shift in
the translational estimation. However, our method is the only



(a) (b) (c)

Fig. 5. The experiment setup, consisting of a KUKA KR16 industrial manipulator, with two cameras attached to the end effector (see Fig. 4 for a closeup)
and AprilTags placed in the surroundings of the robot. The robot is shown at three stages of the experiment, whereas (a) and (b) show the start and end
of the first movement, which is a rotation around axis 5 (around the blue rotation axis), and (c) one frame of the second movement, in which the last axis
of the robot is tilted differently, shown as a rotation around the green rotation axis.
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(a) Xtion, translational error (mm)
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(b) Xtion, rotational error (deg)
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(c) SR300, translational error (mm)
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(d) SR300, rotational error (deg)

Fig. 6. Box plot of translational errors (left column) and rotational errors (right column) for both used cameras (upper: Xtion, lower: SR300)
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Fig. 7. Error when continuously removing “bad” markers , i.e., ordered by
increasing quality (solid blue line) and when continuously removing “good”
markers, i.e., ordered by decreasing quality (dashed green line).

method of the presented (and we know of), that is capable of
producing a rather precise calibration even when no inverse
kinematics are available and cameras do not overlap.

The AprilSLAM approach, at least in this setting, did not
improve the results, as seen in Table II. Compared to using
only the markers that were usable by AprilSLAM as input
to our method, the rotational error slightly decreases through
SLAM, whereas the translational error increases.

V. DISCUSSION AND LIMITATIONS

This method is unsupervised and can run automatically
without the need to mount or move a checkerboard cali-
bration pattern. Multiple AprilTag markers can be placed in



the surroundings of the robot; or, if the camera is fixed, on
the robot arm, as in the case of the LRU (see Fig. 1a). In
the latter case typically multiple smaller tags are used, that
can stay on the arm for future verification and re-calibration.
Another benefit of our method is that we do not need any
prior knowledge about the robot or its surroundings (except
that all seen AprilTags have a known size). The expected
camera intrinsics are in most cases easy to obtain.

While we investigated the effect of the number and qual-
ity of the observed markers, an important remaining open
question is the amount of rotation s.t. we obtain high-quality
results. As a marker can be observed the longest when it
passes diagonally the complete camera image, that is an
upper limit. Since we are estimating the axis only from
consecutive detections, i.e., small relative angles, the major
limitation here is the accurate estimation of the center of
rotation. Finding the centers of the detected circles, which
lie on the rotation axis, is more accurate if large sections
of the circles are sampled. With a typical opening angle of
around 60◦, we ran into the problem of low quality detections
at the edges introducing a bias towards larger circles, thus
displaced centers towards the back of the camera. In our ini-
tial investigation this caused the relatively large translational
errors that we observe. We will address this issue via a more
accurate optimization of the center point of the rotations, by
considering the orientations of the detections in this step as
well and their estimated qualities.

VI. CONCLUSIONS

We presented a simple-to-use and novel method to obtain
the rigid body transformation between a robot frame of
reference and a camera frame of reference. This is classically
called hand-eye calibration, but we are performing camera
to camera calibration this way as well, even if there is no
overlap between the field of view of different cameras.

This is achieved by rotating the last axis of the robot
and sampling a high number of visual features, in our case
AprilTag markers. By fitting a Bingham distribution to the
markers’ relative rotations around several configurations of
the arm, a mathematical model connecting the kinematics of
the robot to the camera frame of reference can be found. We
have shown in [11] that this method can be applied where a
classical hand-eye calibration is problematic, e.g. a humanoid
robot with limited movability.

Additionally, the kinematic chain does not necessarily
have to be an arm, it can be for example also just a mobile
base. In our case the robot was able to rotate around multiple
axes, which is not usually the case. Therefore, unless the
camera is mounted on a movable part (typically sensors are
placed on a pan-tilt unit), there is only one possible axis of
rotation. In such cases, determining the ground plane and
obtaining the height of the sensor above it (either by placing
specific markers on the ground, or using depth information),
and performing a linear motion in a robot-specific direction
will create a plane and a direction that can be intersected with
the axis of rotation to find the robot-camera calibration.

We plan to investigate such challenging situations by
applying our method to different real-word robotic problems
and evaluating it on more robot platforms.
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