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Self-reconfiguration of Modular Underwater Robots using an Energy
Heuristic

Lidia Furno1, Mogens Blanke1,2, Roberto Galeazzi1 and David Johan Christensen1

Abstract— This paper investigates self-reconfiguration of a
modular robotic system, which consists of a cluster of modular
vehicles that can attach to each other by a connection mecha-
nism. Thereby, they can form a desired morphology to meet task
specific requirements. Reconfiguration can be needed due to
limitations from dimensions of passable corridors for an under-
water maintenance task, for supplemental instrumentation that
is available on a particular robot, or as remedial action if one
robot in a cluster suffers from malfunction. Being crucial for
autonomous underwater vehicles, energy consumed is employed
as a heuristic. The paper shows how the Basic Theta* algorithm
can be guided by an energy criterion to calculate a transition
from start- to goal morphology. Individual robots are guided
while minimizing the overall energy for propulsion and for
balancing restoring forces and moments in morphologies. The
properties of the proposed self-reconfiguration algorithm are
evaluated through simulations and preliminary model tank
experiments. The energy based heuristic for reconfiguration is
compared to a traditional solution that minimizes the Euclidean
distance.

I. INTRODUCTION

The use of robot technology in offshore sub-sea operations
is ubiquitous and autonomous underwater vehicles (AUVs)
are being routinely employed for inspection and mapping.
With sub-sea technology becoming mature where the entire
production plant resides at the seabed, ideas emerge that
long term inspection and certain repair tasks could be made
by clusters of heterogeneous robots that have individual
capabilities for sensing and manipulation. Along this line,
modularity properties could be added such that robots could
connect to form morphologies with specific capabilities. A
key problem for a swarm of such heterogeneous modular
robots is the ability to autonomously reconfigure from one
task specific morphology to another.

New technological solutions, which could enable underwa-
ter services with higher quality at a lower cost, are challeng-
ing fields of research and development. In this context, AUVs
are rapidly gathering interest for their flexibility and antic-
ipated potential to overcome many limitations of remotely
operated vehicles (ROVs). Steps toward enhanced autonomy
and use of multiple vehicles include AMOUR (Autonomous
Modular Optical Underwater Robot), an underwater modu-
lar AUV for inspection and monitoring [1], and CoCoRo
(Collective Cognitive Robots), a heterogeneous swarm of
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2Mogens Blanke is also affiliated with AMOS CoE, Institute of Tech-
nical Cybernetics, Norwegian University of Science and Technology, 7491
Trondheim, Norway.

AUVs used for inspection and environmental monitoring [2],
[3]. AMOUR consists of a robot and an underwater sensor
network that can adopt to task requirements. The robot is
able to pick, transport and drop individual sensors. CoCoRo
consists of three sub-systems: a floating base station that
allows for localization, communication and human-robot
interaction; a self-aware ground swarm of self-organizing
AUVs that perform significant tasks; a relay swarm that
enables communication between sub-systems. The CoCoRo
system agents cannot connect with each other by means of
a physical link.

Wider possibilities become available if robots are able to
connect physically and form a cluster with a morphology
that fulfills the requirements of any new assignment. To
achieve full autonomy, such modular system need capability
to self-reconfigure. The morphology is able to change to
fulfill a new mission plan or to accommodate unanticipated
conditions. These would include component faults or condi-
tions in the environment. As example, the modular system
could carry a tool requiring a narrow morphology to pass
into a confined space; at a later time, a new task could
be underwater inspection requiring robots equipped with
specific sensors to be at the morphology borders. 3D visual-
izations of how the system configuration changes according
to task requirements are shown in Figure 1. Since the energy
available to each AUV is a major constraint towards long-
term operation, it appears natural that a self-reconfiguration
strategy must account for the energy consumption during a
morphology change of the modular system.

The ability to assemble in a morphology is a distinctive
feature of reconfigurable robots that results in highly versatile
systems able to modify their morphology by rearranging
the already existing connections [4], [5], [6]. The ability to
self-reconfigure to a different morphology is illustrated by
the following real-life example. Crack formation in parts of
the sea bottom support structure for an offshore rig is very
serious. The remedial action is to cease crack propagation by
locating the crack, transport a drill to the correct position at
the end of the crack line and drill a hole in the steel structure.
When cracks are located in the internal part of the structure,
divers cannot be employed because of access space, and
working class ROVs are big and difficult to operate within
a confined structure. Small and long-term reconfigurable
robots would be a good alternative to monolithic robots. The
modular AUVs may transport a tool to the structure, change
morphology to fit the confined space while passing through
a narrow passage and change morphology again to position
the drill on the relevant wall.
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(a) Inspection of underwater structures by means
of heterogeneous robots: a legged robot with
relevant sensors is transported by an AUV to a
suspected crack area.

(b) Object transportation by multiple homoge-
neous robots through a narrow passage.

Fig. 1: Concept images depicting possible tasks.

This paper proposes a self-reconfiguration strategy for
modular robotic systems that exploiting an energy heuristic
determines the transitions of each agent from the start- to the
goal configurations with the minimum energy consumption
in all intermediate morphologies. The Basic Theta* algo-
rithm proposed by Nash et al. [7], [8] is modified to include
a cost function that accounts for both the energy spent to
move the robots and the energy consumed by the cluster
of robots to withstand restoring forces and moments due
to morphology changes. The paper evaluates the proposed
energy-based self-reconfiguration strategy in simulation and
in preliminary model tank experiments. The modular under-
water robotic system under development within the inno-
vation project REMORA (REconfigurable MOdular Robotic
system for Aquatic environment) is employed as a study
case. Furthermore, the paper compares the proposed method
with a self-reconfiguration strategy that instead has minimum
Euclidean distance as a heuristic.

The paper is organized as follows: other related work is
described in Section II; the REMORA platform is briefly
presented in Section III; Sections IV-V provide an overview
of the AUV’s hydrostatics and hydrodynamics. Section VI
introduces and discusses the energy criterion; whereas the
self-reconfiguration problem in defined and investigate in
Section VII. Lastly, results obtained through simulations and
initial experiments are discussed in Section VIII.

II. OTHER RELATED WORK

Motion planning based on energy efficiency criteria has
been widely studied in the literature [9], [10], [11], [12].
Liu et al. [11] considered an energy-related criterion as cost
function and used the A* algorithm for motion planning.
Pal et al. [12] used the A* algorithm to generate efficient
paths by adding a function of the energy consumption to
an Euclidean metric, which is the cost function commonly
used for motion planning. Nash et al. [7], [8] stated that
the A* algorithm generates the shortest path in the dis-
crete environment (grids) but it is not always true in the
continuous environment. Brandt [13] investigated the self-
reconfiguration properties of the ATRON modular robot by
applying A*. In this case, the optimality of A* is recognized
since ATRON is a lattice-based modular robot, which allows
for movements on grids. Nash et al. proposed a variant of
A*, the Basic Theta* algorithm, which finds paths closer
to the optimal paths than A*. De Filippis et al. [14] applied
Basic Theta* for path generation without considering energy.
Among the modular robotic systems mentioned in Section I,
Detweiler et al. [15] investigated ways to save the energy of
AMOUR with buoyancy and balance control.

Autonomous operations in the marine environment impose
specific challenges, and various robotics platforms have been
considered. The Tactically Expandable Maritime Platform
(TEMP) consists of identical self-propelled robotic boats
that can form connected structures autonomously [16], [17],
[18]. The ANGuilliform robot with ELectric Sense robotic
platform (ANGELS) is formed by nine independent rigid
bodies able to connect serially to achieve bio-inspired struc-
tures [19]. Doyle et al. [20] introduced the concept of Mod-
ular Hydraulic Propulsion (MHP) in which a modular robot,
intended for a fluid environment, moves by routing the fluid
through itself. These modular systems are characterized by
homogeneous robots docking together to provide a service.
Fitch discussed different levels of heterogeneity and the
limitations of homogeneous systems in [21].

III. MODULAR PLATFORM REMORA

REMORA [22] is an innovation project that aims at de-
veloping a novel reconfigurable modular robotic system able
to address some of the challenges related to inspection and
maintenance of offshore structures, such as the monitoring of
sub-sea foundations of offshore wind parks or the inspection
of cage integrity in fish farms. REMORA envisages a mod-
ular system consisting of heterogeneous underwater robots
that can collaborate and connect physically. By drawing
on each other capabilities, the single robots will give rise
to a new system with greater functionalities and increased
resilience.

At the current stage of development, REMORA includes
a set of ROVs of type BlueROV, whose control system
has been upgraded to achieve autonomous maneuvering and
dynamic positioning in a laboratory environment. The robot
dimensions are [0.483, 0.33, 0.267]m and its weight is
3.73 kg. Six type T200 ducked propellers provide horizontal
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(a) Robots connected through the docking mod-
ules.

(b) Powering on/off the docking system enables
connection and disconnection of the robots.

Fig. 2: Prototype of the REMORA modular system.

and vertical thrust. Each thruster can deliver 50N of max-
imum forward thrust. Electronic speed controllers regulate
the power provided to individual thrusters. The basic sensing
payload of the robot consists of a 9DOF inertial measurement
unit (IMU) and a pressure sensor. The robot is equipped with
an Odroid XU-4 for high level data processing and a Pixhawk
for low level control. Battery capacity is 6200mAh.

A system for docking is currently under development; this
will enable the autonomous connection with tools and the
robot-to-robot interconnection. The current prototype of the
docking module is physically dimensioned to fit in size the
BlueROV and it uses a magnetic-based mechanism to enable
and disable the interconnection. The docking mechanism is
designed such that energy is utilized only when the robot
needs to disconnect from a tool or another robot [22].
Figure 2 shows the actual prototypes of the REMORA
connectors. This study assumes that the mechanism of con-
nection/disconnection is perfectly functioning.

IV. HYDROSTATICS OF UNDERWATER ROBOTS

This section explains the hydrostatics of underwater ve-
hicles, which is essential for calculation of thrust forces
needed during operation and change of morphology. In body
coordinates, the center of gravity rbG,i and the center of
buoyancy rbB,i for each underwater robot are

rbG,i =
1

mi

∫
V

rbρm,i(r
b)dV (1)

rbB,i =
1

∇i

∫
V

rbρwdV (2)

where ρm,i(r
b), mi and ∇i are the distribution of mass at

location rb, the total mass and the displaced volume of robot
i, respectively. ρw is the density of water. The vector rb is
the location in the body-fixed frame {b} and origin in Ob.
When the mass of a robot does not change over time, rbG,i

will be constant and rbB,i will be constant as long as the
robot is fully submerged.

For the cluster of nr connected robots, the geometry in the
navigation frame (earth-fixed, North-East-Down coordinates)
{n} has to be considered. Using ηi = [x, y, z, φ, θ, ψ]Ti for
the pose of robot i, and R(i)

nb for the rotation from the body
to the navigation frame, then the location of gravity and
buoyancy centers for the cluster are, in the navigation frame
coordinates,

rnG,c =
1∑

nr
mi

∑
nr

(
pnO,i +R

(i)
nb r

b
G,i mi

)
(3)

rnB,c =
1∑

nr
∇i

∑
nr

(
pnO,i +R

(i)
nb r

b
B,i ∇i

)
. (4)

where pO,i is the vector from a chosen origin of the cluster
Oc to the local origins Oi of the members.

Having determined the rnG,c and rnB,c vectors, the restor-
ing forces and moments can be calculated. The buoyancy
force, fn

b = −[0, 0, B]T with B = ρwg∇, acts through the
center of buoyancy, where g is the acceleration of gravity.
The gravity force, fn

g = [0, 0,W ]T with W = mg, acts
through the center of gravity.

The generalized restoring [force, moment]T vector g(η)
on the cluster, in the body frame, is

g(η) = −

 fb
g + fb

b

rbG × fb
g + rbB × fb

b .

 (5)

The restoring moments are essential since they need to be
balanced at each independent cluster or robot to maintain
passive attitude stability in the horizontal plane. The vertical
force balance makes each underwater robot maintain its
depth of below the surface.

A neutrally buoyant underwater vehicle satisfies W = B.
Hence, f b

g = −f b
b .

V. HYDRODYNAMICS OF UNDERWATER ROBOTS

This section describes the hydrodynamics, which is essen-
tial for motion and reconfiguration control. Viscosity is the
main consumer of energy when an underwater robot makes
relative speed through the water.

The general equations describing the dynamics of under-
water vehicles were formulated in matrix-vector notation by
Fossen [23]. Both the disconnected robot and the cluster
of connected robots follow these non-linear equations of
motion, in the body frame, for kinematics

η̇ = J(η)ν (6)

and for dynamics

Mν̇ +D(ν)ν + g(η) = τ (7)
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η = [x, y, z, φ, θ, ψ]T refers to the pose in the North-East-
Down (NED) navigation frame {n}.
ν = [u, v, w, p, q, r]T refers to the linear and angular

velocity vector in the body frame {b}.
M = MRB + MA is the generalized inertia matrix,

consisting of the rigid-body mass matrix, MRB , and the
added mass matrix, MA.
D(ν) = DV (ν) + DN(ν) is the damping matrix,

consisting of the linear damping, DV (ν), and the quadratic
damping, DN(ν).
J(η) allows for transformations from {b} to {n} and it

is defined as

J(η) =

Tn
b (Θnb) 03×3

03×3 RΘ(Θnb)

 (8)

where Θnb = [φ, θ,ψ]T refers to the Euler angles,
Tn
b (Θnb) and RΘ(Θnb) are the linear and angular velocity

transformation matrices, respectively.
τ = [X,Y, Z,K,M,N ]T refers to the forces and moments

influencing the robot in {b}.
Note that ocean currents are neglected.
The hydrodynamic matrices described above can be ana-

lytically derived by applying strip theory [24], [25], both for
the disconnected robot and the cluster of connected robots.

VI. ENERGY CRITERION

A. Thruster Generated Forces, Moments and Power Con-
sumed

For robots equipped with thrusters, the direction of force
from thruster th is described by the directional cosine vector
the and by its position vector thl, in the body frame, with
respect to the center of geometry Ob. With thrust command
u to the set of thrusters, the forces and moments vector τ
produced is defined as

τ = Tu =

 1e . . . nte

1l× 1e . . . ntl× nte,

u (9)

where nt is the number of thrusters and T ∈ R6×nt is the
thruster configuration matrix.

Power consumed by a thruster, Pth, is, according to
manufacturer’s data sheets for a bollard pull, approximately
proportional to the square of thrust command. Power con-
sumption of thruster th is, with thrust command uth and
conversion factor ηth,

Pth = ηth|uth|uth. (10)

In practice, thrusters are commanded by a pulse-width mod-
ulated signal uPWM and

Pth = Pmax
th

uPWM

umax
PWM

. (11)

When the robot produces speed through water, the obtained
thrust decreases, as known from conventional propellers.
This effect is not included in the theoretical model, due to
lack of open water characteristics for the thrusters.

B. Electric and Mechanical Energy Required to Move from
A to B

Moving an underwater robot from position A to B along
a path s with a velocity profile ν requires a thrust according
to (7). The steady state part of τ is

τ (s) =DV (ν(s))ν(s) +DN(ν(s))ν(s) + g(η(s))
(12)

The required mechanical power, Pm, along the path s is then

Pm(s) = τ (s)
ds

dt
= Tu

ds

dt
(13)

The electric power consumed, Pe, to produce the required
thrust by nt available thrusters is, from (10)

Pe(s) =

(
ηth

nt∑
th=1

|uth(s)|uth(s)

)
ds

dt
(14)

The required energy to overcome viscous resistance and
compensate for buoyancy force and moments when moving
from A to B is then

EAB,s =

∫ B

A

Pe(s)ds (15)

C. Thruster Forces and Moments Required for Balancing

While one robot is swimming, the remaining parts of the
cluster need to balance the restoring forces and moments
described in (5) by using the remaining thrusters. The
thruster forces and moments vector τc for the remaining
robots is defined as

τc =

nr−1∑
j=1

τj = (16)

=

nr−1∑
j=1

 1ej . . . ntej

(jr0 +
1lj)× 1ej . . . (jr0 +

ntlj)× ntej ,

uj

where jr0 is the center of geometry of robot j and nr is the
number of the robots in the system.

Since both force and moment balance need to be obtained
simultaneously, the power required to balance is a function
of the thrusters geometry available within the cluster and of
their positions and orientation.

D. Energy as Heuristic

An intuitive heuristic to use for the problem at hand is
the energy consumed. The task is to let a robot move from a
location A to a location B, while other robots in one or more
clusters use power for compensating the restoring moments,
Pbal. The electric power, Pe, is also considered and defined
in (14).

The energy required for moving a robot from position A
to B along a path s, and total duration T is

Emin =

∫ B

A

Pe(s)ds+

∫ T

0

Pbaldt. (17)

This is minimized to solve the self reconfiguration problem.
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VII. THE SELF-RECONFIGURATION PROBLEM
This section provides a formal problem definition.

Given
g1: A task to perform, requiring specific sensors, actu-

ators or tools to transport.
g2: A cluster of nr underwater robots with different

sensing and actuation capabilities to meet the de-
sired task.

g3: A robot i in the cluster with the ability to
generate a [force, moment]T vector τ (i) =

T (i) u(i), defined by (9) and constrained by u(i)
th ⊆

{u(i)min,th, u
(i)
max,th} for its thruster th.

g4: A robot i in the cluster with the ability to attach
magnetically to the other robots and tool(s) by
means of its connectors c(i).

g5: A start configuration Ss formed by connections
between a robot i and a robot or a tool j. The
existing connections are described by the adjacency
matrix As defined as

aij =

{
ci if i is connected to j,

0 otherwise.
(18)

g6: A goal configuration Sg formed by connections
between a robot i and a robot or a tool j. The
existing connections are described by the adjacency
matrix Ag defined in (18).

g7: A suite of services available from a configuration
including sensing and actuating capabilities, inter-
action with tools required during a particular task,
and the morphology of the configuration.

g8: A set of conditions V to satisfy
v1: A robot i at its start location rnG,i in Ss

reaches its assigned goal location rnG,i in
Sg , while the remaining connected robots
do not move. The location corresponds to
the center of gravity.

v2: A robot i with particular sensing or ac-
tuation capabilities is assigned to a goal
location specified in the goal configuration
description, if needed to complete the task.

v3: While navigating to the goal location, a
robot i avoids collisions with the remain-
ing connected robots according to

d ≥ 3

2
max(Lr,Wr, Hr) (19)

where d is the distance between the cur-
rent location and the goal location. Lr, Wr

and Hr are, respectively, the length, the
width and the height of robot i.

v4: It is preserved at least one connection for
each tool, if available in the configuration.

v5: Disconnections are not allowed to clear the
passage.

v6: The moments about the x-axis (K) and
about the y-axis (M ) are balanced to avoid
unwanted rotations.

Problem:
p1: Calculate a sequence of actions including a path

from a start location to the assigned goal location,
a velocity profile ν(t) and an order of movements
for the robots to self-reconfigure from the start
configuration into the goal configuration: Ss y Sg
subjected to the set of conditions V .

p2: Minimize the energy criterion defined in (17)
and utilize it to guide the Basic Theta* self-
reconfiguration algorithm described in Sub-Section
VII-A.

A. Basic Theta*

The environment is represented as a regular 3D grid with
sides along different dimensions defined by |η̇p| Ts. η̇p, p =
1, 2, 3, is the velocity in the navigation frame, constant in
module, and Ts is the time step.

Basic Theta* is a variant of A*. The key difference is
that Basic Theta* allows the parent of a location on the
grid to be any other location that has line-of-sight to the
considered location. In A*, the parent must be a visible
neighbor. Hence, Basic Theta* finds paths with any potential
heading in the continuous environment. A* has heading
constrained to grid edges, multiple of 45 degrees. The A*
algorithm is usually coupled with post smoothing techniques,
but it is not guaranteed to find truly shortest paths because
post smoothing techniques only consider grid edges resulting
from the A* search. On random 500 × 500 2D grids with
20% blocked cells, Basic Theta* finds paths shorter than A*
with post smoothing techniques 70% of the time [7]. Nash
et al. [8] state that the paths found by A* on 26-neighbor
cubic grids can be ≈ 13% longer than truly shortest paths.
Basic Theta* can be easily extended to 3D grids because it
is based on the triangle inequality.

In the present paper, Basic Theta* is adapted to the self-
reconfiguration problem to provide a mapping from a given
start configuration Ss to a given goal configuration Sg , an
order of movements for the robots and a path from a start
location in Ss to the assigned goal location in Sg . The robots
move sequentially by following the order of movements
specified by the algorithm; therefore, a new intermediate
configuration is obtained every time the chosen robot reaches
the assigned goal location. The mapping from a start location
to a goal location is chosen by minimizing the exact cost
function, g, and the estimated cost function h (heuristic).
Thus, a mapping is formed by robots whose g+h is minimal
to one another. The energy criterion described in Section VI
is used to guide the self-reconfiguration algorithm. Both h
and g include the energy spent to complete the path defined
in (15). g also considers the energy needed to balance the
restoring moments in (5). Hence, the heuristic is defined such
that the estimated path cost is not higher than the exact cost.

VIII. RESULTS
A. Simulations

Robots to self-reconfigure have at least one connection
to a neighbor. The number of connectors mounted on each

6281



(En:a) (En:b) (En:c) (En:d) (En:e)

(Eu:a) (Eu:b) (Eu:c) (Eu:d) (Eu:e)

Fig. 3: Simulation: Self-reconfiguration by means of the energy criterion (En) and the Euclidean distance (Eu). The robots
are represented as boxes coloured in green, if they have already reached the goal location, and in red, otherwise. The yellow
box represents a camera. The red cross is the start location already left. The blue line is the path followed. The sphere
represents a tool to be used to complete a task.

Fig. 4: Simulation: Velocities u and r for navigation (see
Section V for the notation). The first column refers to robot
2 in Figure 3 (En:d) compared to robot 1 in Figure 3 (Eu:d).
The second column refers to robot 4 in Figure 3 (En:c)
compared to robot 2 in Figure 3 (Eu:b).

Fig. 5: Simulation: Force X and moment N for navigation,
and moment M produced by the hydrostatic moment on the
cluster of robots (see Section V for the notation). The first
column refers to robot 2 in Figure 3 (En:d) compared to robot
1 in Figure 3 (Eu:d). The second column refers to robot 4
in Figure 3 (En:c) compared to robot 2 in Figure 3 (Eu:b).

Fig. 6: Simulation: Power consumed to exert the force X
and the moment N for navigation, to oppose to the restoring
moment M on the cluster of robots and total power. The
first column refers to robot 2 in Figure 3 (En:d) compared
to robot 1 in Figure 3 (Eu:d). The second column refers to
robot 4 in Figure 3 (En:c) compared to robot 2 in Figure 3
(Eu:b).

robot is mapped to the configuration space: the higher the
number of connectors, the higher the number of possible
configurations. Basic Theta* maps the robots in a start
configuration to locations in a goal configuration (see Section
VII). The robots move one at time by following a specific
order provided by the algorithm while avoiding internal
collisions. When its turn comes, a robot disconnects from
the configuration, reaches its goal location, then obtains its
goal orientation and, finally, connects to the desired robots,
if already at the goal location.

Figure 3 (a) shows four robots (red boxes) connected to
a tool (sphere) in a T-shaped start configuration. A robot
and its camera (yellow box) are neutrally buoyant. The tool
is also neutrally buoyant but moves the center of gravity
of the connected cluster of robots 3 cm along the x-axis.
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(a) (b) (c)

Fig. 7: Experiment. (a) Three robots deployed as an I-shaped configuration in a [40,6.45,1.5]m model basin. The Qualisys
tracking system uses intense light to illuminate the markers on the robots and locate them. (b) From an I-shaped start
configuration to an L-shaped goal configuration. The order of movement is specified in the legend. (c) Commanded PWM
signals to T200 thrusters for the second robot to move in (b).

This produces a restoring moment M (about the y-axis) on
the cluster. Requiring to fit a narrow passage, the robots
self-reconfigure into the goal configuration in Figure 3 (e).
Robots that have already reached the assigned goal location
are colored in green. In Figure 3 (En), the robots self-
reconfigure according to Basic Theta* guided by the energy
criterion described in (17). In Figure 3 (Eu), the robots
self-reconfigure according to Basic Theta* guided by the
Euclidean distance. Paths are simulated through a speed
controller with the Line-of-Sight (LOS) guidance law for
navigation [23]. Curved paths in Figures 3 (Eu:d) and Figure
3 (Eu:e) are due to the bounding box set around each robot
to avoid collisions. Table 1 provides the energy and the
time spent to have complete self-reconfiguration, both for
the energy criterion and for the Euclidean distance. Body
velocities (see Figure 4), forces and moments (see Figure
5), and power consumed (see Figure 6) for robots assigned
to the same goal location by the two different heuristics are
also considered. In particular, these figures show robot 2 in
Figure 3 (En:d) compared to robot 1 in Figure 3 (Eu:d) and
robot 4 in Figure 3 (En:c) compared to robot 2 in Figure 3
(Eu:b). Solid lines (dashed lines) in the figures refer to the
results from the energy criterion (Euclidean distance). Figure
4 shows that the energy criterion assigned paths with less
change in orientation, so that the moving robots are never
in proximity of another robot. Note that the initial and final
changes in orientation depend on the desired angles chosen at
generation time. Figure 5 shows a constant restoring moment
M acting on the cluster of connected robots and introduced
by the 3 cm displacement in the center of gravity of the tool.

TABLE I: Energy (E) and time to self-reconfigure for the
energy criterion and the Euclidean distance

E to navigate E to balance Total E Time

Energy 150.93 J 56.92 J 207.86 J 36.64 s

Euclidean 186.96 J 68.43 J 255.39 J 44.0 s

Hence, a moment of 0.6 Nm needs to be balanced for both
the solutions but the total power consumed for balancing
is lower for the energy criterion. This is because the time
needed to self-reconfigure is shorter for the energy criterion
(see Table 1). Fast changes in power consumed to produce
forces for the moving robot in Figure 6 are due to the robot
turning in place, once arrived at the goal location, to achieve
the desired orientation.

B. Experiments

Experiments were conducted in MClab at NTNU, in a
[40, 6.5, 1.4]m model basin (see Figure 7a). A Qualisys sys-
tem tracked three BlueROVs that self-reconfigure from an I-
shaped start configuration to an L-shaped goal configuration
in real time. Five markers were taped asymmetrically on each
robot to enable the Qualisys system to track all robots and to
calculate their pose. A path controller used a Line-of-Sight
(LOS) guidance law [23] for heading control and provided
thrust to navigate the desired robot.

Information was transferred to the robots via cables in
the water. Some cores in each cable comprised connect-
disconnect commands to the docking mechanisms. However,
the use of the tethered connectors resulted in robots entangled
with cables. Thus, they were not included in this experiment.

The self-reconfiguration algorithm described in Section
VII mapped the start locations to the goal locations, found
waypoints to navigate to the goal locations and an order of
movements for the robots (see Figure 7b). Robots were able
to navigate to the goal location with reasonable accuracy in
the basin. However, the basin positioning accuracy does not
suffice for autonomous docking, which require quite narrow
tolerances. The final version of the docking module will solve
this issue.

The power consumed for one robot navigating to the
assigned goal location is shown in Figure 7c. It is obtained
by mapping the recorded pulse-width modulated signals
(PWM), sent to the thrusters, to the corresponding electric
power as stated in (11). A static mapping, a bollard pull at
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zero speed through water, is available in the BlueRobotics
specifications for T200 thrusters. Recent model tests provide
true propeller characteristics that could be used to get a much
better estimate of power consumption when the robots make
speed through water [26].

In real environments, autonomous localization would need
to be integrated in each robot. Solutions based on on-
board camera image processing and imaging sonar exist
[27],[28],[29], where localization can be made possible by
partial knowledge of geometry of man made structures or
landmarks.

IX. CONCLUSION

This paper investigated self-reconfiguration of heteroge-
neous modular underwater robots that have capability of au-
tonomous physical connection. The Basic Theta* algorithm
was extended with an energy heuristics and was used to
calculate the order of vehicle movements to change from
a start to an end morphology. Energy to move vehicles and
to balance restoring moments were considered. Basic Theta*
favored straight paths to curved paths and chose intermediate
configurations with low restoring forces. A comparison with
Basic Theta* guided by the Euclidean distance showed the
energy heuristic to be superior in this underwater appli-
cation. A preliminary experiment with model basin self-
reconfiguration was also presented.

Future directions of research of the self-reconfiguration
problem offer several interesting topics such as using variable
vehicle speed in the optimization; allowing robots to move
in parallel to reduce time and energy; including docking
maneuvering energy in the cost function; generating optimal
configurations to meet task specific requirements. Hardware
improvements could include wireless communication, e.g.
LED based signaling.
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