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Monocular 3D Metric Scale Reconstruction using Depth from Defocus
and Image Velocity

Tomoyuki Shiozaki and Gamini Dissanayake

Abstract— This paper presents a novel approach to metric
scale reconstruction of a three-dimensional (3D) scene using
a monocular camera. Using a sequence of images from a
monocular camera with a fixed focus lens, metric distance to
a set of features in the environment is estimated from image
blur due to defocus. The blur texture ambiguity which causes
scale errors in depth from defocus is corrected in an EKF
framework that exploits image velocity measurements. We show
in real experiments that our method converges to a metric scale,
accurate, sparse depth map and 3D camera poses with images
from a monocular camera. Therefore, the proposed approach
has the potential to enhance robot navigation algorithms that
rely on monocular cameras.

[. INTRODUCTION

A mobile robot must be able to map its environment and
estimate its egomotion to be able to perform many tasks.
Information from a monocular camera, visual odometry (VO)
[1], visual simultaneous localization and mapping (V-SLAM)
[2], or structure from motion (SfM) [3], can be used to
generate this information accurate up to a scale. Typically,
stereo cameras [4] or RGB-D cameras [S5] are necessary to
generate three-dimensional (3D) metric scale reconstruction.
Although both stereo setups and RGB-D cameras are now
widely available and becoming compact, the fact remains
that the ability to use a monocular camera is still attractive,
particularly in robotic applications, due to the small size and
the versatility.

The typical monocular approaches to estimate scale are
depth from focus (DfF) and depth from defocus (DfD) [6].
DfF requires many images of the same scene with different
focus setting, thus is not suitable for mobile robots. On
the other hand, DfD relies on the amount of defocus blur
which depends on the distance to the object [7]. It has been
demonstrated that the defocus blur can be estimated even
from a single image [8], [9]. Therefore, the use of DfD has
the potential to reduce the complexity of monocular VO and
V-SLAM algorithms, and enhance their output by producing
metric scale data. However, DfD from a single image has a
fundamental problem: the blur texture ambiguity [8]. This
means that from a single image it is not straightforward
to distinguish between blur caused by defocus and that
caused by texture. Although the coded aperture method
[10] or active lighting [11] can resolve the blur texture
ambiguity, these methods require modifications to the camera
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or additional illumination and therefore compromise the main
advantage of monocular cameras; their versatility.

In this paper, we propose a method to correct the scale
error of DfD due to the blur texture ambiguity and estimate
the metric distance to a set of features of a static scene in an
extended Kalman filter (EKF) framework. Our method uses
a sequence of images taken by a moving monocular camera
using a lens with a fixed focal length and a finite aperture.
We show that the blur texture ambiguity is mainly caused
by regions with low contrast. Also, we demonstrate that
the scale error caused by the low contrast can be estimated
from changes in defocus blur and image velocity induced by
camera motion. The main contributions of this paper are as
follows:

o Derivation of an equation to correct the scale error

caused by blur texture ambiguity

o EKF framework for metric 3D reconstruction of an

environment

o Experimental demonstration of the proposed method in

combination with SfM using a conventional camera

We note here that the proposed approach does not require
any additional sensors or camera modifications. Therefore it
retains all the advantages of using a monocular camera and
has the potential to enhance the level of information typically
gathered through monocular VO or V-SLAM, particularly for
robot navigation.

This paper is organized as follows. Section II provides a
review of related works on DfD. Section III demonstrates
how to estimate the metric scale. In this section, the DfD
method is introduced, and the scale error caused by low con-
trast texture is formulated. Then, the EKF approach based on
the relationship between changes in defocus blur and image
velocity induced by camera motion is proposed. In section
IV, experimental results are presented. The first experiment is
to illustrate properties of the proposed algorithm. The second
experiment is to demonstrate the application of the proposed
method in combination with SfM. Section V discusses the
strengths and limitations of the proposed method. Section VI
concludes the paper.

II. RELATED WORK

Conventional depth estimation methods from a monocular
camera require multiple images with changes to camera
settings such as aperture and focal length to obtain different
defocus blur [12], [13], [14]. Taking images with different
camera settings is complex and requires solving the matching
problem [6] and therefore not particularly attractive in many
applications. Pentland [12] pointed out that defocus can be



extracted at edge locations on a single image. Elder [15] used
the derivatives of the input images to find the edge locations
and their defocus blur. Zhuo and Sim [8] proposed a method
based on the Gaussian gradient ratio that is more robust to
image noise than those available in the literature.

However, to be effective, single image DfD methods
require strategies to resolve ambiguities due to focal plane,
motion blur, and blur texture. The focal plane ambiguity
results from the fact that DfD from a single image cannot
differentiate on which side of the focal plane the objects are
placed [8]. Kumar et al. [16] demonstrated that chromatic
aberration provides an effective indicator to solve the focal
plane ambiguity. Second, the motion blur influences the
defocus estimation. However, motion blur is also a useful
depth cue. Paramanand and Rajagopalan [17] proposed a
method to recover the 3D structure from both motion blur
and defocus blur with camera motion in an Unscented
Kalman Filter (UKF) framework. Third, the blur texture
ambiguity is still a challenging problem. Srikakulapu et al.
[18] proposed a method to correct the depth map by using
texture information such as edge sharpness, spot energy, and
contrast. However, this approach cannot estimate the metric
scale. As addressing the blur texture ambiguity is the main
objective of this paper, we do not address the focal plane
ambiguity and motion blur. We assume that all observed
objects exist on one side of the focal plane and the camera
motion is sufficiently slow.

The work most related to our paper is by Wohler et
al. [7]. They combined DfD with SfM and estimated the
metric distance with reasonable accuracy. In [7], the scale
error caused by the blur texture ambiguity is termed due to
“image content”. The main drawback of this method is the
assumption that each of observed features in the scene is in
focus at somewhere in a sequence of images. The method
proposed in this paper relaxes this condition and is able to
estimate the metric scale even when the features concerned
are never in focus.

IIT. THREE DIMENSIONAL METRIC
RECONSTRUCTION

In this section, the proposed methodology for 3D metric
reconstruction is described. First, the DfD approach based on
a formula derived using the thin lens model is introduced.
The point spread function is approximated with a Gaussian
to model the amount of defocus blur in a given image at
edge locations. Second, ambiguity caused by low contrast
texture is formulated. Finally, using the relationship between
changes in defocus blur and image velocity induced by
camera motion, an EKF based approach to resolving this
ambiguity is proposed.

A. Depth from Defocus

Image formation based on the thin lens model is shown
in Fig. 1 [12]. All rays from a point located at the in-focus
distance dy converge to a single point on the image plane
placed at the distance by from the lens. On the other hand,
rays from an object located at any other distance d converge
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Fig. 1. Thin lens model. Origin is the lens center. by is the distance to the
image plane. dy is the distance to the focal plane. Size of ¢ depends on the
object distance d. When the image plane is placed at by +bs, the object is
best focused.

to a point on a plane located at a distance by + bs from the
lens and therefore will be out of focus when viewed at the
image plane. Rays from such an object will make a blurred
circle on the image plane. This is known as the circle of
confusion (CoC). The diameter of this circle is given by

_ld—df 1
d N(dy—f)

where f is focal length and N is f-number of the camera [8].
It is seen that larger |d —dy| is, the larger the CoC. To get a
large amount of defocus blur, a long focal length and a large
aperture are required as the f-number is N = f/A where A
is the aperture diameter of the lens.

The size of ¢ can be approximated by o of the Gaussian-
shaped point spread function (PSF) G(o) as

I,'ZG(G)*IfI., 2)
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c

where * means convolution, /; is a small region of interest
(ROI) around a feature #, and I, is the ROI around the same
feature when it is best focused [7]. ¢ can be expressed as
¢ = Yo with a camera-specific value of ¥ [19]. We use the
method proposed by Zhuo and Sim [8] to estimate ¢ from
an image.

Wohler et al. [7] proposed the following function to relate
d and o:

6 =D(d) = %exp(—é(bs(d))z) s,
df 3)
bs(d) = d—7 —by,

where ¢1, ¢», and ¢3 are the calibration parameters. For a
given camera setup, these parameters together with by and
f can be estimated using a calibration process which is per-
formed by measuring values of o at the corners of the black-
and-white checkerboard while changing its distance. Solving
Eq. (3) yields the metric distance d from the measured ©.
However, Wohler et al. [7] pointed out that the measuring &
does not work well on features other than black-and-white
corners due to errors caused by blur texture ambiguity of
the input image. This ambiguity is due to many factors such
as soft shadows, brightness and color of the object, and the
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Demonstration of Eq. (4). (a) is a low contrast edge pattern with 50% and 75% gray levels. (b) is a high contrast binary edge pattern. (c) is a

face and (d) is a checkerboard. x and + show the measured 6. Red and magenta lines show the approximations of measured ¢ using Eq. (3). Black line
shows the effect of correction using Eq. (4). (¢) was taken with N = 3.5 and dy = 400mm. (f) was taken with N =5.0 and dy = 2800mm. Table I shows

all the other parameters.

TABLE I
CALIBRATION PARAMETERS

case 01 L2 93 | by[mm] | f[mm]
casel -1.13 | 0.275 | 2.13 20.4 19.4
case2 | -0.555 142 | 2.88 47.7 46.9

Parameters of D;. Casel and case2 are for Fig. 2 (e) and (f), respectively.

illumination. Our experiments demonstrated that one of the
main causes is the difference of the contrast between the
ROIs. Also, it was observed that this error could be expressed
empirically by the following equation:

om = Ao, = AD(d), 4)

where o, is the measured ¢ at a low contrast edge and o; is
the true o measured at a high contrast edge without texture
ambiguity, and A describes the correction factor for the extent
of texture blur. This is illustrated in Fig. 2. Fig. 2(a) and (b)
are low contrast and high contrast edge patterns, respectively.
In Fig. 2(e), o;, is measured from the low contrast edge, o;
is measured from the high contrast edge, approximations D,,
and D, are based on Eq. (3), and AD; is based on Eq. (4).
As can be seen in Fig. 2(e), A D; is close to D,,. This means
that a constant A can approximate the extent of texture blur of
O This is because the gradients at edge locations are used
to estimate the amount of defocus blur in [8], [9], and [15].
When the contrast of the edge location is low, the gradient
becomes low. This behavior caused by low contrast texture
is independent of the distance between the camera and the
object. Therefore, A remains constant independent of d. It
can also be seen that the same is true in a more complex
scene. Fig. 2(f) shows the results from the images of a face
(Fig. 2(c)) and the checkerboard (Fig. 2(d)). The o, and o;
are measured at the features detected by KLT tracker [20],
[21]. A approximates the extent of texture blur of ©,,. The
median of measured values of ¢ at each distance was used

in the experiments. The illumination and camera parameters
such as the shutter speed, the aperture size, and the sensitivity
were remain unchanged during the experiments.

B. Extended Kalman Filter

The experiments presented above demonstrate that the
relationship between measured o, of a point and the distance
d can be expressed using Egs. (3) and (4). This section
presents an EKF framework for estimating the scale based
on these relationships.

We begin by defining the scale factor A and image velocity
vi, where v; is the projection of the 3D relative velocity to
a point onto the image plane with unit focal length f = 1.
A can be used to obtain the geometry of the scene in metric
scale using

di = Au,, ©)

where d; is the metric distance to each point of a scene, u; is
its up to a scale counterpart. Both u; and v; can be obtained
using a sequence of images and one of the many algorithms
available in the literature, for example, [22], assuming that
the observed object is stationary. Subscript i is used to denote

the i-th point. Given that image velocity v; = Z—’, the time
derivative of Eq. (5) can be expressed as
d,‘ = Abl,' = Auivi. (6)

Taking the time derivative of Eq. (4) and using Egs. (5) and
(6):

. d
Om,i = }viaD(Av uj, vi)

7
_ Z;Lib&i/\uivi( f )2exp(7ib2 ) (7N
019 Aui—f ¢ 1
where bs; = A’;Li‘i_f 7 —by. In the following, we describe the

use of an EKF to estimate A and A;, which are constants.



The state vector of the EKF is as follows:
X=[A L on, (8)

where i = 1...N and N is the number of observed points.
The process equations governing the evolution of the state
vector are

Apr1 = A+ Epg,
Aijr1 = Aik+ €1k )

d
Om,ik+1 = Omik + ik ED(Aka Uik, Vik) At + €5 (AL,

where Ar is defined as Ar = f4; — 4 and €(k) =
[eax €1k €six)’ represents the process noise. Note that
Eq. (7) is used to compute Gy, ; k+1-

The observations of the defocus blur ¢, ; are obtained at
edge locations using the method proposed by Zhuo and Sim
[8]. Therefore, the observation vector is Z = [0,,;]7. The
observation equations then become

Gmik = Omik + Niks (10)

where 11 (k) = [n;4]7 is the observation noise vector. Further-
more, the constraint defined by Eq. (4) always needs to be
satisfied. In the EKF framework, equality constraints can be
imposed using the projection method [23]. These constraints
are rewritten as

AikD(Ag, ui k)

el (i) = 2

1+ G =0, (11)
where § (k) = [§;«]” is the noise vector added to account for
the possible extent of constraint violations.

We assume that the noises €(k), n(k) and {(k) are all

Gaussian, temporally uncorrelated and zero-mean

Ele(k)] = E[n(k)] = E[C(k)] = 0,Vk (12)
with corresponding covariance
Ele(kek)'] =0,
Eln(k)n (k)] =R, (13)

E[5 ()5 (k)"] = Re.
Equations used to implement the EKF are given in the
Appendix.

IV. EXPERIMENTAL EVALUATIONS
A. Experiment 1: Properties of the proposed EKF

The objective of this experiment is to evaluate the ability
of the EKF shown in subsection III-B to estimate A and A;. In
this experiment, the same edge patterns and camera settings
used to obtain Fig. 2(e) were used. The chart is shown in Fig.
3(a). A sequence of images with 640 x 480 pixels resolution
at 30fps was taken by the CANON EOS 650D with the EF-
S 18-135mm £/3.5-5.6 IS STM lens. Initially, the camera
was positioned to face the chart at a distance d = 1000 mm.
The camera was moved at an approximately constant speed
of 55 mm/sec along the optical axis until d = 400 mm.
During the experiment, values of o were measured at the
edge locations on (k) of Fig. 3(a) and the median of them

Fig. 3. Experimental environments. (a) shows the chart used in experiment
1, where (i) is the checkerboard used to get the true metric scale, and (j)
and (k) have the same edge patterns as (b) and (a) described in Fig. 2,
respectively. (b) shows the scene used for experiment 2. (1) and (m) are two
of the feature points where o;,; are measured.
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Fig. 4. The estimates of A (a), 4; (b), G (¢), and the metric distance d;
(d) in experiment 1. The blue lines show the results from the EKF, the red
lines show the ground truth, and the black line shows the measurement.

was used as 0,,;. 6; was measured at the edge locations on
(j) of Fig. 3(a) in the same way. The true scale was calculated
using a known size of the checkerboard shown in (i) of Fig.
3(a). u; and v; were calculated from changes in the size of
the checkerboard in the image sequence. Therefore, in this
experiment, measured v; was accurate except for some small
amount of noise.

Fig. 4(a), (b), and (c) show the estimates of A, A;, and
O, The true value for A; was calculated from the true scale
with Eq. (4). It can be seen that 0,,; gradually changes as
expected and A converges as more and more measurements
are obtained. Fig. 4(d) shows the estimated metric distance.
After convergence, the final distance error between the
camera and the chart is only 1.6 mm. These results illustrate
that the proposed method can correctly estimate the metric
scale.
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Fig. 5. (a) and (b) show the estimates of A and d; to the point indicated in

(m) of Fig. 3(b). The blue lines show the results from the EKF and the red
lines show the ground truth. (c) is the camera poses and 3D sparse depth
map reconstructed to the metric scale. The red line shows the trajectory
of the camera with EKF. The green line shows the true trajectory of the
camera.

TABLE II
PARAMETERS FOR EXPERIMENT 2
[ 0 93 | bylmm] | f[mm] | N | dy [mm]
-1.14 | 0.086 | 1.53 323 322 4.0 5000

B. Experiment 2: 3D metric scale reconstruction in a clut-
tered environment

This experiment is aimed at demonstrating that the pro-
posed algorithm can estimate A and A; even in a cluttered
environment. A set of feature points around a desk in Fig.
3(b) was observed by the same camera with Experiment
1. The parameters used are shown in Table II. Initially,
the camera was set facing to the desk at the distance of
approximately 3000 mm. It was then moved at an approxi-
mately constant speed (around 230 mm/sec) until about 1500
mm. u; and v; were measured using the SfM algorithm with
bundle adjustment [24] as implemented in Matlab®. The
camera egomotion and the 3D sparse depth map obtained
from the SfM algorithm were then rescaled with the metric
scale estimated using the proposed EKF. In this experiment,
the values of o measured at feature points detected by KLT
tracker were used as 0j;. As in the case with subsection
IV-A, the true scale was calculated with the checkerboard
with a known size shown in Fig. 3(b).

Fig. 5(a) shows the estimate of A. Fig. 5(b) shows the
metric distance d; to the point indicated in (m) of Fig. 3(b).
Fig. 5(c) shows the camera poses and 3D sparse depth map
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Fig. 6. (1) and (m) show the estimates of A; at the points indicated in (1)

and (m) of Fig. 3(b). The blue lines show the results from the EKF and the
red lines show the ground truth. A; of (1) decreases continuously due to the
changes in texture, although A; of (m) is almost constant. The fluctuations
seen from 1 to 2 seconds are due to motion blur.

with the estimated scale. Note that the large error in camera
position at the beginning is expected as the EKF takes time to
converge. The root-mean-square error of the final distances
from the camera to the reconstructed 3D points is only
0.32mm under the assumption that the 3D sparse depth map
obtained from the SfM algorithm is true. Results from this
experiment demonstrate that the proposed method combined
with SfM can generate 3D camera poses and sparse depth
map to metric scale with only a monocular camera even in
a cluttered environment.

V. DISCUSSION
Assumption that A; is constant

The proposed method relies on the assumption that A; is
constant, which does not hold if there are significant changes
in texture and illumination through the image sequence. For
example, Fig. 6(1) shows the estimate of A; at the point
indicated in (1) of Fig. 3(b). It is clear that A; of (1) decreases
continuously due to the changes in texture. The point of (1)
is positioned at the spine of the book. The spine appears as
a single edge when the camera is at a distance. However,
it reveals rich texture due to the letters present on it when
the camera is nearby. The amount of defocus blur cannot be
estimated correctly in this case as gradient the calculated is
not correct when there are many discontinuities in the ROI
I; shown in Eq. (2). Our assumption that A; is constant is no
longer correct these situations. However, the use of additive
noise for the possible extent of constraint violations in EKF
relaxes the constraint that A; is constant. Therefore, as seen
from multiple results in section IV, the EKF can estimate
the metric scale correctly despite the fact that some of A;
change with the camera motion.

Size of the lens

The range over which the proposed method applies de-
pends on the focal length f, and the aperture size A. In small
cameras such as those present in mobile phones, defocus
blur is not present at points beyond relatively short distances
from the lens. Fig. 7 shows the 3D map and camera poses
reconstructed by the rear camera on iPhone SE. Although
this result demonstrates that the proposed method is effective
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Fig. 7. The camera poses and 3D sparse depth map reconstructed by
iPhone SE. The red line shows the trajectory of the camera with EKF. The
green line shows the true trajectory of the camera.

even for a small camera on a mobile phone, the effective
measuring range is only about 500 mm. Therefore, in typical
robotic applications, it will be necessary to select a suitable
lens to increase the effective range.

VI. CONCLUSION

An approach for metric scale reconstruction of 3D environ-
ments from a sequence of monocular images is demonstrated
in this paper. It is shown that blur due to texture can be rep-
resented using a constant gain when estimating depth from
defocus. An EKF framework that incorporates information
from non-scaled distances and image velocity is shown to be
able to resolve blur texture ambiguity and produce accurate
metric reconstruction. Use of the proposed approach in more
complex and large scale environments, and examining the
possible positive impact of being able to estimate scale in
conventional monocular SLAM algorithms will be the focus
of future work.

APPENDIX

Julier and LaViola [23] proposed a two-step projection
method to implement an EKF with nonlinear equality con-
straints. The procedure is as follows:

1) compute constrained covariance

Sc(k) = He(k)P* (k|k)HcT (k) 4 Re(k)
2) compute constrained gain
We(k) = P*(k|k)HcT (k)Sc™! (k)
3) apply first-step constraint for estimate
X (k|k) = X*(k|k) — We(k)(HeX* (k|k) —dc(k))
4) apply first-step constraint for state covariance
Pt (klk) = P*(klk) —Wc(k)Sc(k)WeT (k)
5) update 1) and 2) with P*(k|k) instead of P*(k|k)
6) apply second-step constraint for estimate
X (k|k) = X (k|lk) —Wc(k)(HcX ™ (k|k) —dc(k))
7) apply second-step constraint for state covariance
P(klk) = P (k|k) + (X (k|k) — X (k[k))
x (X (klk) — X (klK)"
Here, X*(k|k) is the unconstrained estimate, P*(k|k) is the
unconstrained state covariance. Hc(k) and dc(k) are related
by Hc(k)X (k) = dc(k), and are derived from Eq. (11).
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