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On Integrating Manipulability Index into Inverse Kinematics Solver

Kévin Dufour and Wael Suleiman

Abstract— This paper presents a method to maximize the ma-
nipulability index of a redundant industrial manipulator while
solving the Inverse Kinematics (IK) problem as an optimization
problem. Even though the IK problem is a widely studied topic,
the integration of the manipulability index into IK has rarely
been taken into account. As the relation between this index and
the joint variables of the robot is not straightforward, we have
tested different formulations using approximated derivatives.
Obstacle avoidance has also been considered and the effect of
modifying the Cartesian trajectory during the execution of a
task has been thoroughly analyzed.

Different scenarios have been conducted in simulation and
have proven that our modified inverse kinematics solver is
efficient to maximize the manipulability index, even with the
additional constraint of obstacle avoidance. Moreover, the
relaxation of the trajectory constraints leads to a greater manip-
ulability while ensuring the motion smoothness and satisfying
the robot physical limitations.

I. INTRODUCTION

The field of collaborative robots is widely expanding as
the manufacturers realize the opportunity of flexibility that
this kind of robot offers [1]. A major concern, however, is
the safety of the human operators of those robots, as they
are designed to operate without a security fence or even in
physical interaction with humans. There are different ways
of improving the safety: I)- modifying the physical properties
of the robot such as the material, the weight [2] or the type
of joint actuator, II)- adding a monitoring system [3] in order
to make it more human-friendly, III)- integrating some safety
constraints into the planning and execution of the task.

Regarding the motion planning phase of a motion, methods
such as RRT [4] or PRM [5] are among the very popular
ones. These methods try to find the optimal path while
considering different criteria. Their main drawback is the
prohibitive time of computation that restrains their main use
to offline planning, however a recent research [6] on the
design of specialized processors to reduce the computation
time has shown promising results.

However, when trying to deal with a dynamic environ-
ment, it is interesting to generate a preliminary trajectory
by motion planning algorithms to benefit from their global
planning properties, and then modify it in real-time, by in-
verse kinematics methods for instance, during the execution.
The robot in this case could react to the presence of moving
obstacles, such as a human or another robot, while satisfying
some constraints, for example the joint limits or a constraint
on the velocity or acceleration of the end-effector.
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A well-known approach to solve IK problems is the refor-
mulation as an optimization problem [7], [8]. An objective
function depending on the optimization variable, often the
joint velocity, is minimized or maximized subject to different
linear equality and inequality constraints. Because of its
general formulation, it is easy to add different constraints
to meet the safety requirements, as long as it is possible to
solve the optimization problem in real-time.

Since the robot is executing a task in a dynamic en-
vironment, an important feature is the ability of reacting
correctly to unforeseen events. This ability is reflected by
the manipulability index, related to the singularities of the
Jacobian matrix [9]. When this index becomes small and
tends to zero, it means that the robot is close to a singularity
and its ability to move away from that pose will be reduced.
It is necessary, therefore, to maximize the manipulability
index, which can be done by integrating it into the objective
function of the IK optimization problem.

The main contribution of this paper is proposing a method
to solve the IK problem while integrating the manipula-
bility index, and mainly giving insights into the practical
implementation of the new solver as well as the possible
strategies to maximize the manipulability index during the
task execution.

This paper is organized as follows: Section II presents
the formulation of inverse kinematics as an optimization
problem with respect to joint limits, obstacle avoidance
and trajectory relaxation. In Section III, a new objective
function to maximize the manipulability index is proposed.
The method is validated through simulation experiments in
Section IV.

II. INVERSE KINEMATICS PROBLEM FORMULATION

A. General Definition

The inverse kinematics problem is generally written in the
following form, called quadratic programming (QP) problem:

min
q̇

1

2
q̇TQq̇ (1)

subject to
J q̇ = ṙ (2)

ˆ̇q
− ≤ q̇ ≤ ˆ̇q

+
(3)

b− ≤ Aq̇ ≤ b+ (4)

where q̇ ∈ Rn is the joint velocity, Q a diagonal and positive
semi-definite weighting matrix, J the Jacobian matrix, A,
b+, b− the matrix and vectors defining the linear inequality
constraints. ṙ is derived from the Cartesian trajectory r
generated by an offline planner.



Equation (3) expresses in a single form the joint range
and velocity limits using the generalized boundaries ˆ̇q

−
, ˆ̇q

+

defined by the velocity damper formula [10], that formula
combines the joint position and velocity so that the velocity
smoothly decreases when approaching the joint boundaries
and does not violate the limits.

The inequality constraint (4) can be used for collision
avoidance by using the velocity damper definition, intro-
duced initially in [11]: when the distance d between two
convex objects, one being a part of the robot (O1) and the
other an obstacle (O2), becomes smaller than a constant di,
the following formula is applied:

−nTJ(q, p1)q̇ ≤ ξ d− ds
di − ds

if d ≤ di (5)

where n is the unit vector between the closest points p1
and p2 on the two objects, as described in Fig. 1, ξ is a
positive coefficient and ds is a security distance that cannot
be crossed. Let k be the number of distances between the
robot and a set of obstacles satisfying d ≤ di, the constraint
(4) can then be rewritten as:

Aq̇ ≤ b+

where A ∈ Rk×n and b+ ∈ Rk, such as their jth line is
defined by:

Aj = −nTj Jj(q, p1)

b+j = ξ
dj − ds
di − ds

(6)
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Fig. 1. Parameters for collision avoidance

It should be pointed out that this problem can be adapted to
consider the acceleration or even jerk limits of the joints by
replacing the optimization variable to the relevant derivative
of q and rewriting the constraints consequently [10].

B. Relaxed Problem Formulation

The particularity of a redundant robot is that the solution
of the IK problem is not unique, thus the best solution among
those admissible is chosen by the optimization algorithm.
However, in case of collision avoidance, there might be no
solution if the obstacle is in collision with every configura-
tion corresponding to a given pose in the trajectory. It is then
interesting to allow the robot to deviate from the pre-defined
Cartesian trajectory, if the path taken between the initial and
the final poses is not important. A task like “pick-and-place”
could be an example.

This can be achieved by adding a slack variable vector δ to
the optimization variable, which was previously q̇ and then
becomes Z =

[
q̇ δ

]T
. Indeed, if we write the Cartesian

path constraint (2) with the new variable: J q̇ = ṙ − δ, it
appears that the trajectory is relaxed and the new one is,
in velocity terms, ṙ − δ. The IK problem formulation thus
becomes [12], [10]:

min
Z

1

2
ZTQZZ

subject to
JZ = ṙ

AZ ≤ b+
Z− ≤ Z ≤ Z+

with

Z =

[
q̇
δ

]
, QZ =

[
Q 0
0 Qδ

]
, J =

[
J I

]
A =

[
A 0

]
, Z+ =

[
ˆ̇q
+

δ+

]
, Z− =

[
ˆ̇q
−

δ−

]
The amplitude of the deviation is controlled by the bounds
δ+ and δ− of the slack variable and its associated weighting
matrix Qδ , which is defined as follows:

Qδ(t) = fe(t)In

where

fe(t) =


f1(t) if 0 ≤ t ≤ Tρ
Qlow if Tρ ≤ t ≤ Tf − Tρ
f2(t) otherwise

with In ∈ Rn×n the identity matrix, f1 and f2 polynomial
functions of degree 5 defined to obtain a profile similar to
Fig. 2, allowing a smooth, continuous behavior for δ, and as
a result for q̇, by setting their first and second derivatives to
zero at their limits. Their value, Qhigh, is very high at the
beginning and at the end of the task so δ is close to 0. Refer
to [12] for a detailed description and explanation.
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Fig. 2. Profile of constraint stiffness



III. MANIPULABILITY INDEX

A. Theoretical Definition

In order to have a motion that has enough admissible
movements to escape unforeseen events, it is important to
stay away as far as possible from the robot joint singularities.
This ability, named manipulability, is defined in [9] as:

m(q) =
√

det(JJT ) = σ1σ2 · · ·σn (7)

with J the Jacobian matrix of the robot’s end-effector for
the configuration q and (σi)1≤i≤n the singular values of J .

This index is particularly useful because when it increases,
the manipulability of the robot does as well, and when it
gets close to 0, the robot is close to a singularity. Other
definitions, however, do not have this property: usually they
only tell if the robot is close to a singularity but they do
not give any information about the relative distance to the
singularity and then cannot be used to get away from it.

B. Practical Implementation

By integrating the manipulability index into the IK for-
mulation, the following optimization problem is obtained:

min
q̇,qt

1

2
q̇TQq̇ − αm(qt) (8)

subject to
J q̇ = ṙ

ˆ̇q
− ≤ q̇ ≤ ˆ̇q

+

b− ≤ Aq̇ ≤ b+

where α is a positive coefficient, preceded by a negative sign
in order to maximize m(qt).

As m(qt) is a nonlinear function in q, Eq (8) becomes a
nonlinear optimization problem which is hard to solve within
a fixed time and therefore the hard real-time constraints
might not be satisfied.

In order to transform Eq (8) into a QP problem, the
manipulability index is linearized as follows:

m(qt) = m(qt−1) +∇mT∆q + ε
1

2
∆qT Hm∆q

= m(qt−1) + T ∇mT q̇ + ε
1

2
T 2 q̇THmq̇

(9)

where Hm is the Hessian matrix of m, ∇m is its gradient,
T is the control loop sampling time of the robot and ε is a
constant equal to 0 (first-order approximation) or 1 (second-
order approximation).

By replacing (9) into (8), the following equivalent QP
problem is obtained:

min
q̇

1

2
q̇TQq̇ − α

(
T ∇mT q̇ + ε

1

2
T 2 q̇THmq̇

)
(10)

subject to
J q̇ = ṙ

ˆ̇q
− ≤ q̇ ≤ ˆ̇q

+

b− ≤ Aq̇ ≤ b+

Because of the definition of m (7), it is not evident to
find a direct analytical relationship between m and q and by
consequence a proper definition for ∇m and Hm. Thus, the
gradient of m is approximated numerically by:

(∇m)i =
∂m

∂qi

=
m(q + δqiEi)−m(q − δqiEi)

2δqi

where (∇m)i is the ith element of vector∇m, and Ei ∈ Rn,

Ei = [0 . . . 0 1
↑
i

0 . . . 0]
T

and the Hessian matrix by:

(Hm)i,j =
∂2m

∂qi∂qj

=
(∇m)j (q + δqiEi)− (∇m)j (q − δqiEi)

2δqi

where:

(∇m)j (q + δqiEi) =
m(q+δqiEi+δqjEj)−m(q+δqiEi−δqjEj)

2δqj

(∇m)j (q − δqiEi) =
m(q−δqiEi+δqjEj)−m(q−δqiEi−δqjEj)

2δqj

Using these formulations, it is then easy to compute
the objective function since only the manipulability index
of different configurations is computed, which indirectly
implies, according to (7), Jacobian matrix calculations.

IV. SIMULATION RESULTS

The optimization problem can be written in different ways
depending on the desired constraints. In order to evaluate
the performance of each definition, several scenarios have
been carried out, showing the efficiency of the different
approaches. In the first scenario, the manipulability index
is already high, and we aim at proving that we can improve
it nonetheless while precisely tracking the desired Cartesian
trajectory all along and even avoiding an obstacle. The
second scenario focus on the case of a trajectory getting close
to a singularity and the effect of our algorithm to get the robot
away from that singularity thanks to the robot redundancy.
Finally, we will allow the relaxation of the desired trajectory
in both scenarios and present its benefits.

The different approaches have been tested in simulation
using a Baxter research robot from Rethink Robotics. A
preliminary test has been conducted offline to measure the
evolution of the manipulability index of the robot depending
on the joint positions and to find an approximation of its
maximal value. Thus, all the manipulability index shown
in this section will be expressed relatively to that maximal
value. The matrix Q in (10) is equal to the identity matrix,
and T = 0.01s. The optimization problem is solved by
qpOASES [13], which has been proven to be efficient and
real-time compatible.



A. First Scenario

In this first scenario, the robot executes a simple cubic
trajectory in the Cartesian space along the vertical axis. In
this case, the slack variable δ (the relaxation variable) is not
considered and the robot should strictly follow the trajectory.

First, the order of approximation of m will be studied by
comparing the first-order (ε = 0), Fig. 3, and the second-
order (ε = 1), Fig. 4, for different values of the coefficient
α, α = 0 meaning that the manipulability index is not
maximized.

Fig. 3 shows the impact of α and that there is an optimal
value for this coefficient: a maximum normalized value of
m, 0.91, is reached for α = 5000. However increasing α
beyond 5000 makes the manipulability profile decrease, as,
for instance, the resulting profile for α = 25000 shows,
this behavior can help find the optimal coefficient for a
given trajectory. Moreover when α becomes too high, the
QP problem (10) becomes infeasible.

Fig. 4 compares the results obtained when considering the
second-order approximation to the optimal result found with
the first-order approximation, it shows that considering the
second-order approximation does not improve the optimal
result obtained by only considering the first-order approxi-
mation. Moreover, the calculation of the Hessian implies the
evaluation of 4 × n × n Jacobian matrices which seriously
increases the total calculation time. For that reason, the
manipulability index will thereafter be approximated by only
its first-order formulation (ε = 0).
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Fig. 3. Normalized manipulability index evolution while executing the task
in scenario 1, in this case only the first-order approximation of m is used

The case of collision avoidance is then addressed, as
shown in Fig. 7 a spherical obstacle that is located close
to the elbow during the movement has been added.

The minimal distance between the robot and the obsta-
cle is presented in Fig. 5 for different cases considering
alternatively the obstacle constraint and/or the manipulability
optimization. It shows that the robot successfully avoids the
obstacle and does not cross the security distance ds while still
be able to reach the goal. However, Fig. 6 also points that
the maximization of the manipulability index and avoiding
the collision with the obstacle are two opposite constraints,
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Fig. 4. Normalized manipulability evolution during task depending on
coefficient in scenario 1 using second-order approximation of m

it shows that when the arm is far enough from the obstacle,
the manipulability increases but when the robot becomes too
close to the obstacle, the distance constraint has the priority
and the manipulability index has the same value as for the
non-optimized case.

Fig. 7 illustrates the effect of the collision avoidance
constraint on the configuration of the robot for a given time
during the motion: the elbow, which becomes too close to
the obstacle represented by a green sphere, is pushed away
to satisfy the security distance. It should be noticed that the
end-effector has the same pose in both configurations as the
Cartesian trajectory constraint is always satisfied.
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Fig. 5. Minimal distance between the robot and the obstacle with different
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B. Second Scenario

In this scenario, a trajectory is generated offline to repre-
sent a critical situation as the manipulability index decreases
during the motion and comes close to a singularity.

Fig. 8 shows the evolution of the manipulability without
optimization and the effect of our algorithm depending on the
coefficient α. It shows that our method is generally able to
increase the normalized manipulability but has a very slight
impact near the singularity.
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(a) Without obstacle constraint (b) With obstacle constraint

Fig. 7. Effect of the obstacle avoidance constraint on the configuration of
the robot for a given state

In this case, the improvement of manipulability index
is limited, this is mainly because only the redundancy is
exploited and thus restricted by the robot physical limits.
However, this limitation can be overcome by using the
trajectory relaxation as shown in the following subsection.
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Fig. 8. Normalized manipulability evolution while executing the task in
scenario 2

C. Study of the Trajectory Relaxation

Both previous scenarios have been tested using the tra-
jectory relaxation. For the first scenario, Fig. 9 shows that
the relaxation method allows an increase of about 0.05 of
the normalized manipulability index maximum to a value
of 0.96. Moreover, the manipulability increases much faster
since it reaches 0.80 in 0.87s instead of 1.72s without

the slack variable. Fig. 10 shows the reference Cartesian
trajectory of the end-effector and the modified one, pointing
out the small deviations and showing that the robot resumes
the task at the end to successfully reach the goal pose for
the end-effector.
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Fig. 9. Normalized manipulability evolution in scenario 1 while relaxing
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For the second scenario, Fig. 11 shows a very important
improvement of the manipulability index thanks to the re-
laxation. Thus, near the singularity, the manipulability index
becomes close to 0.93 for α = 90000 and to 0.82 for
α = 15000, which is a significant improvement compared
to the value obtained in Section IV-B, proving that the robot
succeeds to completely escape from the singular configura-
tion. Fig. 12 presents the influence of α on the relaxation of
the trajectory, and as it can be seen increasing α increases
the deviations. However, even limited deviations as with
α = 15000 leads to a high profile of manipulability.

Fig. 13 illustrates the difference between the final config-
urations in scenario 2 in two cases: I)- without relaxation
nor manipulability optimization, II)- with relaxation and
manipulability optimization, showing that the configuration
of the robot has been changed to a more convenient one
regarding the manipulability, while having the same end-
effector pose.
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V. CONCLUSION AND FUTURE WORK

In this paper, we presented a new method to integrate
the manipulability index maximization into an optimization-
based IK solver. When considering the first-order approxi-
mation of the manipulability index, our algorithm does not
require heavy calculations and is real-time compatible, it
can be combined with other constraints without leading to
infeasibility. Moreover, an implementation of our method
while considering the trajectory relaxation has proven to give
excellent results in maximizing the manipulability index with
a reasonable deviation in the desired trajectory of the end-
effector.

However, it should be noted that with this approach the
optimal value of coefficient α, which allows the maxi-
mization of manipulability index, varies depending on the
trajectory. For repetitive tasks the optimal value of α can be
determined offline, however our experiments with the Baxter
robot pointed out that the manipulability index has been
improved whatever the value of α in the interval ]0, 250T ].

Future work will focus on integrating other security-
related constraints such as the avoidance of moving obsta-
cles, taking into account human awareness and dealing with
the presence of a human beside the robot. Moreover, we are

(a) Without relaxation (b) With relaxation
nor manipulability optimization and manipulability optimization

Fig. 13. Final Pose of the Second Trajectory

also interested in optimizing the calculation time to ensure
the real-time property as well as testing our algorithm in
different scenarios with the real Baxter robot.
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