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Abstract— In Japan, inspection of irrigation water canals has
been mostly conducted manually. However, the huge demand for
more regular inspections as infrastructure ages, coupled with
the limited time window available for inspection, has rendered
manual inspection increasingly insufficient. With shortened
inspection time and reduced labor cost, automated inspection
using a combination of unmanned aerial vehicles (UAVs) and
ground vehicles (cars) has emerged as an attractive alternative
to manual inspection. In this paper, we propose a path planning
framework that generates optimal plans for UAVs and cars
to inspect water canals in a large agricultural area (tens of
square kilometers). In addition to optimality, the paths need to
satisfy several constraints, in order to guarantee UAV navigation
safety and to abide by local traffic regulations. In the proposed
framework, the canal and road networks are first modeled as
two graphs, which are then partitioned into smaller subgraphs
that can be covered by a given fleet of UAVs within one
battery charge. The problem of finding optimal paths for both
UAVs and cars on the graphs, subject to the constraints, is
formulated as a mixed-integer quadratic program (MIQP).
The proposed framework can also quickly generate new plans
when a current plan is interrupted. The effectiveness of the
proposed framework is validated by simulation results showing
the successful generation of plans covering all given canal
segments, and the ability to quickly revise the plan when
conditions change.

I. INTRODUCTION

In a typical Japanese agricultural town, the length of water
canals extends to dozens of kilometers while the dry season
during which inspection and repair can be conducted lasts
only 1−2 months per year. However, the current inspection
process involves technicians walking along the canals and
manually measuring and marking the damaged areas in a
log book. Each technician can inspect only 0.5 km a day.
Furthermore, it takes over one month to convert the recorded
data into digital information for guiding repairs. Water canal
inspection using UAVs (Figure 1) would significantly reduce
inspection time and labor cost by automatically identifying
defects and registering their GPS coordinates.

We will focus our efforts on a town in Niigata, an
agricultural district along the northwest coast of Japan. In
the area of interest shown in Figure 2, there are about 46.2
km of water canals spread over tens of square kilometers
of farmland. The scale of water canals is beyond the cruise
and communication range of most commercially available
UAVs, which can typically fly for 20−40 minutes within 7
km of the ground station. As a result, inspection of all water
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canals requires heterogeneous vehicles, i.e. a combination of
multiple UAVs and ground vehicles.

Fig. 1: UAV taking photos of water canals for damage
assessment

Fig. 2: Water canal map of a town in Niigata (10 km ×7
km)

A viable inspection strategy first divides all water canals
into sub-regions that a UAV (or a fleet of UAVs) can
cover within one battery charge. Once the UAVs complete
inspection of one sub-region, they return to ground vehicles
(cars driven by human operators) and are transported to the
next sub-region while their batteries are swapped.

There are several constraints that the UAVs and cars have
to satisfy. First, as the cars are used as ground stations to
monitor and recharge the UAVs, each UAV needs to have at
least one car within its communication range at all time, and
each UAV will return to a car when it runs out of battery.
Second, as the cars travel on public roads, they have to
abide by local traffic regulations and their speed is limited by
real-time traffic conditions. Moreover, it is also necessary to
quickly re-plan the paths should unexpected situations (such
as UAV breakdown or change of traffic conditions) arise.

This paper presents an MIQP-based planning framework
that generates optimal inspection plans for a given fleet
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of UAVs and cars, accounting for the aforementioned con-
straints. The plan includes recharging and transportation
between different regions. The proposed framework can also
quickly generate feasible new plans if a current plan is
interrupted.

The structure of this paper is as follows: Section III
describes the coverage planning problem we are trying to
solve; Section IV provides detailed descriptions of our pro-
posed planning framework; simulation results are presented
in Section V; the conclusion and future work are stated in
Section VI.

II. RELATED WORKS

Cooperative control of a multi-agent system reduces op-
eration time, introduces redundancy and robustness to the
system to better handle adversarial situations such as mal-
function or failure of one or more agents. Araki et al.
built a robot swarm that can function as both ground and
aerial vehicles, and developed planning methods using mixed
integer program (MIP) [1]. Schillinger et al. studied optimal
planning algorithms for multiple ground robots using linear
temporal logic [2]. Kim et al. generates dynamically-feasible
trajectories for multiple UAVs to cooperatively transport
large objects [3].

Due to the expressiveness of integer variables, MIPs
have been used to solve planning problems with complex
constraints. Although current MIP solvers have worst-case
exponential complexity [4], MIPs can be solved fast enough
for many nontrivial problems that are practically useful.
Classical graph planning problems such as traveling salesman
problem (TSP) [5] and vehicle routing problem (VRP) [6]
can be written down and solved as mixed-integer linear
programs (MILP). Avellar et al. solves a minimum-time
ground area coverage problem by converting it to a VRP
[7]. Dynamically-feasible, obstacle-free UAV trajectories can
also be obtained by solving MIPs [8], [9]. Grotli et al. stud-
ied UAV planning problems with fuel and communication
constraints, but the communication ground stations are fixed
[10]. Evers et al. deals with the coverage problem and con-
siders the uncertainty of fuel usage and weather conditions
to provide a robust planning solution [11]. However, no
refueling is planned, and only target nodes instead of edges
are required to be visited. Lim et al. covers both edges and
nodes of a graph representing a power network using a fleet
of UAVs and minimizes overall inspection time [12].

To the best of our knowledge, although a wide variety of
planning problems has been solved with MIPs, the planning
problem of heterogeneous vehicles, which allows multiple
recharging/refueling of some of the vehicles and has con-
straints involving multiple types of vehicles, has yet to be
addressed.

III. PROBLEM STATEMENT

A. Graph representations of water canals and roads

The first step in our planning framework is to abstract
canal and road networks from a map into graphs (Figure 3).
GPS information of roads is extracted from the open-source

map named OpenStreetMap [13] using OSMnx [14]. Net-
workX [15] is used to assign nodes to end and intersection
points on the road network and identify the adjacency matrix
of the graph.

Water canals and roads are represented as two weighted
graphs:
• Gcanal = (Vcanal ,Ecanal), where v ∈Vcanal is an intersec-

tion of or a point along the canals, and e ∈ Ecanal is
a canal segment. The canal graphs are constructed in
such a way that all edges in the graph have comparable
weights, i.e. weight(ecanal) ≈ wc for all ecanal ∈ Ecanal ,
so that it takes a UAV the same amount of time to
inspect all edges in Gcanal . An important observation
is that Gcanal is usually a tree;

• Groad = (Vroad ,Eroad), where v ∈Vroad is an intersection
of roads, and e ∈ Ecanal a road segment.

(a) Graphs of water canals with 78 nodes and 77 edges

(b) Graphs of roads with 1391 nodes and 1398 edges

(c) Graph of water canals and roads

Fig. 3: Representation of water canals and roads

B. Heterogeneous planning problem

Given the following information:
• graphs of water canals and roads;
• number of available cars and UAVs;
• UAV battery life and transmission range;

we want to find paths for UAVs and cars that inspect all
water canals as quickly as possible, subject to the following
constraints:
• cars drive on the road graph Groad ;
• UAVs fly on the canal graph Gcanal , except when taking

off from and returning to the cars;



• every UAV needs to have at least one car within its
transmission distance, as shown in Figure 4;

• every UAV takes off with a fully-charged battery, and
needs to return to a car when its battery is depleted.

Fig. 4: Every UAV needs a car within its transmission
distance.

IV. PROPOSED COMPUTATIONAL METHODS

A. Overview

Using the canal and road graphs defined in Section III-A,
the inspection paths for UAVs and cars are found through
three steps:

1) graph partitioning: as the entire canal graph is usually
much larger than what a UAV fleet can inspect with a single
battery charge, the canal graph is partitioned into subgraphs
that a given fleet can possibly inspect within the UAV’s
battery life (20− 40 minutes). In addition, partitioning the
canal graph significantly reduces the size and computation
time of each of the path planning problems.

2) heterogeneous vehicle path planning: for each sub-
graph generated from partitioning, the heterogeneous vehicle
path planning algorithm generates paths for UAVs and cars
that inspect all canals in the given subgraph, subject to the
constraints given in Section III-B.

3) car routing between subgraphs: while being recharged,
the UAVs are also being transported from one subgraph to an-
other by cars. The car routing algorithm gives the minimum-
length path that visits and inspects all canal subgraphs.

B. Graph partitioning

To minimize the time for swapping batteries and traveling
between partitioned subgraphs, the objective is that partitions
have comparable sizes. Let K be the total number of UAVs
and M the number of edges a UAV can inspect with one fully
charged battery. The water canal graph Gcanal consists of
Nn vertices and Ne edges. Therefore, the maximum number
of edges in a subgraph is KM, and an initial guess for the
number of subgraphs is so = d Ne

KM e.
The actual number of subgraphs is increased from so

until the following mixed-integer quadratic program (MIQP)
becomes feasible. The MIQP of minimizing the traveling

distance of UAVs has the following objective function and
constraints:

min.
x

S

∑
s=1

(
N

∑
i=1

xsi)
2, (1)

subject to:

∀e,
S

∑
s=1

wse = 1, (2)

∀s,K ≤
E

∑
e=1

wse ≤ KM, (3)

∀s,
E

∑
e=1

wse =
N

∑
i=1

xsi−1,and (4)

∀s,xsi + xs j−2wse ≥ 0, (5)

where xsi ∈ {0,1} represents whether Node i is in Sub-
graph s, wse ∈ {0,1} represents whether Edge e in Subgraph
s. Constraint (2) requires that each edge belongs to one and
only one subgraph. Constraint (3) sets K and KM as the
lower and upper bounds of the number of edges in every
subgraph. As a connected subgraph of a tree is also a tree,
Constraint (4) implies that each subgraph must be connected.
Constraint (5) shows that if Edge ei j is in Subregion s, both
Node i and Node j are also in Subgraph s.

For example, given a fleet of 4 UAVs, in which every
UAV can cover 3 edges on a single battery charge (K = 4,
M = 3), it is calculated that the graph of water canal should
be partitioned into 8 subgraphs. The partitioning result is
shown in Figure 5.

Fig. 5: Graph partitioning result, different colors represent
different subgraphs.

C. Heterogeneous vehicles path planning for subgraphs

Given fixed numbers of UAVs and cars, the problem
of generating paths for UAVs and cars to inspect a canal
subgraph can be formulated as an MIQP with the objective
of minimizing the traveling distance of UAVs. In addition
to the constraints in Section III-B, we make the following
assumptions:
• UAVs and cars only travel to adjacent nodes over one

time step;
• All canal edges in a subgraph must be inspected by a

UAV;
• It takes a UAV one time unit to inspect an edge in the

canal subgraph; and



• The time taken to fly between the canals and the
vehicles at the beginning and end of the inspection
is negligible compared to the inspection time. This is
reasonable because the UAVs need to fly very slowly in
a zig-zag pattern in order to acquire clear images of the
canal walls. In comparison, the UAVs can fly reasonably
fast when traveling between the canals and the cars.

Let Ns be the total number of edges in the canal subgraph
indexed by s, the planning time horizon T is increased
from the initial guess t0 = d Ns

KM e until the following MIQP
becomes feasible. The MIQP of minimizing the traveling
distance of UAVs has the following objective function:

min
x,y

K

∑
k=1

T

∑
t=1

Ncanal

∑
i=1

(xk(t+1)i− xkti)
2, (6)

and constraints:

∀e ∈ Es,
K

∑
k=1

T

∑
t=1

2

∑
d=1

wektd = 1, (7)

∀k, t,e,
xkti + xk(t+1) j−2wekt1 ≥ 0, (8)

xkt j + xk(t+1)i−2wekt2 ≥ 0, (9)

∀k,kcar, t ykcart1
...

ykcartNroad

≤ R

 xkt1
...

xktNcanal

+(1−ωktkcar)

 1
...
1

 ,
(10)

∀t,k
Kcar

∑
kcar=1

ωktkcar ≥ 1, (11)

∀k, t,kcar

Ncanal

∑
i=1

xkti = 1,
Nroad

∑
i=1

ykcarti = 1, (12)

∀k, t,kcar

 xk(t+1)1
...

xk(t+1)Ncanal

≤ Acanal

 xkt1
...

xktNcanal

 , (13)

 ykcar(t+1)1
...

ykcar(t+1)Nroad

≤ Aroad

 ykcart1
...

ykcartNroad

 , (14)

where xkti ∈ {0,1} represents whether UAV k at time t is
at Node i of the canal subgraph; ykti ∈ {0,1} represents
whether Car k at time t is at Node i of the road subgraph;
ωktkcar ∈ {0,1} represents whether UAV k is within the
communication range of Car kcar at time t. Kcar is the
total number of cars in the fleet. R ∈ RNroad×Ncanal is the
transmission matrix containing only 0s and 1s. R(i, j) = 1
if the Euclidean distance between Node vi ∈Vroad and Node
v j ∈ Vcanal is less than the UAV’s maximum transmission
distance. Acanal and Aroad , containing only 0s and 1s, are the
adjacency matrices of the water canal and road subgraphs,
respectively. A(i, j) = 1 if node i and node j are adjacent.

Constraint (7) means that all edges must be inspected once.
wektd ∈ {0,1} represents whether Edge e is visited by the

UAV k starting at time t in the direction d. For an edge
ei j (i < j), d = 1 means that when the edge is inspected
by an UAV, the UAV first visits Node i and then Node j.
Similarly, d = 2 means that the UAV visits first Node j and
then i. wekt1 = 1 implies that xkti = 1, xk(t+1) j = 1, and wekt2 =
1 implies that xkt j = 1 and xk(t+1)i = 1. This relationship
between wektd and xkti is summarized in Constraint (8) and
(9).

Constraints (10) and (11) imply that for every UAV at all
time, there must be at least one car within its transmission
distance. Constraint (12) shows that at any time step, all cars
and UAVs must appear at only one node. Constraints (13)
and (14) require that UAVs and cars only travel to adjacent
nodes between consecutive time steps.

The planning result for one subgraph is shown in Figure
6. The magenta graph is a subgraph of Gcanal and the grey
graph a subgraph of Groad . The fleet has 4 UAVs and 2 cars.
The UAV inspection paths are shown on top of Gcanal as
dashed lines with different colors. The car paths are shown
as dotted lines on top of Groad .

Fig. 6: Planning result for one subgraph

D. Re-planning

When executing a plan on a subgraph, re-planning is
necessary in the event of UAV failure or traffic jam. To re-
plan at t > 0, an MIQP similar to the one in Section IV-C is
constructed, with the following modifications:
• Canal edges already inspected at time t are removed

from the canal subgraph.
• Congested roads are removed from the road subgraph.
• Battery life of UAVs is updated to the remaining battery

life.
• All UAVs and cars start at their positions in the original

plan at time t.
As shown in Figure 7, the proposed re-planning method

successfully generates new paths for UAVs and cars when a
UAV fails or the traffic changes.

E. Car routing between subgraphs

After finding an optimal plan to inspect a single subgraph,
we need to find the shortest car route that visits all subgraphs.
It is also required that the car route starts from and ends
at a fixed location called the office. To plan car routes



(a) Original plan (4 UAVs and 2
cars)

(b) Re-planning at t = 1. 4 edges
have been inspected and removed
from the canal subgraph.

(c) Re-planning at t = 1 due to
traffic condition changes (some
edges in the road graph are re-
moved.)

(d) Re-planning at t = 1 due to
UAV failure (only 3 UAVs remain
functioning)

Fig. 7: Re-planning results

between canal subgraphs, a new graph Gsubgraphs whose
nodes correspond to the canal subgraphs is constructed.
As the cars are free to travel from any canal subgraph to
any other canal subgraph, Gsubgraphs is fully connected but
asymmetric (because of one-way roads). After determining
the weights of the edges of the new fully-connected graph,
the car routing problem, which searches for the shortest
cycle that visits all nodes in Gsubgraphs, can be solved as
an Asymmetric Traveling Salesman Problem (ATSP).

1) Determining edge weights in Gsubgraphs: Let S be
the total number of subgraphs generated from canal graph
partitioning. The total number of nodes in Gsubgraphs is
S + 1 because the office is also included as a node. Let
Q∈ R(S+1)×(S+1) be the matrix of edge weights of Gsubgraphs,
in which QAB := Q(A,B) is the weight of the directed edge
pointing from Node A to Node B. We want a Q that
minimizes the total travel distances of all cars when they
carry UAVs from one subgraph to another (i.e. Subgraph A
to Subgraph B).

Fig. 8: Transform into ATSP problem

In the inspection planning of subgraphs (Section IV-C),
the planner gives a starting and leaving node for every car

in every subgraph. The UAVs take off at the starting nodes
(shown as© in Figure 8) and land at the leaving positions (×
in Figure 8). QAB can be determined by finding the shortest
of all paths connecting a leaving node (×) of Subgraph A and
a starting node (©) in Subgraph B. This can be formulated
as the following MIQP:

QAB = min
Kcar

∑
i=1

Kcar

∑
j=1

di jxi j, (15)

subject to:

∀i,
Kcar

∑
j=1

xi j = 1,∀ j,
Kcar

∑
i=1

xi j = 1, (16)

where di j is the length of the shortest path between Node i
and Node j in the road graph, and xi j ∈ {0,1} is whether car
travels from Node i in Subgraph A to Node j in Subgraph
B. Constraint (16) says that all ending nodes of Subgraph
A must be visited only once and that all starting nodes of
Subgraph B must be visited only once.

2) ATSP: After finding Q, the car routing problem is
reduced to an ATSP for a complete directed graph. The
objective is to find the shortest closed path that starts from
the office and visits all subgraphs:

min
x

S+1

∑
t=0

[
x0t . . . x(S+1)t

]
Q

 x0(t+1)
...

x(S+1)(t+1)

 , (17)

subject to:
x00 = 1,x(S+1)(S+1) = 1,and (18)

t ∈ {1, . . . ,S},
S

∑
s=1

xst = 1,s ∈ {1, . . . ,S},
S

∑
t=1

xst = 1, (19)

where xst ∈ {0,1} denotes whether subgraph s is visited at
time step t. Constraint (18) says that cars must begin and end
the journey from/at the office. Constraint (19) means at the
same time, only one subgraph is visited, and each subgraph
can be visited only once. Figure 9 shows the shortest paths
for cars.

V. RESULTS AND DISCUSSION

The computation time of all methods in our inspection
planning framework is benchmarked and summarized in
Table I. The problem used for benchmarking considers the
inspection of a water canal graph with 78 nodes and 77
edges. The inspection is conducted by a fleet consisting of 4
UAVs and 2 cars. Every UAV can cover 3 edges with a fully-
charged battery. The MIPs are solved using GUROBI[16]
on a laptop with Intel Core i7-3520M CPU (dual core four
threads).

TABLE I: Benchmarking results

Graph Heterogeneous planning Car
partition for subgraphs routing Total

0.02s 412.22s 5.22s 417.26s



(a) Start and end nodes on graph (b) Start and end nodes

(c) Car-route between 2 subgraphs (d) ATSP problem

(e) ATSP result (f) Car routing result

Fig. 9: Car routing between subgraphs

The planning result shown in Figure 10 illustrates that our
algorithm ensures the coverage of water canals and solves the
problem caused by limited transmission distance and UAV
battery life. Colored lines on graph of water canal represent
the path of UAVs and colored lines on graph of road denote
path of cars. Dotted lines between graph of water canal and
graph of road are path of UAVs between cars and water canal.
The entire inspection plan involving all cars and UAVs is also
simulated in Simulink, as shown in Figure 11.

Fig. 10: Planning result for 4 UAVs and 2 Cars

Fig. 11: Simulation environment

A 3D reconstruction of a water canal subgraph using
Octomap [17] (Figure 12(b)) is generated by simulating

a UAV with stereo-camera flying inside the CAD model
of water canals (Figure 12(a)) following a planned path.
The local octomap for all the UAVs are obtained from the
disparity depth-map of a virtual stereo camera sensor in
Gazebo, a realistic physics simulator. These local octomap
are stitched using the ground truth poses from the simulator
to obtain a unified octomap of the model. Figure 12 proves
that our method inspects both walls of water canals and is
expected to work effectively in real world scenarios.

(a) CAD model of a water canal subgraph

(b) Octomap reconstruction from simulated on-board stereo-camera

Fig. 12: Water canal subgraph reconstruction

It is shown in Figure 13 that the maximum planning
time for canal subgraphs (algorithm in Section IV-C) is 140,
which can be further reduced by parallelization. Based on
experiments, the time needed by cars to travel from one
subgraph to another is about 10 minutes. If a new inspection
plan is needed for the next subgraph due to different traffic
conditions or the malfunctioning of some of the UAVs, the
new plan will be ready before arriving at the next subgraph.

It has been assumed in Section IV-C that the time needed
by one UAV to inspect one edge in Gcanal is 1 unit time,
which is 10 minutes based on experiments. If we further
assume that the time taken by cars to travel from one
subgraph to another is 10 minutes, then the total inspection
time for UAV-car fleets of different sizes can be calculated,
and is summarized in Table II. There is a 75% reduction in
inspection time by increasing the fleet size from 1 UAV and
1 car to 4 UAVs and 2 cars.

Based on experimental results, the efficiencies of different
inspection methods are summarized in Table III. Manual
inspection involves a technician walking along the canals
and looking for defects. In manual navigation, an operator
flies a UAV manually along the canals, and another inspector
looks for defects from the UAV’s video feed. In our approach



(heterogeneous vehicle routing), the UAV flies autonomously,
records video of the canal walls, which are then analyzed
with computer vision algorithms. Compared with current
manual inspection and manual UAV flying method, the
proposed heterogeneous vehicle planning framework using 4
UAVs and 2 cars would reduce inspection time by 90% and
60%, respectively. These results could be improved further
by using more UAVs and cars.

Fig. 13: Planning time for all subgraphs

TABLE II: Fleet size and inspection Time

Fleet size 1 UAV 1 car 3 UAVs 3 cars 4 UAVs 2 cars
Inspection time

(minutes) 1320 490 330

TABLE III: Comparisons of different inspection methods

Manual Manual Heterogeneous
inspection navigation vehicle routing

Water canal
inspection time

(s/m2) 4.11 1.35 0.42
Resolution NA 0.2 mm-25 mm 0.2 mm

VI. CONCLUSION

Using UAV and car combinations to inspect large area of
water canal reduces inspection time. A innovative algorithm
is formulated to solve the new heterogeneous planning prob-
lem resulted from the UAV and car combinations. For the
current map of water canal in an agricultural town in Japan,
the planning algorithm runs online. The planning time is 140
seconds for each subgraphs and re-planning time is less than
3 seconds. Compared with manual inspection, using 4 UAVs
and 2 cars can be expected to reduce inspection time by at
most 90%.

In the future, collision avoidance between vehicles, aerial
constraints (weather, flying zones, busy aerial traffic, aerial
regulations, etc.), ground traffic regulations (one-way, non-
parking zones, speed limits, etc.) and uncertainty in maps
and measurements of UAV/car localization will be added to
the system to increase safety during inspection flights.
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