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Abstract— To improve the efficiency of surgical trajectory
segmentation for robot learning in robot-assisted minimally
invasive surgery, this paper presents a fast unsupervised method
using video and kinematic data, followed by a promoting
procedure to address the over-segmentation issue. Unsupervised
deep learning network, stacking convolutional auto-encoder,
is employed to extract more discriminative features from
videos in an effective way. To further improve the accuracy
of segmentation, on one hand, wavelet transform is used to
filter out the noises existed in the features from video and
kinematic data. On the other hand, the segmentation result is
promoted by identifying the adjacent segments with no state
transition based on the predefined similarity measurements.
Extensive experiments on a public dataset JIGSAWS show that
our method achieves much higher accuracy of segmentation
than state-of-the-art methods in the shorter time.

I. INTRODUCTION

Surgical trajectory segmentation is a fundamental problem
in the field of robot-assisted minimally invasive surgery
(RMIS). It can be applied to several applications, such as
demonstration learning [1], skill assessment [2], complex
task automation [3] and so forth. Each surgical procedure
is usually represented by synchronized video and kinematic
recordings, and can be decomposed into several meaningful
sub-trajectories. Since the segments are atomic with less
complexity, lower variance and easier to eliminate outliers,
the capability of further robot learning and assessment can
be improved. However, it is a challenging task to segment the
surgical trajectory accurately and rapidly. Even an identical
surgical procedure can vary remarkably in the spatial and
temporal domains due to the skill difference among surgeons.
Moreover, the trajectory is susceptible to the random noise.

Traditional solutions usually transfer the surgical trajectory
segmentation to a clustering problem, and are mainly divided
into two categories: supervised and unsupervised methods.
As the supervised methods, Linear Discriminate Analysis
(LDA) [4], Hidden Markov Models (HMMs) [2], Descriptive
Curve Coding (DCC) [5], and Conditional Random Field
(CRF) [6] are proposed. However, the supervised method
is time-consuming because of the manual annotations of
experts for training dataset. Thus, unsupervised methods have
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drawn more attention in recent years. Some unsupervised
methods based on Gaussian Mixture Model (GMM) and
Dirichlet Processes (DP) are proposed [7], [8]. Although
GMM and DP based methods can get rid of the manual
annotations, the room to improve the accuracy of surgical
trajectory segmentation remains since only the kinematic
data is taken into account. Recently, video data are involved
by using a deep learning based method, since traditional
pattern recognition based feature extraction methods can’t
model the variations among surgeon’s videos well. A. Murali
et al. [9] employ VGGNet to extract features from video
followed by Transition State Clustering (TSC) for task-level
segmentation using both kinematic and video data. Although
the involvement of video source enables the higher accuracy
of segmentation, the feature extraction from videos is time-
consuming and easily leads to over-segmentation.

This paper focuses on the unsupervised surgical trajectory
segmentation by means of both video and kinematic data in
this paper. There are challenges to find consistent segments
from the varying and noising recordings from surgeons with
different skills for a specific task. First, although the video
is capable of improving the performance of segmentation,
it is challenging to extract the distinguishing features in an
efficient way. In addition, random noise has to be considered
due to the difference of surgeons skill. Second, state-of-
the-art methods generally suffer from the over-segmentation
issue. We need to provide an effective way to identify the
adjacent segments with no state transition.

As shown in Fig. 1, a fast unsupervised method for
surgical trajectory segmentation is proposed using the video
and kinematic data. In particular, a promoting procedure is
presented to alleviate the over-segmentation issue. First, a
compact but effective unsupervised learning network called
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Fig. 1: Illustration of the suturing trajectory segmentation
with promoting procedure using video and kinematic data.
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stacking convolutional auto-encoder (SCAE) is employed to
speed up the feature extraction of video. Wavelet transform
is then used to filter the features from videos and kinematic
data for the further clustering based on TSC. We refer the
proposed segmentation method as TSC-SCAE for abbrevia-
tion. Finally, the segmentation result is promoted by merging
the clusters according to four similarity measurements called
PMDD based on principal component analysis, mutual infor-
mation, data average and dynamic time warping, respectively.

II. UNSUPERVISED TRAJECTORY
SEGMENTATION BASED ON TSC-SCAE

A. Visual Feature Extraction Using SCAE

Stacked Convolutional Auto-Encoder (SCAE) [10] is an
unsupervised feature extractor which is well compatible to
high-dimensional input. It is much faster than other methods
such as TSC-VGG and TSC-SIFT because of the simple
neural network and unsupervised method. SCAE has more
advantages in image processing as it can preserve the spatial
relationship between pixels. The SCAE network for visual
feature extraction is shown in Fig. 2, and the corresponding
configuration is summarized in TABLE I.

Fig. 2 illustrates that the basic structure of encoder consists
of convolutional layer and pooling layer. The input feature
maps (for the first layer, it is the original image I) are con-
volved with a convolution layer to transfer the information to
subsequent layers with the spatial relationship between pixels
preserved. These feature maps then pass through a max-
pooling layer to reduce the feature map size. After several
above conv-pooling layers, a low dimension feature map can
get from the encoder.

As shown in Fig. 2, the task of the decoder with the similar
topology with the encoder is to reconstruct the encoding re-
sult to get the implied image information. Therefore, we need
to up-sample the encoding result to recover the feature maps.
To prevent the checkerboard effect caused by traditional
transposed convolution, we use bilinear interpolation to do
up-sampling before each convolutional layer. For further
reduction of feature dimension, we employ two convolutional
layers with the kernel size of 1×1 after the last layer of the
encoder and before the first layer of decoder respectively.

Adam optimization algorithm [11] is employed to min-
imize the MSE (mean-square error) based loss function,

which can estimate the similarity between the reconstructed
image Î of decoder output and the original image I input to
encoder. After the network training, a model (i.e., the weights
of each layer) for image encoding and reconstructing can be
got from the network. In the phase of feature extraction,
we exclusively load the model’s encoder part to extract the
features of each frame in the surgical video.

TABLE I: Configuration of SCAE network.

Type Patch Size Stride Output Size
convolution 3×3 1 640×480×16
max pooling 4×4 4 160×120×16
convolution 3×3 1 160×120×8

Encoder max pooling 4×4 4 40×30×8
convolution 3×3 1 40×30×4
max pooling 4×4 4 10×7×4
convolution 1×1 1 10×7×1
convolution 1×1 1 10×7×4

bilinear up-sampling 40×30×4
convolution 3×3 1 40×30×8

Decoder bilinear up-sampling 160×120×8
convolution 3×3 1 160×120×16

bilinear up-sampling 640×480×16
convolution 3×3 1 640×480×3

B. Denoising Based on Wavelet Transform

After the feature extraction from the demonstration video,
the visual and kinematic features are then feed to nonpara-
metric mixture model for clustering. However, we find that
these features usually suffer from the random noise. To get
rid of it, wavelet transform based filter is employed due to
its ability of multi-scale filtering and a low-pass filter is
designed.

In this paper, we process the kinematic data and visual fea-
tures with db10 wavelet, and a 5-level wavelet decomposition
for denoising is performed. Fig. 3 and Fig. 4 demonstrate the
comparison of kinematic and visual features before and after
filtering based on wavelet transform.

After the filtering, visual and kinematic features then feed
to a nonparametric mixture model to segment surgical tra-
jectory. Considering the clustering performance, Transition
State Clustering (TSC) [8] is adopted in this paper.

III. SEGMENTATION PROMOTING BASED ON
PMDD

Most unsupervised trajectory segmentation methods usu-
ally have the problem of over-segmentation. To correct the
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Fig. 2: SCAE network for visual feature extraction.
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Fig. 3: Comparison of kinematic features before and after
filtering based on wavelet transform: The unit of vertical
Y-axis is meter (m) and the horizontal X-axis is frame (30
fps), x, y, z are input data (which represent a spatial location
comprehensively) while xwt, ywt, zwt are the corresponding
denoising results.
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Fig. 4: Comparison of visual features before and after
filtering based on wavelet transform: The horizontal X-axis
is frame (30 fps), Y-axis denotes the value of visual feature.

wrongly segmented sub-trajectories that belong to the same
cluster, a criterion is required to evaluate the similarity
between segments. Taking a deep insight into the same sub-
trajectory, they have a few implicit and explicit associations.
Besides the similarity in spatial and temporal space, inner
structure, variation node and moving trend are also the
important factors. Taking these factors into consideration,
we proposed a promoting algorithm based on PMDD con-
sisting of four similarity measurements based on Principal
Component Analysis (PCA), Mutual Information (MI), Data
Average (DA) and Dynamic Time Warping (DTW).

Similarity measurement based on PCA: W. Krzanowski
et al. [12] show that the PCA can be used to measure
the similarity between segments. PCA mainly determine the
internal link and structure between the segments. Consid-
ering two segments Sa and Sb, PCA could find several
principle components of Sa and Sb, which make up a
subspace representing the main information of Sa and Sb.
The smaller subspace angle between Sa and Sb means the
greater internal consistency between them. Thus, Similarity
measurement based on PCA is defined by the angles between
their subspaces comprised of principle components:

SMPCA (Sa, Sb) =
1

q

q∑
i=1

q∑
j=1

θ (i, j), (1)

where q is the number of principle components.

Similarity measurement based on MI: The surgery is a
continuous process, the data change of the segments in same
surgery sub-process is similar. Entropy can be interpreted
as a measurement of the uncertainty of the particular vari-
ables. Therefore, MI is a good similarity measurement for
variation degree between two segments, which is obtained
by subtracting the joint entropy H (Sa, Sb) from the entropy
H (Sa) and H (Sb) of both segments:
SMMI (Sa, Sb) = H (Sa) +H (Sb)−H (Sa, Sb) , (2)

Similarity measurement based on DA: DA mainly
reflects the spatial characteristic. During a sub-process of
surgery, the trajectory in a short time interval is similar in
the spatial space. Therefore, the distance between the centers
of segments in spatial space is taken into account, as written
as follows:

SMDA (Sa, Sb) = ‖µa − µb‖ , (3)
where µa and µb are mean vectors of segments Sa and Sb.

Similarity measurement based on DTW: Due to the
difference of surgeons’ skill, the same action may show
different sub-trajectories. One typical is the same behavior
of different performance in temporal domain. The key issue
of DTW is warping curve. Here, we take cumulative distance
γ (i, j) to calculate the best warping path while measure
DTW similarity [13].

SMDTW (Sa, Sb) = min

(√∑K

k=1
wk/K

)
, (4)

where wk is the k − th element of warping path, K is the
compensation parameter that can be identified by cumulative
distance.

γ (i, j) = d (qi, cj) + min

γ (i− 1, j − 1)
γ (i− 1, j)
γ (i, j − 1)

, (5)

where d (qi, cj) is the Euclidean distance between point qi
and cj .

All above four similarity measurements are in different
dimensions. Thus, the normalization is required to obtain the
final measure. For SMPCA, SMDA, SMDTW , the smaller
the value is, the more similar the two segments are. We
perform the normalization of them using Eq. (6), and the
normalization for SMI is perform using Eq. (7). After that,
the final similarity O can be calculated by Eq. (8).

Y =

{
0, SM ≥ mean (SM)

mean(SM)−SM
mean(SM)−min(SM) , SM < mean (SM)

, (6)

Y =

{
SM−mean(SM)

max(SM)−mean(SM) , SM > mean (SM)

0, SM ≤ mean (SM)
, (7)

Oa,b =
[
(YPCA)2+(YDA)2+(YDTW )2+(YMI)

2

4

]1/2

, (8)

Then, according to final similarity measurements, seg-
ments that have high similarity can be merged iteratively.
Considering the segmentation results S = {Si, 1 ≤ i ≤ n},
the final similarity of each pair of two adjacent segments
will be calculated by Eq. (8) in each iteration, and then we



obtain a set of results O = {O1,2, O2,3, ..., On−1,n}. Merge
the pairs with the highest final similarity, and update com-
prehensive similarity O, merge the most similar segments in
the next iteration, until overall final similarity O(a,b) smaller
than threshold τ . The segmentation promoting algorithm is
summarized in Algorithm 1.

Algorithm 1 Segmentation promoting based on PMDD.
Input: Segments S, Threshold τ .

1: while O > τ do
2: for i = 1 : length(S)− 1 do
3: Calculate O(a,b) by Eq. (8).
4: end for
5: index← argmax

i
(Oi,i+1)

6: Sindex ← merge (Sindex, Sindex+1)
7: remove (Sindex+1)
8: end while

Output: Post processed segments S.

IV. EXPERIMENTAL RESULTS
In this section, two sets of experiments are conducted to

verify the performance of proposed unsupervised segmenta-
tion algorithm for surgical trajectory. In the first experiment,
TSC-SCAE is evaluated with respect to the accuracy and
overall running time, compared with the classic clustering
methods including GMM and TSC. The effects of differ-
ent data sources and wavelet transform based filtering are
analyzed quantitatively. Second, the promoting method of
segmentation is verified by following different methods using
the kinematic data alone and the combination of video and
kinematic data, respectively.

The dataset JIGSAWS [14] from Johns Hopkins University
is used in the experiments, including data recordings and
manual annotations. Data recordings consist of surgical video
and kinematic data collected from Da Vinci Surgical System.
The sampling frequency for both video and kinematics
sources is 30Hz. The dataset contains three surgical tasks:
Suturing (SU), Needle-Passing (NP) and Knot-Tying (KT),
which are performed and annotated by 8 surgeons with
different skill levels. The suturing and needle passing task
are commonly used in literatures. In this paper, we adopt
11 demonstrations of these two tasks in the experiments,
including the videos and kinematic data from 5 experts (E),
3 intermediates (I) and 3 novice (N). The kinematic data are
in 38 dimensions, including position, angle velocity, angle of
grasper, etc. All 11 videos of each task are used for SCAE
model training and features extraction. The computational
configuration used in the experiments is summarized in
TABLE II.

TABLE II: Configuration used in the experiments.

Category Specification
Operating System Ubuntu

CPU 32 Intel Xeon E5-2620 v4 @ 2.10GHz
GPU NVidia Tesla K40

CUDA Compute Capability 3.5
CUDA Cores 2880

RAM 128GB
Programming Language Python

A. Quantitative Analysis of TSC-SCAE

1) Accuracy Comparison: In this section, the accuracy
of TSC-SCAE is compared using Normalize Mutual Infor-
mation (NMI), which indicates the transfer status similarity
between a predictive clustering result A and the ground truth
B (manual annotations), it can be calculated by

NMI (A,B) =
I (A,B)√
H (A)H (B)

, (9)

where H (A) and H (B) are the information entropies of
A and B, respectively. I (A,B) is mutual information. The
range of NMI is [0,1], where 0 means that there is no
correlation between two clustering results, while 1 represents
the results are completely related.

We compare the proposed method TSC-SCAE with state-
of-the-art methods, including TSC[8], GMM[7], TSC-VGG,
TSC-SIFT[9] and TSC-SCAE on the selected surgical
demonstrations. According to the data source in the different
methods, the experiments are divided into two categories:
one use kinematics data alone and the other use both video
and kinematic data. TABLE III shows NMI measurements
of segmentation. We can see that our method TSC-SCAE
achieves the best NMI among all trajectory segmentation
tasks, it thanks to the use of video data and wavelet
transform. Especially, using both video and kinematic data,
the accuracy is improved by more than 2.6 times at most,
compared with TSC-SIFT.
TABLE III: NMI of segmentation for different methods. K
stands for using kinematics data alone, V&K represents
using both video and kinematics data, ∗ denotes data is
filtered by wavelet transform.

Method
NMI(%) Needle Passing Suturing

E E+I E+I+N E E+I E+I+N
TSC(K) 21.6 27.2 17.0 43.2 38.0 25.7

GMM(K) 53.3 51.2 45.8 45.2 43.4 41.0
TSC-VGG(V&K) 62.9 64.7 69.3 58.6 64.0 66.5
TSC-SIFT(V&K) 31.0 32.6 28.2 48.0 42.5 37.7

GMM-SCAE(V&K) 59.3 57.4 58.7 57.5 52.5 51.4
TSC-SCAE(V&K) 72.6 73.8 71.2 65.5 66.3 67.2

TSC-SCAE(V&K*) 79.1 77.7 74.7 67.9 67.5 68.5

Overall, methods with both video and kinematic data are
generally better than the ones using kinematics data alone.
It is consistent with the results reported in literatures. The
NMI of methods using kinematics data alone has a trend of
decreasing with the growing proportion of non-expert (I &
N) demonstrations. This phenomenon is very significant in
the suturing task, it is mainly because of the complexity and
non-regularity of suturing task. Whats more, demonstrations
from experts are usually smoother and rapider than non-
experts do. However, when considering both kinematics
and video data, the phenomenon is obviously weakened.
It proves that video data can help eliminate the influence
of irregular trajectory from intermediates and novices and
is an effective compensation to achieve the better surgical
trajectory segmentation.

As aforementioned, random noise may cause the potential
interference to the result of segmentation. To solve this
problem, we perform a multi-scale smoothing processing to



the dataset by using db10 wavelet to filter out the small-scale
noise, which indirectly improve the segmentation accuracy.
Compared with the experiments without filtering in needle-
passing task, the NMI is increased by 3.5%-6.5%, the
improvement is 1.2%-3.4% in suturing task.

2) Overall Running Time Comparison: Another key indi-
cator is overall running time, although surgery segmentation
is not in strong real-time, the task also needs to be as fast
as possible. Methods based on kinematics data alone, the
running time is the cost of clustering and segmentation, while
we need to add the time cost of video feature extraction for
methods using visual and kinematic data (TSC-VGG, TSC-
SIFT, etc.). For our method TSC-SCAE, the time cost is
calculated in three parts, including visual feature extraction,
wavelet transform based filtering and clustering segmenta-
tion.

The running time in different steps is summarized in
TABLE IV. The segmentation methods based on both visual
and kinematic features are about 10 times slower than the
ones using kinematic data alone. It is mainly because of the
time-consuming visual feature extraction. However, for the
methods using both data sources, our method TSC-SCAE is
almost 10 times faster than TSC-VGG and TSC-SIFT. The
improvements of time efficiency is due to the high-efficiency
unsupervised model for feature extraction of video data we
employed.

B. Evaluation of Segmentation Promoting

Over-segmentation is a common problem of clustering
segmentation algorithm. To prove the validity of the proposed
promoting approach as the post-processing step, we apply
it to the mainstream clustering segmentation algorithms,
including GMM, TSC based methods. NMI is used to
measure the similarity of transition status in the segmentation
clustering method. But it is not based on transfer state
to merge in the promoting stage. Therefore, we choose
segmentation accuracy (seg-acc) as the evaluation matrix,
which can measure the similarity between the segmentation
result and ground truth intuitively and accurately.

The calculation of seg-acc can divided in two steps. In
the first step, we match resultant segments to the ground
truth by maximizing the number of overlap frames between
predicted segments and ground truth [15]. In second step, it
is true positive if the IOU (Intersection over Union) between
the ground-truth segment Gi and its corresponding resultant
segments Si is more than a default threshold 40%. We
calculate the accuracy of each segment separately and then

sum up them. Fig. 5 illustrates the calculation process and
the seg-acc can be obtained using

seg-acc =
∑ Li

L =
∑ [min(Se

i ,G
e
i )−max(Ss

i ,G
s
i )]

L , (10)
where Ss

i , S
e
i and Gs

i , G
e
i represent start and end frame of

segment Si and Gi.
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Fig. 5: Segmentation accuracy of predicted segments. Where
s and e represent start and end frame of segment, Li stands
for the number of overlap frames between predicted segment
Si and its corresponding ground truth Gi.

As shown in TABLE V, the seg-acc of each method
has been improved obviously for most cases. TSC-K is
the biggest beneficiary with the improvement of seg-acc by
15.2% on average, while the accuracy is improved less for
TSC-SIFT and TSC-VGG. In the experiment, we notice that
it is difficult to refine the segmentation if the clustering
results is far away from the ground truth. As shown in Fig. 6,
each color represents a surgical activity segment, while the
white segment indicates incorrect segment or over-segmented
segment. Among all methods, the seg-acc of GMM based
method even declines after the promoting. Because GMM
needs to specify the number of merged class, so over-
segmentation in GMM is not very common instead is wrong
segmentation. For our method TSC-SCAE, the segmentation
promoting yields up to 16.7% improvement with respect
to seg-acc. In most cases, the resultant segmentation after
the promoting is significantly improved. From the view
of TABLE V, we notice that the improvement of non-
expert demonstration is more outstanding than the expert do,
because the non-expert demonstration produces more over-
segmentation fragments.

In all experiments, TSC-SCAE obtains the best result
of segmentation, it is proved that the proposed promoting
method is very effective for the surgical trajectory segmen-
tation. In general, it can be extended to most clustering
segmentation algorithms.

V. CONCLUSION

This paper proposed a fast unsupervised method for surgi-
cal trajectory segmentation based on a compact stacking con-
volutional auto-encoder model and wavelet transform based

TABLE IV: Comparison of overall running time using different segmentation methods (unit: s). FE stands for feature
extraction, CS represents clustering segmentation and WT is wavelet transform, ∗ denotes data is filtered by wavelet transform.

Method
Time(s) Needle Passing Suturing ElementsE E+I E+I+N E E+I E+I+N

TSC-K 79 103 353 59 83 331 CS
GMM-K 1.76 1.95 3.34 1.59 2.00 5.38 CS

TSC-VGG 8120+394 9744+380 14616+1226 4935+322 5922+364 8884+1404 FE+CS
TSC-SIFT 2127+440 3284+723 5019+2020 1941+404 3036+533 4633+2259 FE+CS

GMM-SCAE 128+2.94 154+2.95 231+5.57 139+2.80 167+3.30 251+5.38 FE+CS
TSC-SCAE 128+197 154+199 231+933 139+158 167+201 251+1012 FE+CS
TSC-SCAE* 128+202+27 154+201+31 231+930+48 139+160+25 167+198+29 251+1008+47 FE+CS+WT



TABLE V: Segmentation accuracy before and after segmentation promoting.

Method

seg-acc Before Promoting After Promoting
Needle Passing Suturing Needle Passing Suturing

E E+I E+I+N E E+I E+I+N E E+I E+I+N E E+I E+I+N
TSC-K 0.498 0.563 0.529 0.484 0.535 0.542 0.614 0.578 0.615 0.547 0.565 0.630
GMM 0.480 0.528 0.541 0.466 0.489 0.503 0.392 0.475 0.551 0.494 0.541 0.575

TSC-VGG 0.505 0.562 0.436 0.487 0.460 0.498 0.522 0.548 0.445 0.540 0.465 0.507
TSC-SIFT 0.546 0.561 0.510 0.442 0.513 0.493 0.592 0.582 0.590 0.521 0.589 0.593

TSC-SCAE 0.637 0.612 0.547 0.513 0.537 0.545 0.632 0.666 0.618 0.565 0.605 0.636
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Ground truth
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Fig. 6: Visualization of comparison of needle passing task.

filtering using multi-modal surgical demonstrations. The im-
provement with respect to the efficiency of segmentation
is three-fold. First, new involved model can generate more
discriminative visual features faster. Second, the short-range
noises in the visual and kinematic features are filtered based
on wavelet transform. Last but not least, a promoting ap-
proach is proposed to handle the over-segmentation problem.
Compared with the state-of-the-art methods, experimental
results demonstrate that the proposed algorithm can improve
the accuracy of segmentation in an more efficient way.
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