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Abstract— Robots can rapidly acquire new skills from
demonstrations. However, during generalisation of skills or
transitioning across fundamentally different skills, it is unclear
whether the robot has the necessary knowledge to perform
the task. Failing to detect missing information often leads to
abrupt movements or to collisions with the environment. Active
learning can quantify the uncertainty of performing the task
and, in general, locate regions of missing information. We
introduce a novel algorithm for active learning and demonstrate
its utility for generating smooth trajectories. Our approach is
based on deep generative models and metric learning in latent
spaces. It relies on the Jacobian of the likelihood to detect
non-smooth transitions in the latent space, i.e., transitions that
lead to abrupt changes in the movement of the robot. When
non-smooth transitions are detected, our algorithm asks for an
additional demonstration from that specific region. The newly
acquired knowledge modifies the data manifold and allows
for learning a latent representation for generating smooth
movements. We demonstrate the efficacy of our approach on
generalising elementary skills, transitioning across different
skills, and implicitly avoiding collisions with the environment.
For our experiments, we use a simulated pendulum where we
observe its motion from images and a 7-DoF anthropomorphic
arm.

I. INTRODUCTION

Learning is rarely random and it typically follows an
intended, often greedy curriculum. Actively seeking to fill
knowledge gaps is, in fact, tantamount to faster learning.
This setup is especially advantageous when the data is
scarce and expensive to acquire. To actively seek the missing
knowledge, the learning algorithm is endowed with the
ability to query an oracle for the next datum, or the next
datum to label. The oracle is commonly a human labeller or
a demonstrator. To this end, active learning often boils down
to two components: a model that quantifies the learner’s un-
certainty and a utility function. The supremum of the utility
function determines the next datum to be queried. Examples
of utility functions include the Information Gain [1], Upper
Confidence Bounds [2], or the Expected Improvement [3].
Active-learning approaches are efficient as, in general, re-
quire fewer data to achieve high performance [4]. Therefore,
in robotics, where data acquisition is considered expensive,
utilising active learning is crucial. In this work, we introduce
an active-learning algorithm that is primarily aimed for
motion planning. Our approach uses latent-variable models
and proposes a novel utility function that operates in the
latent space. It leverages recent advances in metric learning
for latent-variable models [5], [6] and augments them with
uncertainty estimation.

(a) Before active learning. (b) After active learning.

Fig. 1: The FRANKA 7-DoF robotic arm performing a
reaching movement. (a) Despite that the robot was uncertain
about performing the movement, we executed it, and, as a
result, the robot collided with the obstacles. (b) Our approach
successfully detected that there is not enough information for
executing the movement and asked for additional demon-
strations. After acquiring the demonstrations, our approach
was confident that no additional knowledge is needed and
the robot successfully performed the reaching movement by
avoiding the obstacles.

Current approaches in active learning for robotics, further
discussed in Section II, mainly focus on acquiring demon-
strations for learning new trajectories when data points are
missing i.e., they can successfully quantify the missing in-
formation. However, they do not provide a data-driven inter-
polation approach between the already acquired data points,
e.g., when generalising skills or transitioning between skills.
In practice, a shortest path approach is used, but it suffers
from limitations. First, the interpolation does not follow the
shortest path in the data manifold and consequently, might
drive the robot away from the known state-space regions that
have been acquired from demonstrations, resulting, e.g., in
collisions or in reaching joint limits. Second, the smoothness
of the movement is also not taken into account. Yet, smooth
and predicable motion is a key ingredient for safe interactions
with robots.

We propose a novel active-learning algorithm that supports
data-driven generalisation by allowing interpolations in the
data manifold, while it is capable to simultaneously detect
non-smooth, abrupt changes. Additionally, it quantifies the
uncertainty during the interpolation and, hence, suggests new
demonstrations to be provided by an oracle. Specifically, our
approach leverages from latent-variable models in order to
infer a meaningful representations of the motion trajectories
and exploits the Jacobian of the data likelihood along the
movement to discover abrupt motions. We demonstrate the
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benefits of our approach in a set of experiments by generating
smooth generalisations of movements and, in addition, we
demonstrate how the uncertainty of a movement can be used
to implicitly avoid obstacles. For the experimental evaluation,
we model the motion of a pendulum assuming that we
have access only to image observations and we use a 7-
DoF anthropomorphic arm to demonstrate our approach on
avoiding obstacles.

II. RELATED WORK

Active learning is a common component in robotic sys-
tems, especially when it comes to efficiently acquiring new
samples during the learning [7], [8], or to performing explo-
ration in the action space [9], [10]. Interested by the problem
of teaching robots by humans, the authors in [11] leverage
the uncertainty of the hypothesis space in order to efficiently
request demonstrations from a human operator. In [12], the
robot is endowed with the ability to ask questions, in order to
acquire new labels, new demonstrations, or new skill repre-
sentations. The uncertainty estimation of Gaussian Processes
is used in [13] in order to learn to broaden the robot reaching
skills by querying new demonstrations whenever the uncer-
tainty reaches a specified threshold. Active learning is also
used to improve over random exploration for grasping tasks
based on visual sensory input [9]. Also for grasping, active
learning is combined with reactive control in order to explore
interesting poses using an upper confidence bound (UCB)
policy [14]. In [15], a goal-driven active learning approach
is developed for learning skills in continuous sensorimotor
spaces. In [16], the authors combine model-free and model-
based reinforcement learning methods—and the uncertainty
thereof, in order to acquire robotic manipulation skills.

Our robot experiments involves a query-based learning
system. The scenario is similar to [13], however, in the latter
work the user has to manually choose the trigger.

More generally, active learning has been intensively stud-
ied in the machine learning literature [4]. In the latter survey,
the author distinguishes three types of scenario, depending
on how to select the query to be labelled by the oracle;
namely membership queries synthesis, stream-based selec-
tive sampling, and pool-based sampling. In the membership
queries synthesis scenario (e.g., [17], [18]), the learner first
generates (or synthesises) the query to be annotated, instead
of sampling it from an observed pool of data. In stream-
based selective sampling (e.g., [7]), the learner further filters
the generated queries to be labelled and hence can decide
to discard it based on a given “informativeness measure”.
Finally, pool-based sampling (e.g., [19], [20]) is motivated by
applications wherein a large amount of unlabelled data can be
collected but labelling by the oracle is costly. In our illustra-
tive example in Section IV-A—the pendulum experiment—
pool-based sampling is used. The original problem of the
experiment corresponds to an unsupervised learning task and
does not require labels, however the setup allows us to select
the most useful data from the pool and evaluate our method.
In Section IV-B and IV-C however, stream-based selective
sampling is used. These experiments imply robot interaction

and it remains expensive to obtain unlabelled data for such
manipulations.

In order to model the uncertainty, kernel-based methods
are commonly used in the active learning literature, such
as Support Vector Machines and “margin-based uncertainty”
[21]—when dealing with low-dimensional data. In [22],
the authors combine Radial Basis Functions (RBF) kernels
with information density. Bayesian Neural Networks are also
used for active learning, as recently shown by [20] in the
context of images classification. Following [23], we use an
RBF network to model data uncertainty. Our method is
an alternative for modelling defect detection by measuring
model sensitivity.

III. APPLYING RIEMANNIAN GEOMETRY TO LATENT
VARIABLE MODELS FOR ACTIVE LEARNING

Latent-variable models (LVM), defined by

p(x) =

∫
p(x | z) p(z) dz, (1)

are widely used to find a representation of observable data
x ∈ RNx through latent variables z ∈ RNz based on hidden,
nonlinear regularities in x.

We use latent variables for generating a sequence of ob-
servable data points, with the condition that every generated
point has a high similarity to the previous one. However,
the similarity between the successive data points depends
on the information provided to the LVM. In case of a low
similarity we apply active learning to get targeted the missing
information.

Gauging the similarity of two data points in the latent
space is one of the main topics in this paper. To solve this
problem, we take the Jacobian of the likelihood into account
by treating the latent space as a Riemannian manifold.
The Riemannian metric defines a relationship based on the
Jacobian of the likelihood, due to change of variables when
moving from Riemannian (latent) to Euclidean (observation)
space.

A smooth interpolation through our observable data can
be obtained by following the geodesic, i.e. the length-
minimising curve between two points in the Riemannian
space. Here, smooth refers to a strong similarity of successive
data points.

However, even when following the geodesic, finding a
smooth interpolation will fail under certain circumstances.
For instance, when we are trying to interpolate between
different classes. The distance between the data manifolds
of the different classes in the observation space typically
results in a high Jacobian value of the likelihood mean when
interpolating from one class to the other. This implies that
information is missing to provide a sequence of similar data
points to connect the different manifolds smoothly. As a
consequence, the variance of the likelihood changes as well.

Since the Jacobians of both the mean and the variance are
taken into account by the Riemannian metric, this property
can be turned to advantage when dealing with active learning.
For instance, when trying to interpolate between different



robot movements. Because missing data can be queried
specifically if such boundaries are passed.

Building on that, the focus of our paper lies on applying
Riemannian geometry to LVMs for active learning of robot
movements.

A. Importance-weighted autoencoder

Since in most LVMs the integral in Eq. (1) is intractable,
approximations are used which base on sampling [24] [25]
or on variational inference [26] [27]. In the latter case, the
problem is reformulated as the maximisation of the evidence
lower bound (ELBO). The distribution q(z) approximates the
intractable posterior and pθ(x|z), defined as the generative
model and parameterised by θ, approximates the likelihood.
Let X = {x(1), . . . ,x(N)} be observable data and z(i) the
corresponding latent variables. Then,

ln pθ(X) ≥
N∑
i=1

Eq(z(i))

[
ln
pθ(x

(i)|z(i)) pθ(z
(i))

q(z(i))

]
= LELBO.

(2)
Implementing q

(
z(i)
)

= qφ(z(i)|x(i)) with a neural network
parameterised by φ, we obtain the variational autoencoder
(VAE) introduced in [26], [27].

To overcome the limitations of ordinary VAEs and to
achieve a tighter ELBO, we use importance-weighted au-
toencoders (IWAE) [28], [29] in our approach. IWAEs treat
qφ(z|x) as a proposal distribution and obtain a tighter ELBO
by using importance sampling:

LELBO =

N∑
i=1

E
z

(i)
1 ,...,z

(i)
K ∼qφ(z(i)|x(i))

[
ln

1

K

K∑
k=1

w
(i)
k

]
,

(3)
with the importance weights

w
(i)
k =

pθ(x
(i)|z(i)

k ) pθ(z
(i)
k )

qφ(z
(i)
k |x(i))

. (4)

B. Riemannian geometry in latent variable models

Riemannian space is a differentiable manifold M which
contains as an additional characteristic a metric to describe
its geometric properties. The corresponding metric tensor G
assigns to each point z in the latent space an inner product
on the tangent space TzM , defined by

〈z′, z′〉z := z′T G(z) z′, (5)

with z′ ∈ TzM and z ∈M .
Let us assume we have a curve γ : [0, 1] → RNz

in the Riemannian (latent) space that is transformed by a
continuous function f(γ(t)) to an Nx-dimensional Euclidean
(observation) space, where γ(t) ∈ RNz . The length of this
curve in the Euclidean space is defined as

L(γ) =

∫ 1

0

√〈
γ̇(t), γ̇(t)

〉
γ(t)

dt, (6)

with the metric tensor G = JTJ, where J is the Jacobian
matrix of the likelihood and γ̇ the time derivative of γ.

C. Using geodesics for trajectory generation

To approximate the geodesic we use a neural network
that is optimised by minimising L(γ). A singular-value
decomposition of G ensures the geodesic is following the
data manifold, as introduced in [5].

Although this method takes the sensitivity of the model
into account, it does not capture data uncertainty. In other
words: the high Jacobian values of the likelihood mean at
the boundaries between different data manifolds are taken
into account, but there is nothing that tells us where our
model is uncertain due to missing data. The reason is a
global variance of the generative model. To remedy that, the
neural network of the generative model is extended by radial
basis function (RBF) networks to be able to represent the
likelihood variance too [6], [23].

In contrast to [6], we update the weights of the RBF
networks during the training of the generative model and
define a rule for an autonomous hyperparameter selection
after the training is finished. The RBFs v and the precision
ψ(z) of the generative model are given by

ψ(z) = Wv(z), (7)

vk(z) = exp
(
−λk‖z− ck‖2

)
, with k = 1, . . . ,K,

where K is the number of the radial basis functions. λ and
c are variables representing bandwidth and centres, respec-
tively. W are the weights to be optimised. The bandwidth is
defined by

λk = α

(∑K
i ‖ck − ci‖2

k

)−2

, (8)

where α, a hyperparameter, denotes the curvature of the
Riemannian metric. Since the variance is the reciprocal of
the precision:

σ2(z) = ψ(z)−1, (9)

it increases with the distance to the centres and the uncer-
tainty of the model, respectively. It is not possible to directly
compute the Jacobian of a sample x ∼ pθ(x|z). Hence, we
reparameterise it by ε ∼ N (0, 1) [26], [30]:

J(z) = Jµ(z) + ε Jσ(z), (10)

where Jµ and Jσ , the Jacobians of the mean and the standard
deviation of the likelihood, represent the sensitivity and the
data uncertainty of the model, respectively. The changes
in the likelihood variance have influence on G, hence the
equation introduced in [5] has to be updated. To simplify
the calculation, we remove the stochasticity in G by taking
the expectation [6]

Ep(ε)[G(z)] = Jµ(z)TJµ(z) + Jσ(z)TJσ(z). (11)

We differ from [6] in the optimisation procedure of the
model: the centres c are computed by K-means and updated
at every n-th iteration step during the training of the IWAE.
For both the computation of the centres c and the RBFs v,
the mean zµ of z is used. The weights W are optimised by
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Fig. 2: Evaluations of the illustrative experiment based on a two-dimensional dataset. (a) Training and testing dataset with
a sample sizes of 3.3 · 103 and 2 · 103 data points, respectively. The data-acquisition pool has the same distribution as the
testing dataset and 2 · 103 data points. (b) Latent space of the trained model. The MF is represented by the grayscale. The
blue points depict the mean of the training data. (c) Observation space of the acquired data after seven iterations when
using different active-learning approaches, namely the MF, the Max Entropy, and a random acquisition strategy. The latter
acquires data that is similarly distributed to the data in the acquisition pool, which has a large overlap with the training
dataset and, therefore it does not provide an efficient learning approach. The Max Entropy does not take into account the
MF of the model or acquires data points from the center of the latent space.

back-propagation. α is treated as a hyperparameter during the
IWAE training. After the training is finished, α is updated
to satisfy

‖max[Jµ(zµ)]−max[Jσ(zµ)]‖ < ε, with ε→ 0. (12)

Satisfying Eq. (12) guarantees that the mean and the variance
have a similar effect on the Riemannian metric tensor.

D. Active learning for robot trajectory generation

Active learning can be applied to targeted reduce the
uncertainty of our model, which leads to smoother trajectory
generations. In active learning an acquisition function a is
used to detect where a model M is uncertain, so missing
labels can be queried specifically:

x∗ = arg max
x∈Dpool

a(x,M). (13)

Our goal is to guarantee a smooth interpolation along the
geodesic. This is only possible if there are no abrupt changes
in the Jacobian of the likelihood, which is expressed by the
determinant of the metric tensor G for a specific pair (x, z).
This leads to the following acquisition function:

a(x,M) =
√

detG(z) =: MF(z), (14)

also defined as the magnification factor (MF) [31]. The MF
can be interpreted as the scaling factor when moving from
the Riemannian (latent) to the Euclidean (observation) space,
due to the change of variables.

In addition to the acquisition function, a threshold is
necessary to tell the active learning algorithm whether a

interpolation is smooth or not. The threshold is defined as

τ(Ω) =
1

NΩ

NΩ∑
i=1

ωi +
√

Var(Ω), (15)

where ωi ∈ Ω, Ω = {MF(z(1)), . . . ,MF(z(N))}, and NΩ is
the cardinality of Ω.

When applying active learning to robot movements, we
use a set of pairs of start and end points in the observation
space Π = {(x(1)

0 ,x
(1)
1 ), . . . , (x

(NΠ)
0 ,x

(NΠ)
1 )}. For each pair

the geodesic geo(x0,x1) is computed. To decide whether the
movement (interpolation) between a start and an end point is
smooth, only points along the geodesic γ(t) ∈ geo(x0,x1)
are taken into account. Thus, in contrast to the active learning
approach described in Eq. (13), Dpool = [γ(0), γ(1)] refers
to the latent space. Based on whether the values of the
magnification factor along the geodesic geo(x0,x1) exceed
τ(Ω), the active learning algorithm decides if the trajectory
between x0 and x1 is required to be demonstrated. In case
of a required demonstration, retraining the model with the
new data leads to low MFs along geo(x0,x1).

Hence, the final result of our approach is a smooth
movement or rather a smooth combination of movements
of the robot—realised by reconstructing the latent variables
along the geodesic.

IV. EXPERIMENTAL EVALUATION

We evaluate our approach in multiple scenarios. First,
we use an artificial two-dimensional dataset to illustrate
how our approach works. Then, we demonstrate that our
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Fig. 3: The reconstruction error of the illustrative experiment
when using the MF, Max Entropy, or random active-learning
strategy. The acquisition functions acquire ten data points per
iteration.

approach can work efficiently with high-dimensional data
on simulated pendulum where the state is given by images.
Finally, we present our results on controlling a 7-DoF robotic
arm where smooth reaching movements are generated. When
our approach detects that a trajectory would cross regions of
the state space where not enough data have been acquired,
it asks for additional demonstrations. Hence, it is used to
implicitly avoid collisions and joint limits. The architectural
design and the hyper-parameters used for our experiments
are listed in the appendix.

A. Illustrative experiment

In the first experiment, we evaluate the efficiency of our
approach in reducing the reconstruction error by actively
acquiring data points from regions where the model does not
have enough information. To better illustrate our approach,
we generated an artificial two-dimensional dataset, where
the IWAE maps the observation space to a two-dimensional
latent space. The training dataset is depicted in Fig. 2a,
whereas the resulting latent space and MF are shown in
Fig. 2b.

Our algorithm asks for new data points from regions where
the MF is high, and therefore it selects the central region.
In contrast, the Max Entropy strategy assumes that enough
information form the central region is present.

As a result, our MF active-learning approach can effi-
ciently reduce the reconstruction error using fewer samples
than the Max Entropy or the random acquisition approach.
The results are shown in Fig. 3.

B. Trajectory planning for pendulum

We demonstrate the trajectory planning capabilities of
our approach in a simulated 1-DoF pendulum system. The
simulator provides a 16×16-pixel image of the current state
of the pendulum, which we use as input to our algorithm.
We gathered an image dataset by collecting T = 15 · 103

images for two different joint angle ranges, R1 = [0, 150)
and R2 = [180, 330) degrees. Subsequently, we augmented
the dataset by adding 0.05 Gaussian noise to each pixel, to

avoid over fitting and to improve the coherence of the latent
space.

After training, we generated four trajectories between
the two datasets by following the geodesic. The generated
trajectories are illustrated in Fig. 4a. The trajectories A2A3

and A4A1 move across regions of the state space where the
MF exceeds a predetermined threshold, as not enough infor-
mation has been collected from those regions. An illustration
of the trajectories is shown in Fig. 4c.

Our approach requested for additional demonstrations
from regions where the MF exceeds the threshold. After-
wards the model is retrained with the new data. As a result,
the MF is reduced in these regions, as shown in Fig. 5a. The
corresponding trajectories are significantly smoother after
our active-learning approach was applied, as can be seen
in Fig. 5b.

C. Generating robot trajectories with active learning

Deciding whether the robot is able to perform a task
or a demonstration is required is not trivial. Therefore,
we evaluate our approach in a robot trajectory generation
setting, where the robot should consult the human operator
to avoid collisions with the environment. Also, the generated
trajectories should not have abrupt changes to enable the
robot to precisely follow them. For this experiment, we used
a Panda robot from FRANKA, a lightweight 7-DoF robotic
arm with joint torque sensors.

For training our model, we provided demonstrations of
reaching objects that were placed at two distinct locations.
We used kinaesthetic teaching, i.e., the human demonstrator
could freely move the robot to acquire a dataset of five
demonstrations per reaching location. The setup is depicted
in Fig. 1. During the demonstrations we recorded the joint
angles of the robot at a rate of 1 kHz. Additionally, obstacles
where placed in the workspace of the robot. Naively gener-
ating movements based on the demonstration dataset likely
results in collisions.

We generated trajectories by computing an interpolation
between the two distinct locations by following the geodesic,
as shown in Fig. 6a. The geodesic trajectory crosses a region
with high MF values.

Since the MF values along the proposed trajectory exceed
the threshold, the algorithm asks the user for additional data.
Thus, after collecting the data of the queried trajectory, we
retrained our model on the new data and recomputed the
geodesic. The updated latent space is shown in Fig. 6b,
where the geodesic does not cross high-MF regions anymore.
The end-effector trajectories before and after retraining are
depicted in Fig. 6c. As a result, the robot arm moves close to
the demonstrated path and avoids collisions with obstacles.
A visualisation of the robot trajectory and its environment
can be found in Fig. 7.

V. CONCLUSION

We introduced a new active-learning method, based on
the model sensitivity in deep generative models. We showed
that our method is suitable for efficiently learning new skills



(a) Latent manifold and MF

(b) Reconstruction of the trajectories

(c) MF during the trajectory execution

Fig. 4: Evaluation of the pendulum experiment before active learning. (a) Latent space of the pendulum dataset after the initial
training. The markers {A1, A2, A3, A4} represent the position of the pendulum at {40, 120, 200, 280} degrees, respectively. In
addition, the colour encodes the pendulum rotation angles and the greyscale the MF values. (b) The trajectories A2 → A3 and
A4 → A1 of the generated pendulum movements experience large MF values, leading to discontinuities. The discontinuities
are marked by coloured lines. (c) The MF exceeds the threshold for two trajectories, A2 → A3 and A4 → A1.

(a) Latent manifold and MF

(b) Reconstruction of the trajectory

(c) MF during the trajectory execution

Fig. 5: Evaluation of the pendulum experiment after active learning. (a) The resulting latent space of the pendulum dataset
shows that the MF decreased along the planned trajectories. (b) The generated pendulum movements are smoother and they
do not experience high MF values. (c) The MF values of all four generated pendulum trajectories are below the threshold.

from demonstrations while maintaining some smoothness
between known motions. In addition to triggering a query for
new demonstrations, the magnification factor also indicates
whether the observed data contains unrealistic postures, sud-
den fast movements, or indicates previously unseen/untrained
movements.

Currently, the model is retrained when new data is ac-
quired, in order to prevent the optimisation procedure to get
stuck in local minima. We tackle this issue in future develop-
ment and investigate alternative optimisation procedures that
effectively allow for an online update.



(a) Without active learning (b) After active learning
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(c) The Cartesian trajectories of the end-effector

Fig. 6: Trajectory generation for reaching movements while the robot avoids obstacles. (a) The latent space after training
with the initial demonstrations. In blue we depict the training data points. The generated trajectory crosses a high-MF region.
(b) After providing the additional demonstration the resulting trajectory avoids collisions with the environment. (c) Cartesian
trajectories of the end-effector, before (orange) and after (blue) active learning. The trajectories after active learning are
smoother and follow a path close to the demonstrations.

Fig. 7: The FRANKA robot performing a novel reaching movement. (top) Our algorithm detected that an additional
demonstration is required due to the lack of data. After preforming active learning the robot successfully avoids the obstacle.
(bottom) Without the active-learning approach the robot collides with the environment.
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APPENDIX

A. DETAILS OF THE TRAINING PROCEDURE

The Adam optimiser [32] was used for optimising the
models of the three experiments. In the Tables I, II, and III,
we provide the parameters we used during training. We
abbreviate the fully connected layers by FC. Residual net-
works [33] are used for the pendulum and the FRANKA
experiments. Increasing the depth of the generative model led
to a more sensible and smoother magnification factor. With
K, we refer to the number of importance-weighted samples.

TABLE I: Parameters of the illustrative experiment

recognition model generative model hyperparameters

Input ∈ R2 Input ∈ R2 learning rate = 2× 10−3

2 tanh FC × 512 units 2 tanh FC × 512 units K = 5
linear FC output layer for means softplus FC output layer for means batch size = 150
softplus FC output layer for variances RBF for variances

TABLE II: Parameters for the pendulum experiment

recognition model generative model hyperparameters

Input ∈ R256 Input ∈ R2 learning rate = 10−4

2 tanh FC × 512 units 10 residual × 128 units K = 5
linear FC output layer for means sigmoid FC output layer for means batch size = 32
softplus FC output layer for variances RBF for variances

TABLE III: Parameters for the robot experiment

recognition model generative model hyperparameters

Input ∈ R7 Input ∈ R2 learning rate = 5× 10−4

2 tanh FC × 512 units 10 residual × 64 units K = 15
linear FC output layer for means softplus FC output layer for means batch size = 150
softplus FC output layer for variances RBF for variances
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