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Online Temporal Calibration for Monocular Visual-Inertial Systems

Tong Qin and Shaojie Shen

Abstract— Accurate state estimation is a fundamental module
for various intelligent applications, such as robot navigation,
autonomous driving, virtual and augmented reality. Visual
and inertial fusion is a popular technology for 6-DOF state
estimation in recent years. Time instants at which different
sensors’ measurements are recorded are of crucial importance
to the system’s robustness and accuracy. In practice, timestamps
of each sensor typically suffer from triggering and transmission
delays, leading to temporal misalignment (time offsets) among
different sensors. Such temporal offset dramatically influences
the performance of sensor fusion. To this end, we propose an
online approach for calibrating temporal offset between visual
and inertial measurements. Qur approach achieves temporal
offset calibration by jointly optimizing time offset, camera and
IMU states, as well as feature locations in a SLAM system.
Furthermore, the approach is a general model, which can be
easily employed in several feature-based optimization frame-
works. Simulation and experimental results demonstrate the
high accuracy of our calibration approach even compared with
other state-of-art offline tools. The VIO comparison against
other methods proves that the online temporal calibration
significantly benefits visual-inertial systems. The source code
of temporal calibration is integrated into our public project,
VINS-Mono'.

I. INTRODUCTION

State estimation has been a fundamental research topic
in robotics and computer vision communities over the last
decades. Various applications, such as robot navigation,
autonomous driving, virtual reality (VR) and augmented
reality (AR), highly rely on accurate state estimation. We
are particularly interested in state estimation solutions that
involve only one camera, due to its small size, low power
consumption, and simple mechanical configuration. There
have been excellent results in monocular visual-only tech-
niques [1]-[7], which computed accurate camera motion
and up-to-scale environmental structure. To solve the well-
known scale ambiguity, multi-sensor fusion approaches at-
tract more and more attention. Many researches [8]-[17]
assisted camera with IMU (Inertial Measurement Unit),
which achieved impressive performance in 6-DOF SLAM
(simultaneous localization and mapping). On the one hand,
inertial measurements render pitch and roll angle, as well as
scale, observable. On the other hand, inertial measurements
improve motion tracking performance by bridging the gap
when visual tracking fails.

To fuse data from different sensors, time instants at which

measurements are recorded must be precisely known. In
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Fig. 1.  An illustration of temporal misalignment (time offset) between

camera and IMU streams. The upper plot represents sampling instants. The
lower plot shows timestamping instants. The generated timestamp is not
equal to the actual sampling time due to triggering delay, transmission delay,
and unsynchronized clocks, leading to a temporal misalignment between
camera and IMU. The time offset ¢4 is the amount of time by which we
should shift the camera timestamps so that the camera and IMU data streams
became temporally consistent.

practice, the timestamps of each sensor typically suffer from
triggering and transmission delays, leading to a temporal
misalignment (time offset) between different sensor streams.
Consequently, the time synchronization of sensors may cause
a crucial issue to a multi-sensor system. For the visual-
inertial system, the time offset between the camera and IMU
dramatically affects robustness and accuracy. Most visual-
inertial methods [13, 14, 16, 17] assumed measurements’
timestamps are precise under a single clock. Therefore,
these methods work well with a few strictly hardware-
synchronized sensors. For most low-cost and self-assembled
sensor sets, hardware synchronization is not available. Due to
triggering and transmission delays, there always exists a tem-
poral misalignment (time offset) between camera and IMU.
The time offset usually ranges from several milliseconds to
hundreds of milliseconds. Dozens of milliseconds will lead to
IMU sequences totally misaligning with image stream, thus
dramatically influencing the performance of a visual-inertial
system.

To this end, we propose a method to online calibrate
temporal offset for a visual-inertial system. We assume time
offset is a constant but unknown variable. We calibrate it by
estimating it online along with camera and IMU states, as
well as feature locations in a SLAM system. Our calibration
approach is a general factor, which can be easily employed in
other feature-based visual-inertial optimization frameworks.
Although we use the monocular sensor suite to showcase
our method, the proposed approach can be easily applied
to multi-camera visual-inertial systems. We highlight our
contribution as follows:

« We propose an online approach to calibrate temporal



offset between camera and IMU in the visual-inertial
system.

o We showcase the significance of online temporal cali-
bration through both simulation and real-world experi-
ments.

o Open-source code integrated into the public project.

The rest of the paper is structured as follows. In Sect. II,
we discuss the relevant literature. The algorithm is introduced
in detail in Sect. III. Implementation details and experimental
evaluations are presented in Sect. IV. Finally, the paper is
concluded in Sect. V.

II. RELATED WORK

Over the past few decades, there have been tremendous
researches in visual-inertial odometry techniques, which
aimed to compute camera motion and environment structure
with high accuracy. The popular techniques are either filter-
based framework [9]-[12, 17], or batch optimization [13]-
[16, 18]. Most of visual-inertial algorithms process image
by extracting robust sparse features instead of operating on
the dense image. Among these works, [9, 10, 18] used
structure-less vision factor, which eliminated features by
projecting visual residual onto null space. They focus more
on estimating camera or IMU motion instead of feature
positions. [13, 14, 16] selectively kept keyframes and features
in a bundle, which optimized camera motion and feature
together. All of these methods assumed IMU and camera
are precisely synchronized without temporal misalignment.

The temporal misalignment between IMU and camera is
a typical issue in low-cost and self-assembled devices. The
measurement’s timestamp is misaligned with actual sampling
time instant due to unsynchronized clocks, triggering delay
and transmission delay. This time offset is unknown and
needs to be calibrated. Several pieces of research have
focused on calibrating it. Mair [19] proposed an initialization
approach for temporal and spatial calibration, which used
either cross-correlation or phase congruency. This approach
formulated calibration procedure in a novel and special
view. It separated calibrated variables from other unknown
variables (poses, feature positions). Therefore, it can pro-
vide a good prior without influence from other variables.
Further on, methods modeled time offset in a more precise
formulation. Kelly [20] aligned rotation curves of camera
and IMU to calibrate time offset. It leveraged a variant
of ICP (iterative closest point) method to gradually match
two rotation curves. Kalibr, which came from Furgale [21],
estimated time offset, camera motion, as well as extrinsic
parameters between camera and IMU in the continuous
batch optimization procedure. Kalibr achieved impressive
performance and became a popular toolbox. However, these
two methods operated offline with a fixed planar pattern
(such as a chessboard). The calibration pattern provided
them with robust feature tracking and association, as well
as accurate 3D position. Moreover, Li proposed a motion
estimation method with online temporal calibration for the
camera-IMU system in [22]. The time offset was calibrated
in a multi-state constrained EKF framework. His method had

a significant advantage in computation complexity, which
can be used on portable mobile devices. Compared with
his method, our optimization-based algorithm outperforms
in term of accuracy, since we can iteratively optimize a lot
of variables in a big bundle instead of fixing linearization
error early.

III. ALGORITHM

In this section, we model temporal offset in a vision factor,
and online calculate it along with features, IMU and camera
states in an optimization-based VIO framework.

We briefly denote frame and notation as follows. (-)*
denotes global frame. (-)¢ denotes local camera frame. (RY,
pY) is camera pose in the global frame, which can transform
3D feature from camera frame to global frame.

A. Temporal Offset

For low-cost and self-assembled visual-inertial sensor
sets, camera and IMU are put together without strict time
synchronization. The generated timestamp is not equal to
the time instant at which the measurement is sampled due
to triggering delay, transmission delay and unsynchronized
clocks. Hence, there usually exists temporal offset between
different measurements. In general cases, the time offset
between sensors is a constant but unknown value. In some
worse cases, sensors are collected with different clocks and
the time offset drifts along with the time. This kind of sensors
is unqualified for sensor fusion.

In this paper, we consider the general case, where time
offset ¢4 is a constant but unknown value. One picture
illustrating time offset is depicted in Fig. 1. In the picture,
the upper plot represents sampling instants. The lower plot
shows timestamping instants. The generated timestamp is not
equal to the actual sampling time due to triggering delay,
transmission delay and unsynchronized clocks, leading to a
temporal misalignment between camera and IMU. Specifi-
cally, we define ¢4 as,

trvu = team + ta- (D

The time offset ¢4 is the amount of time by which we should
shift the camera timestamps, so that the camera and IMU data
streams became temporally consistent. ¢; may be a positive
or negative value. If the camera sequence has a longer latency
than the IMU sequence, t; is a negative value. Otherwise,
tq is a positive value.

B. Feature Velocity on Image Plane

To make camera and IMU data streams temporally con-
sistent, the camera sequence should be shifted forward or
backward according to t4. Instead of shifting whole camera
or IMU sequence, we specifically shift features’ observations
in the timeline. To this end, we introduce feature velocity for
modeling and compensating the temporal misalignment.

In a very short time period (several milliseconds), the
camera’s movement can be treated as constant speed motion.
Hence, a feature moves at an approximately constant velocity
on the image plane in short time period. Based on this



Fig. 2. An illustration of feature’s velocity on image plane. I* and %1

are two consecutive image frames. [uf, v¥] and [ui”l,vl’”l] are feature’s

2D observations on the image planes I* and I*+1 respectively. Camera
is assumed to move at a constant speed from C* to C**1! in short time
period [tg, tr+1]. Hence, we approximately think that feature [ also moves
at a constant speed V{“ on the image plane in short time period.

assumption, we compute the feature’s velocity on the image
plane.

As depicted in Fig. 2, I* and I**! are two consecutive
image frames. The camera is assumed to move at a constant
speed from C* to C**1 in the short time period [ty, txy1]-
Hence, we approximately think that feature [ also moves at
a constant speed Vlk on the image plane in this short time
period. The velocity V¥ is calculated as follows:

k ukﬂ Uk
vi= ('] - [ -w o
v, V]
where [uf,vF] and [uf ™ vF 1] are feature’s 2D observa-

tions on the image planes I* and I**! respectively.

C. Vision Factor with Time Offset

In classical sparse visual SLAM algorithms, visual mea-
surements are formulated as (re)projection error in cost
function. We refector the classical (re)projection error by
adding a new variable, time offset. There are two typical
parameterizations of a feature. Some algorithms parameterize
feature as its 3D position in the global frame, while other
algorithms parameterize feature as depth or inverse depth
with respect to a certain image frame. In the following, we
respectively model time offset into vision factors with these
two kinds of parameterizations.

1) 3D Position Parameterization: The feature is param-
eterized as 3D position (P; = [z;,v;,2]7) in the global
frame. In traditional, the visual measurement is formulated
as the projection error,

T
ef =z —m(Ry (Pi—py))

of = [uf of".

3)

zf is the observation of feature [ in frame k. (R¢, , p, ) is the

camera pose, which transform feature P; from global frame
to local camera frame. m(-) denotes the camera projection
model, which projects 3D feature into image plane with
distortion.

Fig. 3. An illustration of reprojection process. The dashed line presents
traditional reprojection procedure without time offset modeling. The solid
line presents proposed reprojection which takes time offset into consid-
eration. The yellow line presents IMU constraint. The IMU constraint is
inconsistent with traditional reprojection constraint. By optimizing ¢4, we
can find the optimal camera pose and feature’s observation in time domain
which matches IMU constraint.

The camera pose (R{ ,pg, ) is constrained by visual
measurements in the above-mentioned formulation. It is also
constrained by IMU measurements. In practice, if there
exists time misalignment between IMU and camera, the IMU
constraint is inconsistent with vision constraint in the time
domain. In other words, we should shift camera sequence
forward or backward, so that the camera and IMU data
streams become temporally consistent. Instead of shifting
whole camera or IMU sequence, we specifically shift feature’
observations in the timeline. The new formulation is written
as follows,

k k T
L =2 (ta) — (RS, (Pr—pg,)) @
z) (ta) = [u of]" +ta V]
Vlk is feature’s speed on the image plane, got from eq. 2. t4
is the unknown variable of time offset, which shifts feature’s
observation in time domain. By optimizing ¢4, we can find
the optimal camera pose and feature’s observation in the time
domain which matches IMU constraints.

2) Depth Parameterization: The feature can be also pa-
rameterized as depth or inverse depth with respect to an
image frame. We take depth )\; in image 7 as the example.
The traditional reprojection error from image ¢ to image j is
written as,

i i wT w Zi w w
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J ]T.
The feature [ is first projected into global frame, then back
projected onto the image plane in local camera frame j. The
residual is the displacement between observation and back
projection location.

Similarly with eq. 4, we take the time offset variable ¢4



into account,
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Fig. 3 depicts the reprojection process. The dashed line rep-
resents traditional reprojection procedure without time offset
modeling. The solid line represents proposed reprojection
which takes time offset into consideration. The yellow line
denotes IMU constraint. The IMU constraint is inconsistent
with traditional reprojection constraint. By optimizing ¢4, we
can find the optimal camera pose and feature’s observation
in the time domain which matches IMU constraints.

D. Optimization with Time Offset

By leveraging the above-mentioned vision factor, we can
easily add the temporal calibration function into typical
visual-inertial optimization-based frameworks, such as [13,
16, 23]. In these frameworks, Visual-inertial localization and
mapping is formulated as a nonlinear optimization problem
that tightly couples visual and inertial measurements. As
depicted in Fig. 4, several camera frames and IMU mea-
surements are kept in a bundle. The bundle size usually is
limited to bound computational complexity. A local bundle
adjustment (BA) jointly optimizes camera and IMU states,
as well as feature locations.

We can easily add the proposed visual factor (III-C) into
this kind of framework. To be specific, the whole state
variables are augmented with time offset, which are defined
as:

X = [X(); X1, " Xn, P07 Pla Pl? td]

y w Rw (N
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where the k-th IMU state consists of the position pj’,
velocity v}/, orientation R}’ in the global frame, and IMU
bias b,, b, in the local body frame. The feature P; is
parameterized by either 3D position in the global frame or
depth with respect to a certain image frame.

The whole problem is formulated as one cost function
containing IMU propagation factor, reprojection factor, as
well as a certain prior factor. Hereby, we use the proposed
vision (ITI-C) factor to achieve time offset calibration,

min le, — H,X|* + Z HeB(zZHaX)H;
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es(z¥ 41, &) is the error term from IMU propagation. B
is the set of all IMU measurements. ec(z;, X') is the
proposed visual (re)projection error, which includes the time

Xo
IMU: ¢

\
Camera:%

N / // \ /

fo

——> Visual measurements
* Features

IMU and camera states

IMU measurements

Fig. 4. An illustration of visual-inertial localization and mapping problem.
We maintain several camera frames and IMU measurements in a bundle.
The bundle size usually is limited to reduce computation complexity. A
local bundle adjustment (BA) jointly optimizing camera and IMU states, as
well as feature locations.

offset variable. C is the set of features which have been
observed at least twice in the image frames. The errors are
weighted by their inverse covariance P. {e,, H,} is the
prior information from prior knowledge and marginalization.
Only a small amount of measurements and states are kept in
the optimization bundle, while others are marginalized out
and converted into prior. The non-linear least squares cost
function can be efficiently optimized using Gauss-Newton
methods.

E. Compensation of Time Offset

After each optimization, we compensate time offset by
/

shifting timestamps of subsequent visual streams, as t,,,, =
team + tq. Then the system estimates dty between compen-
sated visual measurement and inertial measurement in the
following. &t; will be iteratively optimized in subsequent
data streams, which will converge to zero. With the decrease
of time interval dt4, our basic assumption (feature moves at
a constant speed on the image plane in a short time interval)
is more and more reasonable. Even if there is a huge time
offset (e.g. hundreds of milliseconds) at the beginning, the

process will compensate it from coarse to fine gradually.

IV. EXPERIMENT RESULTS

In this section, we first demonstrate the accuracy of tem-
poral calibration, then we show the overall VIO performance
improved by temporal calibration. The calibration experi-
ments are presented with simulated data and real sensor set.
The overall VIO performance is shown with public dataset
and real-world experiment. In each part, we compare the
proposed algorithm against other popular methods.

A. Implement Details

We adopt the visual-inertial optimization framework pro-
posed in [23]. We only add the time offset into the state vec-
tor and use the proposed vision factor (Sect. III-C). Features
are detected by Shi-Tomasi Corner Detector [24] and tracked
by KLT tracker [25], while IMU measurements are locally
integrated. Poses, velocities, IMU bias of several keyframes,



TABLE I
SIMULATION CALIBRATION RESULTS

Sequence[ms] ‘ Mean[ms] RMSE[ms] NEES
L5 5.12 0.36 7.2%

1I. 15 15.06 0.61 4.1%
III. 30 30.17 0.68 2.3%

The calibration results of simulated data with 5ms, 15ms and 30ms
time offset. RMSE is the root mean square error. NEES is normalized
estimation error squared.

Global Shutter Camera

IMU

Fig. 5. Intel Realsense camera ZR300, which contains a fisheye global
shutter camera with 100° x 133° FOV and IMU (Gyro & Acc).

as well as feature position, are optimized in a local bundle
adjustment. Only keyframes, which contain sufficient feature
parallax with their neighbors, are temporarily kept in the
local window. Previous keyframes are marginalized out of
the window in order to bound computation complexity. Ceres
Solver [26] is used for solving this nonlinear problem. The
whole system runs in real-time with Intel i7-3770 CPU.

B. Temporal Calibration Results

1) Simulation: We randomly generate 500 feature points
in the 60m x 60m x 60m space. Features locations are
unknown. Visible features are projected to the virtual camera
subjected to zero-mean Gaussian noise with a standard devi-
ation of 0.5 pixels. Inertial measurements are also subjected
to zero-mean Gaussian noise with standard deviation of
0.01m/s? and 0.001rad/s in accelerometer and gyroscope
respectively without bias. The inertial measurement rate is
100 Hz and the camera frame rate is 10 Hz. The camera and
IMU move together with sufficient accelerating and rotating
motion. The whole trajectory lasts 30 seconds. We set time
offsets as Sms, 15ms, and 30ms. For each time offset, 100
simulated trials are conducted. The calibration results are
shown in Table. I. Our algorithm can successfully calibrate
time offset in simulated data with low RMSE (Root Mean
Square Error).

2) Real Sensor: We used Intel Realsense camera ZR3002,
which contains a fisheye global shutter camera with 100° x
133° FOV and IMU (Gyro & Acc), as shown in Fig. 5. The
manufacturer claimed that sensors are well synchronized. In
practice, we find out there is an apparent time offset between
the fisheye camera and IMU got from default SDK, which is
affected by exposure time. Since ground truth is unavailable,
we take the state-of-art temporal calibration toolbox, Kalibr

Zhttps://software.intel.com/en-us/realsense/zr300
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Fig. 6. The estimated time offset from the proposed method and Kalibr
with respect to different exposure times.

[21] for comparison. Kalibr calibrated time offset in an
offline batch optimization framework, which needs addition
calibration pattern (chessboard).

We set five exposure times from 20ms to 30ms. For each
exposure time, we collected fifteen datasets by moving the
sensor in front of a calibration chessboard for 40 seconds.
Actually, Kalibr relies on a calibration pattern, while our
algorithm does not. To make the calibration fully observable,
we ensured sufficient rotational and accelerated motion over
all datasets.

The results of temporal calibration are depicted in Fig.
6. We can see that the temporal offset evolves linearly with
the exposure time with a slope around 0.5. That is because
the middle of the exposure time is treated as the optimal
point to timestamp an image. Therefore, the temporal offset
consists of fixed communication and triggering delays plus
half exposure time. Both the proposed method and Kalibr
satisfy this situation. Since ground truth is unavailable, we
take Kalibr’s results as reference. Our results are quite close
to Kalibr’s results. As for standard derivation, the proposed
method achieved [0.095, 0.071, 0.14, 0.16, 0.15], which is
smaller than Kalibr’s standard derivation [0.27, 0.16, 0.13,
0.18, 0.20]. The proposed method outperform Kalibr in
terms of consistency. Note that Kalibr is an offline batch
optimization, which consumes dozens of times more than the
proposed method. Furthermore, Kalibr relies on calibration
pattern. Hence, the proposed method also outperforms Kalibr
in terms of efficiency and practicability.

C. Overall VIO Performance

1) Dataset: We evaluate the proposed method using
EuRoC MAV Visual-Inertial Datasets [27]. Datasets are
collected onboard a micro aerial vehicle, which contains
stereo images (Aptina MT9V034 global shutter, WVGA
monochrome, 20 FPS), synchronized IMU measurements
(ADIS16448, 200 Hz), and ground truth states (VICON and
Leica MS50). We only use images from the left camera. It is



RMSE with respect to time offset in MHO3

‘ —e—VINS_Mono
—o—proposed

Time offset [ms]

Fig. 7. RMSE with respect to the time offset in MHO3 sequence. The
x-axis shows the predefined time offset, and the y-axis shows the RMSE
(Root Mean Square Error) [28]. The blue line represents results of VINS-
Mono [23], which is the base framework proposed method build on. The
red line represents results of proposed method, which has capability of time
offset calibration.

well known that images and IMU measurements are strictly
synchronized in this dataset. To demonstrate the capability
of temporal calibration, we set the time offset by manually
shifting IMU timestamps. To be specific, we add a fixed
millisecond value to IMU timestamps, such that there is
a fixed time offset between IMU and camera. We made
time-shifted sequences and used them to test the proposed
algorithm and other methods.

At first, we studied the influence of time offset on visual-
inertial odometry. We set time offsets from —40 to 40ms,
and test these time-biased sequences with VINS-Mono [23]
and the proposed method respectively. VINS-Mono is the
base framework which we build our system on. VINS-
Mono does not have time offset calibration capability, thus it
significantly suffers from temporal misalignment. The result
is depicted in Fig. 7. The x-axis shows the predefined time
offset, and the y-axis shows RMSE (Root Mean Square
Error), as proposed in [28]. The test data is the MHO03
sequence, whose IMU timestamp is shifted. The blue line
represents results of VINS-Mono. We can see that the RMSE
evolves along a parabolic curve with respect to time offsets
for VINS-Mono. The performance deteriorates dramatically
when the time offset increases. The tolerance interval is only
within 6 milliseconds. That demonstrates that it is necessary
to do time offset calibration. The red line represents results
of the proposed method, which calibrates the time offset. It
can be seen that the RMSEs are same under different time
offsets, which proves that our calibration procedure is very
effective.

In the following, we compare against OKVIS [16], which
is another state-of-art visual-inertial odometry algorithm
without temporal calibration ability. We use time-biased
sequences to test proposed method and OKVIS. The results
are shown in TABLE. II. The trajectory is also evaluated
by RMSE. For OKVIS, with the increase of time offset, the
performance degrades (RMSE become larger and larger). In
some sequences (i.e. MH_03, V1_.03), RMSE dramatically
increases when the time offset is up to 30ms. Such time offset
makes the system diverge. For proposed method, however,
the performance is not affected by the time offset. The
RMSEs are almost same in one sequence under different time

TABLE 1T
RMSE IN EUROC DATASET.

Sequences  ty[ms] Proposed OKVIS
q alms] g ms]  RMSE[m] RMSE[m]

5 387 0.155 0318

15 14.87 0.158 0.382

MH.01 30 29.87 0.156 0.544

5 3.99 0.194 0.28%

15 15.02 0.194 0.451

MH.03 30 29.99 0.195 2.805

5 510 0303 0432

15 15.30 0326 0.577

MH.05 30 30.08 0303 0.652

5 5.16 0.088 0.100

15 15.16 0.088 0.202

viol 30 30.21 0.089 0.257

5 387 0.185 0349

15 14.88 0.187 1.008

V1.03 30 29.90 0.189 1.817

5 392 0.159 0378

15 14.93 0.161 0.520

v2.02 30 29.92 0.162 1.010

RMSE is root mean square error, as proposed in [28].
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Fig. 8. Relative pose error [29] comparison between proposed method
and OKVIS in V101 sequence with Sms and 30ms temporal offset. The
relative pose errors of proposed method are almost same under two different
temporal offsets (black and blue plots). However, the relative pose error of
OKUVIS increase a lot when temporal offset increases (pink and red plots).
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Fig. 11. Translation of real world experiment in X, y, and z axis. Proposed
method compares against OKVIS and OptiTrack.

offset, because the proposed method can calibrate time offset
correctly. The calibration results are also listed in the Table.
The proposed method can accurately calibrate predefined
time offset. The Proposed method obviously outperforms
OKVIS when time offset is larger than 10ms.

Specifically, relative pose error [29] comparison between
proposed method and OKVIS is shown in Fig. 8. The
figure is conducted on V101 sequence under Sms and 30ms
temporal offset. We can see that the relative pose errors of
the proposed method are almost same under two different
temporal offsets (black and blue plots). However, the relative
pose error of OKVIS increases a lot when temporal offset
increases (pink and red plots).

The process of temporal offset estimation is shown in Fig.
9. It can be seen that the estimated offset converges to the
stable value quickly only within a few seconds. Online tem-
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Fig. 12. Rotation of real world experiment in yaw, pitch and roll. Proposed
method compares against OKVIS and OptiTrack.
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Fig. 13. Relative pose error [29] comparison between proposed method
and OKVIS in real-world experiment.

poral calibration significantly benefits overall performance.

2) Real-world Experiment: We carried out a real-world
experiment to validate the proposed system. The sensor
set is same as in Sec. IV-B.2, Intel Realsense camera, as
shown in Fig. 5. The image rate is 30Hz, and the inertial
measurement’s rate is 350Hz. We held the sensor suite by
hand and walk circularly at a normal pace in a room. We
compare our results against OKVIS [16]. Meanwhile, the
results from OptiTrack * are treated as ground truth.

We held the sensor and walked five circles. The trajectory
is depicted in Fig. 10. The detailed translation in x, y and
z-axis is shown in Fig. 11. The detailed rotation in yaw,
pitch, and roll is shown in Fig. 12. In translation and rotation
comparison, we can see that OKVIS’s results drift noticeably
along with the time. Relative pose error [29] comparison
between the proposed method and OKVIS is shown in Fig.

3http://optitrack.com/



13. The relative pose error of OKVIS is larger than the
proposed method. Moreover, the relative pose error increases
at a faster speed than the proposed method. Obviously, the
proposed method outperforms OKVIS in both translation and
rotation due to online temporal calibration. The temporal
offset calibrated from the proposed method is 12.74ms,
which will significantly affect VIO performances in a long
run without effective calibration and compensation.

V. CONCLUSION

In this paper, we have presented an online approach to cali-
brate time offset between IMU and camera. Our approach is a
general model, which can be easily adopted in optimization-
based visual-inertial frameworks. The time offset is jointly
optimized along with IMU and camera states, as well as
features. Our simulation and experimental results indicate
the proposed approach can achieve high accuracy in both
time offset calibration and system’s motion estimation, even
compared with other state-of-art offline methods. Although
we use the monocular sensor suite to showcase our method
in this paper, the proposed method can be easily generalized
to multi-camera visual-inertial systems.
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