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Virtual Borders: Accurate Definition of a Mobile Robot’s Workspace
Using Augmented Reality
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Abstract— We address the problem of interactively control-
ling the workspace of a mobile robot to ensure a human-aware
navigation. This is especially of relevance for non-expert users
living in human-robot shared spaces, e.g. home environments,
since they want to keep the control of their mobile robots,
such as vacuum cleaning or companion robots. Therefore, we
introduce virtual borders that are respected by a robot while
performing its tasks. For this purpose, we employ a RGB-D
Google Tango tablet as human-robot interface in combination
with an augmented reality application to flexibly define virtual
borders. We evaluated our system with 15 non-expert users con-
cerning accuracy, teaching time and correctness and compared
the results with other baseline methods based on visual markers
and a laser pointer. The experimental results show that our
method features an equally high accuracy while reducing the
teaching time significantly compared to the baseline methods.
This holds for different border lengths, shapes and variations in
the teaching process. Finally, we demonstrated the correctness
of the approach, i.e. the mobile robot changes its navigational
behavior according to the user-defined virtual borders.

I. INTRODUCTION

Humans and robots increasingly live together in shared
spaces, such as home environments. Robots support the res-
idents in their everyday life, e.g. as household or companion
robots, and people appreciate the help of robots. But from
our experience, we know that there are sometimes areas
that should not be entered by a robot. These can be social
places, e.g. bathrooms or bedrooms, that should be avoided
by the robot due to privacy concerns. Another use case is the
accurate definition of the workspace of a mobile vacuuming
or mopping robot to operate in certain areas. Therefore,
non-expert users need the ability to interactively and easily
control a mobile robot’s workspace to address this challenge.

For this purpose, we propose virtual borders that are not
directly visible to the user but indicate occupied areas to
the robot. These are respected by the mobile robot while
performing its task. We address the question of how to
allow non-expert users to flexibly teach virtual borders to
their robots and change their navigational behavior accord-
ingly. This teaching method needs to allow accurate border
teaching while featuring little effort. Additionally, a feedback
system giving information about learned virtual borders is
desirable. We refer to a non-expert as a person that (1) has no
programming skills, (2) has no experience with robotics and
its insights, (3) has no cognitive impairments or upper limb
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Fig. 1: A user restricts the robot’s workspace using a RGB-D
Google Tango tablet by specifying an area around a carpet.
The robot avoids this area while working, and the tablet’s
AR application provides direct visual feedback to the user.

disorders, but (4) has experiences with common consumer
products, such as tablets or smartphones. Moreover, a non-
expert (5) prefers a robust and feature-complete system to a
highly sophisticated and non-intuitive one.

Several human-robot interfaces are imaginable for the
teaching process, e.g. approaches using simple graphical user
interfaces (GUIs), remote controllers, smartphones or tablets,
direct physical interaction with the robot or pointing gestures
(with or without auxiliary device). In order to address
the above-mentioned requirements optimally, we propose
a teaching method employing a RGB-D tablet, such as a
Google Tango device, to interact with the robot. We choose
a Tango tablet for several reasons: (1) tablet and smartphone
interfaces are well established which makes them attractive
for non-experts, (2) a high-accuracy on-board visual-inertial
odometry allows robust 6-DoF pose tracking of the device,
(3) an augmented reality (AR) application shown on the
tablet’s display allows direct visual feedback to the user
and (4) no additional equipment (robot, cameras or visual
markers in the environment) are necessary for teaching.

Fig. 1 shows a user with a Google Tango tablet excluding
a carpet area from the mobile robot’s workspace. After
completing the teaching process, the robot does not cross the
carpet area while navigating in the environment. Our main
contribution is a teaching method leveraging a RGB-D device
to allow non-experts the flexible definition of a 3-DoF robot’s
workspace. Such a method is especially interesting for robot
navigation in human-centered environments. To the best of
our knowledge, this is the first time a mobile RGB-D tablet
or smartphone is used for human-robot interaction.



The remainder of this paper is structured as follows:
in the next section, we give an overview of related work
concerning the topic before we formally define the problem.
Subsequently, we give details about our proposed teaching
method based on a RGB-D device. We also evaluate the
proposed method concerning accuracy, teaching time and
correctness and compare the results with selected baseline
methods. These experimental results are presented in the
following section. Finally, we discuss our method concerning
strengths and weaknesses and point out work for the future.

II. RELATED WORK

There are different types of maps that differ in the way
they model the environment, e.g. metric maps represent
geometric properties of the environment. A typical represen-
tation of this category is an occupancy grid map (OGM) [1]
that is widely used in robot navigation and path planning.
It models the environment by means of cells containing a
probability for the occupancy of the corresponding area. In
order to create an OGM of an environment and localize
the robot with respect to it, Simultaneous Localization and
Mapping (SLAM) algorithms [2] are widely established.
Cadena et al. give a comprehensive overview of the evolution
of SLAM from the past to the future [3].

Along the occupancy information modeled in an OGM,
maps can contribute additional information, such as seman-
tics [4] or social information [5]. Especially social informa-
tion can be used with the purpose of changing the robot’s
navigational behavior in human-centered environments, e.g.
O’Callaghan et al. incorporate motion patterns of people into
the robot’s trajectories [6], and Alempijevic et al. jointly
learn a map from robots’ sensor measurements and human
trajectories as basis for path planning [7]. Other works use
social costmaps built from sensor measurements to realize a
human-aware navigation [8], integrate social norms into the
costmap to change the way a robot approaches a human [9]
and propose human motion maps to represent the distribution
of human motion in a map [10]. A survey on recent trends
in socially aware robot navigation and a historical overview
is given by Charalampous et al. [11].

These implicit approaches to change the robot’s naviga-
tional behavior are based on observations. They are user-
friendly because no explicit interaction is necessary, but they
are not flexible enough for the problem addressed in this
work. We argue that the teaching of arbitrary virtual borders
can only be accomplished through explicit user interaction,
e.g. drawing boundaries on a previously created OGM that
today’s home robots already provide. However, this solution
is not suitable to define accurate virtual borders since it is
hard to correspond points in the OGM with points in the
(featureless) environment. Other examples for this category
are a GUI-based user interface to sketch the area for a
vacuum cleaning robot [12] and a virtual wall system based
on beacon devices [13]. The first approach needs several top-
view cameras installed in the environment to stream images
to the user’s display, while the latter is restricted by the conic
beam of the beacon devices. These only allow the blocking

of certain areas using a straight line while consuming power
and being intrusive. Magnetic stripes placed on the ground
known from commercial vacuum cleaning robots are intru-
sive as well. To address these aspects of intrusiveness, power-
consumption and small flexibility, Sprute et al. propose a
framework for interactive teaching of virtual borders and an
implementation based on visual markers [14] and a laser
pointer [15]. Although both approaches are flexible and allow
teaching of arbitrary virtual borders, they do not provide an
inherent feedback system and their teaching time is linear
with respect to the border length.

To purposely address this lack and for the reasons men-
tioned in the introductory part, we chose a RGB-D Google
Tango device as interaction device. It has been used in several
robotics-related applications, e.g. indoor-localization given
a 2D floor plan [16] and real-time 3D reconstruction [17].
Other use cases include optimization of SLAM by text spot-
ting [18] or controlling of a quadrotor equipped with a Tango
smarthpone [19]. These applications show the potential of
mobile RGB-D devices in the context of robotics.

III. PROBLEM STATEMENT

Before we give details on the proposed teaching method,
we introduce the notation we use throughout the paper and
formally define the problem of interactively manipulating an
OGM using a RGB-D device. It is the goal to change the
robot’s navigational behavior in future tasks according to
the users’ needs. An OGM models the physical environment
in terms of cells containing probabilities for the occupancy
of the corresponding area. M(x,y) € [0,1] denotes the
occupancy probability for the cell (z,y) in the map M.
Furthermore, we define all possible coordinates (z,y) € R?
of a map M as the domain of the map Q(M) C R2 At
the beginning, an OGM of the physical environment Mo
containing walls and furniture is given. Due to the iterative
nature of the teaching method, M, ;,. can also contain
virtual borders from previous teaching processes. Since we
want to integrate virtual borders into the map, the user
defines a manipulation so that My,i0r — Mposterior- This
posterior map Mp,sierior contains the physical environment
as well as the user-defined virtual borders and can be used
for socially aware navigation and path planning.

IV. TEACHING USING A RGB-D DEVICE

We propose a teaching method based on a RGB-D tablet in
combination with an AR application to address the problem
of interactive teaching of virtual borders and changing the
mobile robot’s navigational behavior accordingly. To this
end, a person uses a Google Tango tablet to move around in
the environment and to select points on the ground plane by
interacting with the mobile device. The tablet simultaneously
acts as a feedback device showing an augmented live video
of its on-board camera. The user-defined virtual borders
are integrated into the prior map of the environment to
ensure a human-aware navigation. A full video of a teaching
process can be found in the supplementary video at: https:
//youtu.be/0Q08sQ0JBRY.


https://youtu.be/oQO8sQ0JBRY
https://youtu.be/oQO8sQ0JBRY

Fig. 2: Relevant coordinate frames and their relations shown
as black lines. The solid black line between the ADF and
Map coordinate frames indicates the manual registration. The
red line depicts an illustrative virtual border polygon P.

A. Requirements

In order to realize this behavior, the robot as well as
the Tango tablet need to have access to the same global
OGM M,,,;, that was created in advance. For this purpose,
we relate the relevant coordinate frames to each other as
shown in Fig. 2. We assume the Tango device to be local-
ized within the environment. The origin of this previously
constructed environment is the ADF (Area Description File)
coordinate frame. When starting the teaching application,
the SoS (Start of Service) coordinate frame marks the
current pose of the Tango device. While localizing in the
environment employing visual features, the transformation
between SoS and ADF is established. The Tango device
uses its accurate on-board visual-inertial odometry to keep
track of its current pose Tango with respect to SoS. The
ADF coordinate frame is manually related to the Map
coordinate frame once a visual model of the environment is
learned. Finally, the dynamic pose of the mobile robot Robot
is related to the Map frame using adaptive Monte Carlo
localization (AMCL) [20] using the robot’s laser scanner.
This ensures transformations between all relevant coordinate
frames. All of these transformations belong to SE(3).

B. Area Definition

We define a virtual border as a triple V' = (P,s,?)
where each component is specified in the interactive teaching
process using the RGB-D device. It can perceive a 3D point
cloud of its environment that is used to specify n points
P, € R® 1 < i < n on the ground plane. Only points on
the ground plane are of interest because the mobile robot
operates in the plane. By transforming these points into the
Map coordinate frame, we obtain n points p; € R? building
a polygonal chain P:

n—1
P =Jppinl, ()

i=1

with
[Pipiy1] = {(1 = N)pi + Apiy1 | A € [0,1]} 2)

being a line segment between two points. We distinguish be-
tween simple and closed polygonal chains to define arbitrary
areas in the environment as polygons or separating curves.

Additionally, the user employs the RGB-D device to select
a seed point s € R? that indicates the area to be manipulated.
The corresponding cell in the global OGM is denoted as
s* € Q(Mprior). Finally, the user has the possibility to
specify the occupancy probability 6 € [0, 1] for the area
indicated by s.

C. Map Creation

After defining a virtual border V, we use the polygonal
chain P to partition the map into two areas:

A ={c € UMprior) | € connected to s*}, 3)

which is the area that is directly connected to the cell
corresponding to the seed point s* and

Anc = Q(Mprior) \ Ac; (4)

which is the complementary area containing coordinates
disconnected from the seed point s*. Two cells a € Q(M)
and b € Q(M) in a map M are connected if:

3f 1 [0..1] = QM) :£(0) = a, f(1) = b,

Vi, j € [0.1] : M(f(i)) = M(f(5))
)

where f is a continuous mapping.

If the border polygon P is a simple polygonal chain,
we linearize the first [p1p2] and the last [pp_1pn] line
segments to partition the map. An example for such a simple
polygonal chain and its linearization is shown in Fig. 3b
where the green line indicates the actual polygonal chain P
and the black dots the resulting occupied space. The system
automatically extends the virtual border to the borders of the
prior map M),.;o. This allows the user to easily exclude large
areas from the robot’s workspace with a single curve or line.
Finally, we construct the posterior map M,,s¢erior dependent
on the given prior map My, and the components of the
virtual border V' as follows:

o if (z,y) € Ac

Mprior(gjvy) Zf («I, y) S Anc
By iterating this teaching process N times and defining a

sequence of virtual borders V* = {V3, V4, ..., Vy }, the user

can define arbitrary virtual borders in the environment. This
allows the flexible definition of a mobile robot’s workspace.

Mposterior($7y> = { (6)

D. Interaction & Feedback

The user only needs the Google Tango tablet with its
AR application to specify a virtual border V' with all its
components. The person moves around in the environment
with the tablet and selects virtual border points P by pointing
the device towards the desired points on the ground plane.
The seed point s is selected analogously, and a simple
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Fig. 3: Screenshots of the teaching process. Red lines show boundaries of an area drawn by the user, while green lines
indicate the user that the lines have been successfully integrated into the prior OGM. Black dots visualize the occupied areas
in the global OGM. (a) The user defines a first border as a separating curve to exclude the window area from the workspace,
and (b) shows the area integrated into the global OGM. (c) - (f) The user defines a second border as a polygon around the
carpet to avoid the robot from crossing it. (g) - (h) show the final maps from the user’s and mobile robot’s perspective.

menu allows the definition of the occupancy probability §.
Simultaneously, the Tango’s camera image augmented with
the virtual border points P is displayed on the tablet’s
screen. Additionally, the global OGM, that is the basis
for navigational costmaps, is integrated into the view. This
makes it easy for the user to understand the workspace of
the mobile robot. Besides, the user immediately gets visual
feedback by the system and can correct eventual mistakes.
This is a crucial feature that has not been addressed in
previous works yet. Fig. 3 shows some screenshots of the
teaching process where the AR application on the Tango
device is used to specify two virtual borders: a separating
curve and a polygon.

V. EVALUATION

We provide quantitative and qualitative results for our pro-
posed method concerning three criteria: accuracy, teaching
time and correctness. The results are compared with two
other teaching methods that are described in the following
subsection. For the proposed method, we used a Google
Tango tablet as mobile RGB-D device to acquire depth
measurements and colored images from the environment.
All methods were implemented as a ROS package, and
we performed the following experiments on OGMs with
a resolution of 2.5 cm per pixel in our 6.1 m x 3.5 m
lab environment. A prior map Mp,;o of the environment
was created with a common SLAM algorithm [21] using a
particle filter and the robot’s on-board laser scanner to obtain
measurements.

A. Baseline Methods

The baseline methods allow the incorporation of virtual
borders into a given prior map, but do not consider other
occupancy probabilities except of free and occupied. Despite
this limitation, both methods are the most flexible ones

mentioned in the literature and are suitable for the evaluation
of the accuracy and the teaching time. Since both compar-
ative methods require a robotic platform for teaching, their
evaluation is based on a TurtleBot v2 equipped with a laser
scanner and a front-mounted RGB-D camera.

1) Marker [14]: The first method employs visual markers
to teach virtual borders to a mobile robot. The user guides
the mobile robot by showing visual markers, and the robot
records its trajectory while following the marker. Different
marker IDs indicate different states of the teaching process,
e.g. recording borders or defining a seed point. The trajectory
is used to define the virtual border in the environment.

2) Pointer [15]: This method uses a laser pointer as
human-robot interface and allows the user to define arbitrary
areas in an environment. The user guides the robot with a
laser spot on the ground, and the robot employs its trajectory
to define the virtual border. If the laser point leaves the
mobile robot’s field of view, the robot follows the direction of
the laser point. Visual Morse code is used to switch between
different states of the teaching process like marker IDs in
the previously described method.

B. Experimental Procedure

We conducted two different experiments to evaluate the
proposed teaching method and compared it with the baseline
methods. The split of the experiments was necessary because
it was not possible to evaluate all teaching methods on a
large dataset thoroughly with multiple users. It would have
taken several hours per participant. Therefore, we conducted
two different experiments that complemented each other as
explained below.

1) Experiment 1: This experiment was performed by 15
non-experts (9 male, 6 female) who rated their robotic skills
on an 11-point Likert scale (0 - 10) less than 5. Their ages



ranged between 16 years and 56 years with a mean age
of 34.87 years and standard deviation of 13.42 years. For
the purpose of this experiment, we placed a common carpet
(2.00 m x 1.25 m) on a fixed position on the ground similar
to Fig. 9a and manually created a ground truth map for
this scenario. This should reflect a typical use case of the
proposed system. Before conducting the experiment, each
participant had some time to get familiar with the interaction
devices and teaching methods, i.e. guiding the mobile robot
or using the AR application. Afterwards, a participant was
asked to exclude the carpet area from the workspace of
the mobile robot. An experimenter documented the resulting
posterior maps and teaching times for each participant and
interaction device. The duration started with the selection
of the first border point and ended on completion of the
posterior map. Each participant conducted this experiment
with all three interaction devices (within-subject design).
The order of the interaction devices was randomized to
avoid order effects. The advantage of this experiment is
the participation of multiple users in the evaluation, but
their performance was limited to a single map for each
interaction device.

2) Experiment 2: In order to consider different maps in
the teaching process, we also evaluated our method on a
self-recorded dataset containing ten different maps with dif-
ferent polygonal-shaped virtual borders that were manually
integrated into the OGM of the lab environment beforehand.
The lengths of the virtual borders ranged from 4 m to 13 m
increasing by 1 m (map 1: 4 m, map 2: 5 m, ..., map 10:
13 m), and their shapes were convex and non-convex. Three
example ground truth maps of the dataset are visualized
in the first column of Fig. 6. Due to practical reasons, all
runs of this experiment were performed by a single non-
expert user (male, 26 years). Since he performed all runs (in
total 150 runs), he represented an experienced non-expert
who got familiar with the interaction devices and teaching
methods. The non-expert was asked to specify virtual borders
according to the ground truth maps in the dataset using
one of the interaction devices. This ground truth data was
conveyed to the user in form of small markers on the ground.
We performed five runs for each map to introduce some
variation into the teaching process resulting in 50 runs per
interaction device. Different start positions of the mobile
robot or the Tango tablet were considered as variations.
Similar to Experiment 1, the teaching time and resulting
posterior maps were documented. The results of the baseline
methods were taken from [14], [15]. The strengths of this
experiment are the consideration of different border lengths,
shapes and variations in the teaching process. The drawback
is the evaluation with only one non-expert.

C. Accuracy

The evaluation of this criterion answers the question of
how accurate are the virtual borders transferred from a user
to the system. Accurately user-defined borders are especially
important for a task such as vacuum cleaning around a carpet.
In order to assess the accuracy of a virtual border specified by
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Fig. 4: Comparison of quantitative accuracy results for both
experiments depending on the interaction device.

the user, we consider the Jaccard index between two virtual
areas GT and UD as similarity score:

_|GTNUD|
- |GTUUD|
These two variables are defined as follows:

1) GT (ground truth): This set contains all cells of the
OGM that belong to the ground truth virtual area that
was manually created before evaluation. It is visualized
as yellow pixels in the first column and yellow and
green pixels in the remaining columns of Fig 6.

2) UD (user defined): This set contains all cells of the
OGM that belong to a user-defined virtual area that
was defined by the user in the teaching process. It
is visualized as red and green pixels in the last three
columns of Fig 6.

|GT NUD] is the number of overlapping pixels between the
ground truth and user-defined areas, whereas |GT U UD]| is
the size of the union set. The Jaccard index can be visually
interpreted as the size of the green area with respect to the
area enclosed by the blue contour in Fig 6. Since this measure
is independent of the size of the map, it can be used to
compare different teaching methods easily.

The accuracy results for Experiment 1 are shown as purple
box plots in Fig. 4. The results range from a mean accuracy
of 65.5% for the marker approach to a mean accuracy of
68.5% for our proposed approach. The laser pointer method
yields a mean accuracy of 66.4% and is placed between
the other methods. Overall, there is no significant difference
between the interaction devices. Besides, the standard de-
viations range from 5.2% for the marker to 8.5% for the
Tango approach. The brown box plots depict the accuracy
results for Experiment 2 dependent on the interaction devices.
Since this is a single-user experiment, the values are taken
from all runs performed in the experiment. It is apparent that
the mean accuracies for Experiment 2 are better (marker:
+21.4%, pointer: +18.2%, Tango: +16.8%). This is because
Experiment 2 was performed by a single non-expert who
gained some experience during the teaching process, while

J(GT,UD) €[0,1] (7)
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Fig. 5: Accuracy results for the proposed approach compared
to the baseline approaches. Bars show the average accuracies

per map of the self-recorded dataset. The horizontal lines
indicate the overall averages per interaction device.

Map

Experiment 1 was performed by non-experts who defined
virtual borders for the first time. Thus, experience in using
the interaction devices and teaching methods can increase the
accuracy. Despite this difference, the accuracies of all inter-
action devices also feature an equally high accuracy in Ex-
periment 2 (marker: 86.6%, pointer: 84.6%, Tango: 85.3%).

The detailed accuracy results of Experiment 2 depending
on the maps are visualized in Fig. 5. Horizontal lines
represent the overall means of the interaction devices that
go along with the values in Fig. 4. The mean accuracies
per map do not significantly differ from their overall means.
This shows that the accuracy of the teaching methods is
independent of the shape and length of the virtual border. But
there is one exception: the accuracies of the marker and laser
pointer approaches significantly fall below their means for
maps 1 - 3. These are maps with short virtual borders (4 m -
6 m), and it is hard to accurately guide the robot on such a
small area. In this case, our Tango approach is more flexible
since the user directly interacts with the environment. Thus,
yielding a higher accuracy for short virtual borders except
of map 3 due to a localization error of the Tango device. It
is also apparent that all interaction devices feature a small
standard deviation for all maps ranging from 1.0% to 6.8%.
Therefore, we conclude that the variations we introduced in
the teaching process do not affect the accuracy.

Fig 6 visualizes some exemplary accuracy results of
Experiment 2 for the different interaction devices. These
underline the high accuracies of all interaction methods.
Inaccuracies occur due to localization errors (either mobile
robot or Tango device) and the interaction of the user. The
figure also reveals another percularity of the Tango approach:
in this case, there is a constant rotational error for all maps.
This is caused by an inaccuracy of the manual registration
between the ADF and Map coordinate frames. If this error
could be fixed in the future, even more accurate results could
be possible.

D. Teaching Time

The second criterion is considered to answer the question
of how much time does it take a user to teach virtual borders.
Fig. 7 shows the teaching time for each experiment depend-
ing on the interaction device. The results of Experiment 1 are
shown as purple box plots. Both baseline methods feature a
high average teaching time (marker: 129 s, pointer: 112 s),
while our Tango approach has an average teaching time
of 40 s. Similarly, the baseline methods feature an equally
high teaching time in Experiment 2 (marker: 85 s, pointer:
79 s) and the Tango approach only 27 s. These results reveal
two insights: (1) our Tango approach is significantly faster
compared to the baseline methods and (2) experience in
handling the interaction device in the teaching process can
reduce the teaching time.

Fig. 8 shows the detailed teaching time of Experiment 2
dependent on the border length. While there is a linear
relationship between the teaching time and the border length,
our approach features a smaller gradient. This is due to the
nature of the baseline methods: users interact with the mobile
robot to define the border points and are limited by the
velocity of the robot. In contrast to the baseline methods,
users directly interact with the environment using the Tango
tablet making it independent of the robot’s velocity. As a
result, our proposed method is significantly faster than the
comparative methods, e.g. it takes 50 s for teaching a 13 m
long border using a Tango device, while the marker approach
takes 164 s and the laser pointer approach 152 s for the
same border. This corresponds to a speedup of 3.3 and 3.1,
respectively. The speedup factors for the other maps with
respect to the baseline approaches is presented in Tab. L.
The proposed Tango method is 3.1 times faster on average
than the marker and laser pointer approach.

TABLE I: Speedup compared to the baseline approaches.
Border length [in m]
4 5 6 7 8 9 10 11 12 13

Marker 24 32 30 34 34 31 35 30 30 33 31
Pointer 27 3.0 28 32 34 34 36 31 27 31 31

Baseline Avg.

Finally, all interaction devices feature a mean standard
deviation for all maps ranging from 4 s (Tango) to 8 s
(marker). Thus, the variations during the runs do not affect
the teaching time significantly.

E. Correctness

The correctness is evaluated to answer the question
whether the teaching process successfully changes the navi-
gational behavior of the mobile robot. This depends on the
resulting posterior map of the teaching process. Therefore,
we set up a simple navigation scenario as shown in Fig. 9
where the mobile robot is instructed to navigate to the
red cube in the left image of the lab environment. The
centered image shows the global costmap and the path to
the navigation goal based on the physical OGM M,,,.;o, of
the environment. As expected, the mobile robot crosses the
carpet area while driving to its goal because it is the shortest
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Fig. 6: Qualitative accuracy results for different virtual border maps and interaction devices. The first column shows three
different ground truth virtual border maps taken from the self-recorded dataset. The other columns show the overlapping
ground truth and user-defined maps with respect to the teaching methods. Colors are only used for visualization purposes.
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Fig. 7: Comparison of the teaching time for both experiments
depending on the interaction device.

path (the path with the fewest costs). In order to avoid the
robot from crossing the carpet, we use the posterior OGM
Myosterior from the teaching process visualized in Fig. 3 as
basis for a global costmap. This costmap and the calculated
path to the same goal is shown in the right image of Fig. 9.
The mobile robot now circumvents the carpet as desired. The
results show that the teaching method successfully integrates
the virtual borders into the global OGM and changes the
navigational behavior of the mobile robot. Thus, a user can
easily control the workspace of a mobile robot. Note that
the actual teaching process is independent of a concrete path
planner for navigation.

-*-Marker -*Pointer -* Tango

4 6 8 10 12 14
Border length [in m]

Fig. 8: Average teaching times of the interaction devices
dependent on the border length.

VI. Di1sCcUsSION, CONCLUSIONS & FUTURE WORK

We developed a teaching method for incorporating virtual
borders into given OGMs using a RGB-D device in combi-
nation with an AR application. This allows non-expert users
to flexibly and interactively define arbitrary virtual borders
in their mobile robots’ workspaces. Thus, users can prevent
their robots to enter certain places, e.g. bath rooms or carpet
areas, which gives them the ability to effectively control
their mobile robots in a simple way allowing human-aware
navigation in human-centered environments. We compared
our method with other approaches, and the results revealed
an accuracy on the same level as the baseline methods while
featuring a significantly lower teaching time. This also holds



(a) Lab environment

(b) Costmap before teaching process

(c) Costmap after teaching process

Fig. 9: Lab environment and costmaps for a navigation scenario. (a) shows the lab environment with a mobile robot, a
carpet and a navigation goal (red cube). (b) and (c) visualize the global costmaps for the same navigation goal before and
after teaching virtual borders. Two virtual borders, a separating curve (1) and a polygon (2), shown as red lines have been
integrated by the user during the teaching process. The navigation paths are drawn as a green lines.

for different variations in the teaching process and different
border lengths and shapes. Furthermore, there is evidence
that experience in handling the teaching method increases
the accuracy and reduces the teaching time. Finally, our
method integrates a visual feedback system based on an AR
application and does not rely on additional equipment for
teaching, e.g. cameras in the environment or on a robot.

A weakness of the proposed method is the requirement
concerning the registration between the Map and ADF co-
ordinate frames (see Sect. [IV-A). Although this is an initial
step that needs to be performed only once, this is not suitable
for a non-expert and thus needs to be addressed in the future.
It would be interesting to develop an automatic registration
method to circumvent this limitation. Besides, our method re-
quires special hardware, i.e. a Tango-enabled device, limiting
the potential number of users. Nonetheless, major companies
currently release AR toolkits (ARCore by Google and ARKit
by Apple) working without specialized hardware. Thus, our
proposed method could be widely deployed on common
smartphones and tablets without additional costs for the user.
Our future work also focuses on a more comprehensive
evaluation of the user’s perspective with respect to the
different interaction devices, e.g. usability aspects.
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