
  

  

Abstract — Soft robotic structures might play a major role in 

the 4th industrial revolution. Researchers have successfully 

demonstrated advantages of soft robotics over traditional 

robots made of rigid links and joints in several application 

areas including manufacturing, healthcare and surgical 

interventions. However, soft robots have limited ability to exert 

higher forces when it comes to interaction with the 

environment, hence, change their stiffness on demand over a 

wide range. One stiffness mechanism embodies tendon-driven 

and pneumatic air actuation in an antagonistic way achieving 

variable stiffness values. In this paper, we apply a beam-

mechanics-based model to this type of soft stiffness controllable 

robot. This mathematical model takes into account the various 

stiffness levels of the soft robotic manipulator as well as 

interaction forces with the environment at the tip of the 

manipulator. The analytical model is implemented into a 

robotic actuation system made of motorised linear rails with 

load cells (obtaining applied forces to the tendons) and a 

pressure regulator. Here, we present and analyse the 

performance and limitations of our model. 

I. INTRODUCTION 

With the growing interest in the use of soft materials 

[1] for the creation of highly dexterous robots, soft material 

robotics has established itself as an important research topic 

within soft robotics. Some roboticists argue that soft robotic 

technologies will play a key role in the 4th industrial 

revolution [2], for safe human-robot interaction in 

manufacturing [3]–[5], healthcare [6], and minimally 

invasive surgery (MIS) [7]. Numerous proposals for novel 

flexible robots, based on soft and hybrid materials, are 

continuously emerging [8].  

Although recent advances in soft and soft material 

robotics are notable and holding considerable promise to 

achieve what was not possible with traditional rigid-link 

robots, one important drawback remains: despite their 

morphological capabilities, they have limited ability to exert 

higher forces on the environment when required, hence, 

change their stiffness on demand over a wide range. In the 

search for the right trade-off between desired compliance 

and exertable force, researchers explored numerous 

approaches to enable on-demand stiffness tuning of soft 

robots. According to the recent comparative study presented 

in [9], Variable Stiffness Systems (VSSs) for soft robots can 
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be divided in two main groups: (i) Active VSSs: these VSSs 

provide on-demand stiffening using an antagonistic 

approach, i.e., the creation of stiffness by means of 

equilibrium between two or more forces, at least one of 

which is an active force and (ii) Semi-Active VSSs: these 

VSSs provide on-demand stiffening relying on their 

capability of intrinsically tuning the rigidity of the robotic 

system in which they are embedded. In our previous work  

[10]–[12] we have proposed a novel design for an inflatable 

continuum manipulator for applications in MIS based on 

tendon and pneumatic actuation, forming an active VSS. 

Systems based on this design can be highly compacted when 

in their undeployed, folded state and can be significantly 

expanded in volume by injecting fluid and changing their 

stiffness by several orders. Despite the aforementioned 

benefits, inflatable robots that can change their stiffness are 

typically more complex to model and control in comparison 

with their rigid counterparts.  

The well-known multiple constant curvature model 

describes the body pose of a continuum manipulator in 

geometrical terms by approximating its bending with a series 

of constant curvature sections, as shown in [13]. This model 

allows the discretization of the continuous body reducing the 

robot’s infinite Degrees of Freedom’s into a finite number. 

This model has been extensively investigated [14], [15]. Its 

combination with the Euler-Bernoulli beam theory that 

considers a beam’s deflation to be a result of pure bending 

has found applications in continuum robots, e.g., for active 

cannulas in MIS [16] and silicone-based soft robotics [17]. 

External physical interaction with the environment has not 

yet been investigated and modelled. The Cosserat rod theory 

approach has been proposed for the control of soft robotic 

manipulators due to their intrinsic non-linearity introduced 

by their material and geometrical properties [18]. Cosserat-

type rod methods are based on the assumption of a rod base 

curve as a deformable directed curve with attached 

deformable or non-deformable vectors [19]. The theory has 

been applied to continuous and finally soft systems [20]. 

However, simplifying assumptions such as the Euler-

Bernoulli hypothesis are required when aiming for 

successful implementation in embedded control [21]. 

Aiming at modelling, in particular, soft robotic structures, 

the Finite Element Method (FEM) is used to discretise a soft 

body into several elements of constant stiffness [22]. Despite 

the recent advancements in FEM solvers the fast 

computation of the soft-robot’s compliance matrix remains a 

challenge. The implementation of a multi-rate scheme in 

which lower frequency loops are used to capture the body’s 

deformation while high refresh rates are used for its 

actuating system, have shown great potential [23].  
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Figure 1 - CAD drawings of the soft, stiffness-controllable inflatable 

manipulator: (a) longitudinal section view showing the arm components and 

(b) cross-section view showing the tendon routing and their fixture points, 

the force distribution due to the air in pressure, the reaction force of the 

sleeve and the tendon pulling force. 

These algorithms are computationally expensive for fast 

robot response if high deformation accuracy is required.  

In this paper, a beam-mechanics-based model is validated 

for our inflatable soft, stiffness-controllable robotic 

manipulator firstly presented in [10]. The static mathematical 

model applies the Euler-Bernoulli beam model on discrete 

cross-sections/segments along the robot as described for a 

silicone-based, fluidically actuated manipulator in [17]. 

Applying this approach considers the wide range of stiffness 

values of the robot as well as forces exerted to the 

manipulator’s tip in interaction with the environment. The 

kinematics are implemented and assessed for a soft robotic 

manipulator based on an active-active actuation technology: 

The inflatable manipulator uses tendon-driven and pneumatic 

air actuation in an antagonistic way to achieve a wide range 

of stiffness and elongation.  

The paper is organised as follows: Section II recalls the 

soft, stiffness controllable robotic manipulator based on an 

antagonistic actuation principle. The Euler-Bernoulli beam 

model described in this section will be applied and validated 

using this robotic device. The estimation of the Young’s 

modulus is obtained from experimental stiffness results. In 

Section III, the mechanical design of the overall robotic 

actuation system and implementation of the kinematic model 

is presented. To demonstrate the feasibility of the proposed 

beam-mechanics-based model, several experiments have 

been conducted (see Section IV). The results highlight the 

achievements of the proposed technique.    

II. MATHEMATICAL MODEL FOR A ROBOT WITH AN ACTIVE 

VARIABLE STIFFNESS SYSTEM  

A. Recalling the design of the inflatable robot 

The presented kinematic model has been adapted for the 

soft, stiffness-controllable robot based on an antagonistic 

actuation principle presented in [10]–[12]. Fig.1 shows the 

robotic manipulator longitudinal and cross-section view 

showing the tendon routing and their fixture points, the force 

distribution due to the air in pressure, the reaction force of 

the sleeve and the tendon pulling force.  

 

Figure 2 - The pressure and tendon forces exerted on an arbitrary 

manipulator’s cross-section/segment. � is the internal bladder’s pressure. 

��, ��, and �� are forces applied by the tendons and ��, ��, and �� their 

position vector with respect to the centre of the cross-section. ∆�	 

corresponds to the (negative) elongation resulting from the sum of forces. 

The robot structure is composed of three main elements: 

an inner airtight and stretchable latex bladder, an outer, non-

stretchable (but shrinkable) polyester fabric sleeve and three 

pairs of nylon tendons. The stretchable cylindrical latex 

bladder is inserted into the cylindrical polyester sleeve. The 

outer sleeve has a free length of 135 mm and has a diameter 

of 35 mm, when fully inflated. As the fabric material is non-

stretchable, the outer sleeve prevents any ballooning of the 

inner bladder in radial direction beyond the maximum 

diameter. Whilst morphing from a deflated state to an inflated 

state, the robot can only expand along its longitudinal axis 

(elongation). The stiffness of the arm can be controlled by 

adjusting the pressure, e.g., high air pressure results in stiffer 

and low pressure in softer states. The nylon tendons are 

guided along the outside of the manipulator sleeve within 

polyester channels, 120◦ spaced apart along the perimeter of 

the outer sleeve and fixed to the tip of the manipulator.  

B. Kinematic model based on the Euler-Bernoulli beam 

model 

Soft robotic manipulators do not satisfy the constant 

curvature conditions [17]. When the manipulators are in 

physical interaction with the environment, the application of 

the constant curvature model results in large deviations 

between the theoretical model and experimental results. 

Hence, we present an Euler-Bernoulli beam model: the 

manipulator is discretised along the longitudinal axis into a 

number of segments. The Euler-Bernoulli beam theory is 

then applied individually to each segment before the 

manipulator’s geometry is re-assembled. After the 

manipulator’s discretization into 
 cross-sections/segments, 

the first step is to calculate the elongation and bending 

moment of each individual segment when the tendons are 

actuated. When the manipulator is only pressurised, the 

pressurised air in the internal chamber keep the body pose 

straight. Each section in straight configuration has the same 

length �	. Bending the manipulator by actuating one, two or 

three tendons leads to a contraction ∆�	 of the manipulator 

section in correspondence of its central axis (see Fig. 2). 



  

Using the Euler-Bernoulli equation:  
 

�	 � 1
�	

� |�	|
��	

 (1) 

 

it is possible to obtain the section curvature �	. �	 
corresponds to the acting moments on the section,  � to the 
material’s Young modulus, �	 to the beam’s cross-section’s 
second moment of area, and �	 the radius of the �-th cross-
section. The contraction caused by pulling the tendons and 
mathematically resulting from the net forces acting on the 
robot’s cross-section can be approximated by Hooke’s law in 
Equation (2). 
 

Δ�	 � ���	�
�� �	 (2) 

 

The net force vector �� 	 acts on the cross-section plane, 

� (�������� � 35 ��, � � 962.11 ��'( is the cross-

section area, and �	 the section’s undeformed length. 

Assuming that the air pressure is homogenously distributed 

and tendons are moving without any friction inside the 

polyester channels, it becomes evident that the module of the 

net force vector ��	  normal to the section surface for each 

arbitrary section can be obtained by the sum of the modules 

of the tendon force vectors �), �' and �* on the one hand 

and the force by the pressurised air on the other hand. It 

yields: 
 

���	� � �� + |�)| + |�'| + |�*|, (3) 
 

where � is the bladder’s internal pressure. Similarly, the and 
the bending moment vector �	 can be obtained as: 

 

�	 � �) , �� - �' , �' - �* , �*. (4) 
 

where �), �' and �* are the position vectors shown in Fig. 2.  
Given the two parameters for the resulting curvature and 
elongation, it is possible to describe the bending angle .	 for 
each section using Equation (5). 
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If we consider only the forces applied by the tendons and 
the pressure, all the sections are subject to the same forces 
and momenta, thus they deform in the same way, hence they 
have the same curvature. In this case the system follows the 
constant curvature model. On the other hand, if we account 
for external forces that are acting at the manipulator’s tip, 
Equations (3) and (4) must be extended to: 

 

���	� � �� + |�)| + |�'| + |�*| - ��567,81� (6) 
 �	 � �) , �� - �' , �' - �* , �* - �	 , �567 , (7) 
 

where �567 is the external force vector, �	 is the vector that 

connects the arbitrary cross-section’s centre with the center 

of the manipulators’ tip and �567,81 is the component of �567 

in the � cross-section’s z-axis direction. In this case, ��	 

and �	 are different for each section, hence, each section 

has a different curvature �	 and bending angle .	. 

 
Figure 3 - Experimental setup using a motorised linear rail and an ATI 

Nano 17 Force/Torque sensor to measure force and displacement in order to 

determine the bending stiffness of the inflatable robotic manipulator when 

measured in correspondence of a tendon (I, III) and in between two adjacent 

tendons (II, IV), at the tip and in the middle. 

C. Experimental determination of the Young’s modulus 

The presented analytical description of this soft, stiffness-

controllable manipulator requires quantitative knowledge of 

its Young’s modulus. This parameter of the presented 

beam-mechanics-based model varies depending on the 

pressure inside the robot’s internal bladder. The 

determination of the Young’s modulus is a significant 

challenge since the manipulator’s structural characteristics 

prohibit the use of any analytical technique. However, the 

manipulator’s bending stiffness 96 along : direction (Fig. 3) 

can be obtained experimentally and can be used to estimate 

the Young’s modulus of our system. Generally, the bending 

stiffness is defined as the body’s resistance against 

displacement forces [24]. A set of experiments was set up as 

shown in Fig. 3 allowing us to displace the inflatable robot at 

discrete locations along the manipulator using an ATI 

Nano17 Force/Torque (F/T) sensor, contextually measuring 

interaction forces and displacements. Both sides of the 

manipulator have been tested (on the tendon and in between 

two adjacent tendons) to understand how the tendon location 

affect the local and overall stiffness of our system.  Given the 

boundary conditions of our experiment (cantilever beam), we 

assume that the bending stiffness 96 of our system measured 

at the base (rigid) being infinite. Hence, we can now consider 

the inverse of the bending stiffness, the bending compliance 

;6, which will then be zero in the base. Using the force-

displacement data collected in the tests presented in Fig. 3 for 

the two sides of the manipulator we can now plot ;6,  in 

function of the distance from the base �<=>5 . These data are 

presented in Fig. 4 for different pressure levels (15 kPa and 

30 kPa). As shown in the graphs, the bending compliance ;6 

for this soft, stiffness-controllable robotic design is a linear 

function of the distance from the base (�<=>5)  and, as 

expected, the slopes of the lines are inversely proportional to 

the pressure level applied. Hence, given the linear trend of 

the bending compliance  ;6, we can express the bending 

stiffness 96 with the hyperbolic function shown in (8): 

96?�<=>5 , �( � 1
�?�( ∗ �<=>5

 (8) 



  

 
Figure 4 - Experimental determination of the manipulators’ compliance 

(which is equivalent to the inverse of stiffness) as a function of the internal 

pressure and the distance from its base. The compliance values are 

measured and approximated for a straight configuration for tests I and III 

(left graph) and for tests II and IV (right graph) at 15 kPa (orange) and 30 

kPa (blue). For case I and III (left), the compliance is measured against one 

tendon and, for case II and IV (right), between two tendons. 

Here � is the internal bladder’s pressure, �<=>5  is the 
distance from the manipulator’s base to the location where 
the external force is applied and �?�( is the angular 
coefficient of the lines (function of the pressure �(  obtained 
by linearly approximating the compliance values obtained 
experimentally in the tests presented in Fig. 3 as shown in the 
graphs in Fig. 4. We can now use the measured bending 
stiffness 96?�<=>5 , �( to find the Young’s modulus of our 
system. For small deformations, we assume that our system 
behaves like a traditional cantilever beam. From classical 
mechanics, Equation (9) describes the relationship between 
the bending stiffness 96 of a cantilever beam laterally loaded 
in function of the distance from the base �<=>5  where 96 is 
measured, the Young’s modulus � and � the second moment 
of area of (assuming the section circular � � ?A/2( ∗ �C).   
 

96?�<=>5( � 3��
�<=>5* (9) 

 

If we compare Equations (8) and (9), we can derive an 
equivalent Young’s modulus for our inflatable robot (�DE( for 
our model.  

�DE � �<=>5'

3��?�( (10) 

 

The equivalent Young’s modulus �DE presented in 
Equation (10), differently from the traditional formulation of 
the Young’s Modulus, is a function of the pressure � inside 
the manipualtor, of the side on which we are interacting with 
the manipulator (accounting for the tendon position in respect 
to external force applied) and of the distance from the base.  

III. IMPLEMENTATION INTO A ROBOTIC ACTUATION SYSTEM 

Fig. 5 shows the setup of the robotic actuation system for 

validating the Euler-Bernoulli beam model described in 

Section II. The frame is made of three aluminium plates 

composing three of the six lateral faces of a hexagonal prism 

of 500 mm length. The inflatable robotic manipulator is 

mounted to the faceplate of the aluminium platform using a 

customised 3D-printed support made of Polylactic Acid 

(PLA) using an Ultimaker 2. A motorised linear actuator 

by C-BeamTM with an ACME Lead screw system is mounted 

to the inside of each aluminium plate. The linear rails have a 

length on 250 mm.  

  
Figure 5: From bottom to top: Side and top view of the robotic actuation 

system for the soft, stiffness-controllable inflatable manipulator: A load cell 

is mounted on three motorised linear actuators by C-BeamTM (top). Each 

tendon of the robotic manipulator is connected to one load cell. The air 

inside the internal bladder is regulated using proportional pressure 

regulator. 

Each actuator is driven by a 175 oz 2.0 A NEMA23 stepper 

motor with an on-board Arduino IDE. A load cell (0-50 N 

range) is mounted on the gantry plate of the linear actuators. 

A HX711 Weighing Sensors AD Module connects the force 

sensors to the available Arduino boards. The tendons of the 

manipulator are fed through the faceplate parallel to the C-

BeamTM actuators and attached to each load cell. The inner 

bladder of the robot is connected to a 4 mm PVC pipe to an 

electronic proportional micro regulator (Camozzi K8P-S-

E522-2F). The regulator is able to control the air pressure up 

to 0.3 MPa, capable of inflating and deflating the inner 

bladder via one Arduino IDE. An air compressor (AS-186 

Mini Piston Type) ensures the supply with sufficient 

pressure limited to the maximum pressure the regulators can 

cope with. The developer boards are connected via USB to a 

PC running the Robot Operating System (ROS). The 

MATLAB ROS Bridge allows to acquire force and pressure 

data as well as actuate the motorised linear actuator and 

pressure regulator. 

IV. EXPERIMENTAL SETUP AND RESULTS 

A. Experimental setup and test protocol  

Our beam-mechanics-based model for an inflatable soft, 

stiffness-controllable robot is validated by two sets of 

experimental tests: experiment 1 - the robotic manipulator’s 

bending angle . is measured when forces are applied to one 

or two actuated tendons; experiment 2 - an external force 

�567  is applied at the robot’s tip, when in a straight 

configuration, and the deflection is recorded. As the stiffness 

values are experimentally determined, the internal pressure 

here follows the range between the discrete values of 15 kPa 

and 30 kPa and maximum displacements at the tip of 15 mm. 



  

 
                                (a)                                                        (b) 

Figure 6: Experimental results compared to the beam-mechanics-based 

model: Bending angle versus forces applied to one (left) and two (right) 

tendons at 15 kPa. 

 
                                (a)                                                        (b) 

Figure 7: Experimental results compared to the beam-mechanics-based 

model: Bending angle versus forces applied to one (left) and two (right) 

tendons at 30 kPa. 

Due to the symmetry of the inflatable manipulator, single- 

and dual-tendon actuation was analysed. The robotic 

actuation system was set up so that the bending and 

deflection motion moved within a planar surface. A Nikon 

D3300 DSLR camera was arranged with its image plane 

parallel to the aforementioned surface. A continuous series of 

images were recorded of five iterations for each experiment, 

converted to binary images based on threshold adjustments 

and analysed using the Image Processing Toolbox by 

MATLAB. Initial investigation of the trade-off between 

computational effort versus model accuracy resulted in the 

choice of 
 � 4 cross-sections/segments for the analytical 

model (see Section IV-B and C) which then compared to 

experimental tests. This value has been experimentally 

chosen as the optimal one for the tendon forces, bending 

angles and manipulator displacement investigated. 

B. Experiment 1: Bending angle versus force applied to 

tendons  

The results of Experiment 1 continuously measuring the 

bending angle and force applied to one and two tendons are 

shown in Fig. 6 and 7. The results of the analytical beam-

mechanics-based model are displayed by black linear curves. 

A linear approximation has been applied to the experimental 

raw data represented by blue curves including the shaded 

area along these curves showing the standard deviation. Fig. 

6 and 7 illustrate the comparison of the results for 15 kPa and 

30 kPa respectively. The theoretical model determines a 

displacement of 66º and 80º when applying 15 N to one in 

Fig. 6 (a) and two tendons in Fig. 6 (b), respectively. 

Experiments result in 82º and 85º, with a slightly higher 

standard deviation when two tendons are actuated together.  

 
                                (a)                                                        (b) 

Figure 8: Experimental results compared to the beam-mechanics-based 

model: Displacement versus forces applied to one (left) and two (right) 

tendons of the manipulator’s tip at 15 kPa. 
 

 
                                (a)                                                        (b) 

Figure 9: Experimental results compared to the beam-mechanics-based 

model: Displacement versus forces applied to one (left) and two (right) 

tendons of the manipulator’s tip at 30 kPa. 

For a pressure of 30 kPa in Fig. 7, a force of 15 N results 

in an analytical bending angle of 39º and 45º. A force of 30 N 

achieves an angle of 77º and 88º, respectively.  The 

experimental results return angles of 30º and 38º for 15 N and 

62º and 81º for 30 N force applied to the tendons. For single-

tendon actuation in Fig. 6 (a) and Fig. 7 (a), the mathematical 

model generally returns larger bending angles for 15 kPa and 

smaller bending angles for 30 kPa compared to the 

experimental results. The error between the predicted and 

actual angles increase with larger bending angles. On the 

other side, values for the bending angle of the analytical 

model and experimental data set for two-tendons actuation 

(Fig. 6 (b) and Fig. 7 (b)) are in alignment. In fact, there is an 

offset of 7º between the experimental results and the beam-

mechanics-based model in Fig. 7 (b). 

C. Experiment 2: Displacement versus force applied to the 

manipulator’s tip  

In Fig. 8 and Fig. 9, the results of Experiment 2 are 

shown: The manipulator is configured in a straight position 

and external forces are applied to the robot’s tip achieving 

maximum displacements of 15 mm. Instead of exerting 

pushing forces as shown in Fig. 3, the manipulator’s tip is 

pulled towards one tendon in Fig. 8 (a) and Fig. 9 (a) and 

towards two tendons in Fig. 8 (b) and Fig. 9 (b) during 

Experiment 2. At 15 kPa (see Fig. 8), the theoretical beam 

model returns displacements of 15 mm when a force of 0.9 N 

and 1.1 N is applied to one and two tendons, respectively. 

The linear approximation gives force values of 0.85 N and 

1.45 N for these cases. Fig. 9 illustrates the results for a 

pressure of 30 kPa. Our implemented model estimated a force 

of 1.6 N and 1.85 N for a displacement of 15 mm. These 



  

values are 1.55 N and 2.5 N looking at the approximations of 

the experimental data.  

As pulling forces are applied to the manipulator’s tip, the 

stiffness of the inflatable robot is provided by the opposing 

tendon(s). For instance, when external forces pull the 

manipulator’s tip towards a single tendon as shown in Fig. 

8 (a), the two opposite tendons counterbalance this physical 

interaction. Experimental data for two tendons providing 

stiffness counterbalance closely matches the results by our 

developed mathematical model (Fig. 8 (a) and Fig. 9 (a)). 

According to the results in Fig. 8 (b) and Fig. 9 (b), stiffness 

by one tendon only returns larger standard deviations and 

discrepancies between the theoretical and experimental data 

increase with larger displacements. 

D. Discussion  

It can be concluded that our model is in alignment with 

the experimental results for small bending angles and 

displacements. Non-linear effects might increase with larger 

bending angles and displacements which cannot be captured 

with this beam-mechanics-based model. Another limitation 

results from the experimental determination of the Young’s 

modulus. The stiffness of the inflatable manipulator covers a 

wide range of values – in particular, when the manipulator is 

arranged in different configurations. The choice of the 

number of cross-sections in the model plays a key role in the 

reliability of this approach to predict and control the 

manipulator behaviour.  

V. CONCLUSIONS 

Building on our previous work, we have now adapted a 

beam-mechanics-based model for our soft, stiffness-

controllable robotic manipulator.  This mathematical model 

applies the Euler-Bernoulli beam model on discrete cross-

sections/segments along the robot. A robotic actuation system 

is set up measuring the force applied to the tendons of our 

inflatable robot and the pressure inside the internal bladder. 

Two types of experiments have been conducted to validate 

the proposed model: In Experiment 1, we evaluated the case 

of active forces applied to the manipulator by pulling the 

tendons, measuring the bending angle of the manipulator 

axis; in Experiment 2, external forces were applied at the tip 

of the manipulator measuring its displacement along the 

direction for application of the force. The Young’s modulus 

of this analytical model is obtained from experimental data as 

the stiffness of the manipulator changes over a wide range.  

In future work, the sensitivity of the mathematical model 

with respect to the choice of the number of cross-sections in 

the model will be explored. A parametrised model accounting 

for pressure levels and bending angles might be worth 

investigating, along with exploring an analytical model to 

calculate the robot’s Young’s modulus. Friction between the 

tendons and fabric material as well as arbitrary folding 

patterns of the fabric material might lead to high inaccuracies 

for large bending angles. These effects should be considered 

when further developing the analytical model. 
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