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Abstract— Providing force feedback as a feature in current
Robot-Assisted Minimally Invasive Surgery systems still re-
mains a challenge. In recent years, Vision-Based Force Sensing
(VBFS) has emerged as a promising approach to address
this problem. Existing methods have been developed in a
Supervised Learning (SL) setting. Nonetheless, most of the
video sequences related to robotic surgery are not provided
with ground-truth force data, which can be easily acquired
in a controlled environment. A powerful approach to process
unlabeled video sequences and find a compact representation
for each video frame relies on using an Unsupervised Learning
(UL) method. Afterward, a model trained in an SL setting can
take advantage of the available ground-truth force data. In the
present work, UL and SL techniques are used to investigate
a model in a Semi-Supervised Learning (SSL) framework,
consisting of an encoder network and a Long-Short Term
Memory (LSTM) network. First, a Convolutional Auto-Encoder
(CAE) is trained to learn a compact representation for each
RGB frame in a video sequence. To facilitate the reconstruction
of high and low frequencies found in images, this CAE is
optimized using an adversarial framework and a L1-loss,
respectively. Thereafter, the encoder network of the CAE is
serially connected with an LSTM network and trained jointly
to minimize the difference between ground-truth and estimated
force data. Datasets addressing the force estimation task are
scarce. Therefore, the experiments have been validated in a
custom dataset. The results suggest that the proposed approach
is promising.

Index Terms— Vision Based Force Sensing, Robotic Surgery,
Deep Neural Networks, Semi-Supervised Learning.

I. INTRODUCTION

Force feedback is a desired feature in Robot-Assisted
Minimally Invasive Surgery systems. It allows the integration
of the “sense of touch”, resulting in potential benefits.
For instance, improved manipulation of human soft-tissues
avoiding damage due to excessive applied forces. However,
the integration of force feedback in surgical robotic systems
still remains an open problem [1][2]. Advances in the fields
of computer vision and artificial intelligence have resulted
in an emerging research area known as Vision Based Force
Sensing (VBFS). VBFS enables the estimation of interac-
tion forces between surgical instruments and soft-tissue by
processing video sequences. Such data is easily provided
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Catalunya, 08034, Barcelona, Spain e-mail: josep.fernandez@upc.edu, ali-
cia.casals@upc.edu

2Arturo Marban, Vignesh Srinivasan and Wojciech Samek, are
with Fraunhofer Heinrich Hertz Institute, Einsteinufer 37, 10587
Berlin, Germany e-mail: arturo.marban@hhi-extern.fraunhofer.de, vig-
nesh.srinivasan@hhi.fraunhofer.de, wojciech.samek@hhi.fraunhofer.de

by surgical robotic systems, nonetheless, its interpretation
is challenging.

Different methods have been proposed to address VBFS in
robotic-assisted surgery scenarios. They estimate forces from
(monocular/stereo) video sequences relying on an accurate
modeling of soft-tissues’ deformation (in 3D space) caused
by the interaction with surgical instruments. Moreover, in
VBFS, the processing of the surgical tool motion is ben-
eficial (i.e. the tool-tip trajectory). A VBFS approach was
investigated in [3] using a simplified scenario consisting of a
rubber membrane. Its deformation was recovered by tracking
nodal displacements and a finite element method was used
to model the mechanical relationship between deformation
and force. A more realistic scenario was studied in [4],
which addresses monocular force estimation using a real
lamb liver as experimental material. The authors proposed
a virtual template to model soft-tissue surface deformation.
However, it is assumed that the soft-tissue surface behaves as
a smooth function with local deformation. The relationship
between force and penetration depth caused by the surgical
tool was modeled based on a stress-strain bio-mechanical
model. VBFS applied to neurosurgery was investigated in [5]
and [6]. In [5], soft-tissue surface deformation is computed
using a depth map extracted from stereo-endoscopic images.
Then, a surface mesh based on spring-damper models pro-
cesses this information to render force as output. In contrast,
the authors in [6] developed a method based on quasi-dense
stereo correspondence to recover surface deformation from
stereo video sequences. Afterward, force is estimated from
the surgical tool displacement (which is extracted from the
deformation data), using a 2nd order polynomial model.
Models based on neural networks have been investigated
in recent years. For instance, [7] proposed a 3D lattice
in a minimization framework for modeling the complex
deformation of soft-tissues. Furthermore, a recurrent neural
network was designed to estimate force by processing the
information provided by this lattice in addition to the sur-
gical tool motion. Subsequent notable works by the same
author include [8] and [9], in which the recurrent neural
network described in [7] is improved by designing a model
based on the Long-Short Term Memory (LSTM) network
architecture [10], achieving high accuracy in the estimation
of forces (in 3D space).

The literature review of VBFS in robotic-assisted surgery,
reveals that the proposed neural network models have been
designed in a Supervised Learning (SL) setting. However,
the advantages of using a Semi-Supervised Learning (SSL)
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approach remain unexplored. SSL represents an interesting
avenue of research, given that unlabeled data is easily
available (i.e. video sequences) and labeled data is scarce
(i.e. video sequences in addition to ground-truth force data).
For this purpose, Unsupervised Learning (UL) techniques
are essential. They allow learning meaningful representations
from unlabeled raw data. In this context, an approach based
on Generative Adversarial Networks (GAN) [11] has not
yet been investigated for VBFS in robotic-assisted surgery.
GANs are generative models that consist in two competing
neural networks with different objectives: a generator G
and a discriminator D. The goal of G is to “fool” D by
learning to generate samples that resemble the real data
(ground-truth). In contrast, the goal of D is to distinguish
between real (ground-truth) and fake (samples generated
by G) data. As the training process evolves, G learns the
probability distribution of the real data. Auto-encoders are
neural networks with fully connected layers that encode high-
dimensional data into a latent space and decode this informa-
tion, reconstructing the input data in its output [12][13]. A
better model for processing data with spatial correlations (i.e.
images) is a Convolutional Auto-Encoder (CAE). In [14],
this model is studied for feature vector extraction and pre-
training of Convolutional Neural Networks (CNN). The
authors concluded that this model can learn biologically
plausible filters. In addition, it was found that optimizing
a pre-trained CNN tends to outperform the same model with
its parameters initialized from scratch. When few labeled
data is available, pre-training CNNs with an UL approach
can help in designing models in a SL setting. Regarding the
reconstructed data, its quality is affected by the design of the
loss function used to optimize the CAE model. To improve
this quality and learn better representations in the latent
space, the traditional CAE model can be extended to a GAN
framework. For this purpose, a CAE model can be designed
and optimized based on several design choices described
in [15], [16], [17], [18] and [19]. An adversarial auto-encoder
is proposed in [15] which shapes the distribution of the latent
space using a GAN framework. The authors in [16] designed
a generative model as a combination of a variational auto-
encoder and a GAN framework. In particular, they pointed
out that a loss function designed with an element-wise metric
(i.e. squared error) is simple but not suitable for image data.
Instead, they suggest a feature-wise metric to measure image
similarity. Specifically, they designed a loss function that
uses the hidden representations of the layers in the GAN
discriminator, which improves the quality of the generated
samples. The task of image-to-image translation is addressed
in [17]. In that work, the authors suggest the design of a dis-
criminator network that processes image patches and outputs
a probability map instead of a single scalar value (as defined
in the original GAN framework [11]). This approach im-
proves the quality of the samples rendered by the investigated
model. Furthermore, in this work, low and high frequencies
of image data are modeled by a loss function designed based
on the L1-loss and GAN framework, respectively. This loss
function design avoids the blurring effect on images rendered

by the model due to the L1/L2-loss. This approach has also
been investigated in the task of video frame prediction [18].
In [19], a GAN framework is proposed for transferring the
texture of real into simulated images, while preserving the
annotations of simulated images. The discriminator network
used in this work shares some similarities with the model
described in [17], suggesting that a discriminator network
that outputs a probability map represents a suitable design
choice for some applications.

In the present work, a model in a SSL setting is pro-
posed for the estimation of forces in the context of robotic
surgery. This model is composed of an encoder network
serially connected with an LSTM network. It addresses the
estimation of forces related to pushing actions (i.e. pressing
the surgical tool against soft-tissues), which are essential
in the execution of tasks such as the palpation of soft-
tissues. The model is optimized in two stages. First, in the
UL stage, a CAE is optimized in an adversarial framework
using a large dataset of unlabeled video sequences describing
interactions between surgical instruments and artificial soft-
tissues. The CAE design and optimization is based on the
works described in [15]-[19]. The objective of this stage is
to design an encoder network as a feature extractor. The
feature vectors computed by this neural network represent
a learned representation of high dimensional data, such
as video sequences. Subsequently, this encoder network is
serially connected with an LSTM network and trained in a
SL setting using fewer data than in the UL stage. In this
stage, video sequences in addition to ground-truth force and
tool data (i.e. surgical tool trajectory and grasper status) are
available. The main contributions of this work are:

• In the SL stage, the impact of applying image pro-
cessing operations to video sequences, such as mean
normalization and space-time transformation, in the
estimated force signal quality is investigated. This study
shows the importance of highlighting motion in video
sequences due to tool-tissue interactions.

• The effectiveness of using a loss function with two
terms is investigated in the optimization of the model in
the SL stage. The first term measures the distance be-
tween the ground-truth and estimated force signals (i.e.
measured by root mean squared error), while the second
term measures the distance between their gradients (i.e.
derivative of the force signal with respect to time). This
loss function design eases the modeling of smooth and
sharp details found in force and torque signals.

II. METHODS
A. Dataset

Datasets addressing the force estimation task are scarce,
therefore, the experiments have been validated in a custom
dataset. It consists of video sequences, tool data and ground-
truth interaction forces. An experimental platform was used
for this purpose. In this platform, a slave robot manipulator
(Stäubli RX60B) with an attached (motorized) surgical tool
interacts with a digestive apparatus made of artificial soft-
tissue (Silicone-Smooth On ECOFLEX 0030). Forty-four



video sequences (480×640 @ 50 FPS), totaling 4.31 hours,
were recorded using 4 digital cameras (DFK 72BUC02).
The tool data is described by the surgical tool-tip trajectory
in the 3D space and its grasping status (i.e. opened/closed
grasper), at each time instant. The interaction forces and
torques between the surgical tool and artificial soft-tissues
were acquired by a 6D force sensor (ATI Gamma SI-32-
2.5). The force sensor resolution is: 0.00625 N for fx and
fy , 0.0125 N for fz , and 0.0005 Nm for all the torques
(τx, τy , and τz). This sensor was attached at the robot
manipulator’s end-effector and its z-axis was aligned with
the surgical instrument shaft (see Fig. 3c). The measured
forces and torques lie in the range +2.5/-10 N and +/-5 Nm,
respectively.

B. Preprocessing of Video Sequences

The recorded video sequences were processed by tracking
and extracting a region of interest of size 200 × 300 pixels
from every frame. These image regions improve the visi-
bility of the interaction between the surgical tool and soft-
tissues. With this aim, mean normalization and space-time
transformations were used. The mean frame normalization
consists in computing a mean frame for every video sequence
by averaging all the raw frames (with equal contribution).
Each computed mean frame is subtracted from every cor-
responding video sequence. The result of this operation is
the elimination of the static background present in video
sequences, since it does not contribute to the learning process
in the force estimation task. In the application of human pose
estimation from video sequences (with static background),
this operation was found beneficial [20]. The space-time
transformation consists in creating a 3-channel image by
concatenating gray-scale versions of the past, current, and
next color frames along the channel dimension. This im-
age representation encodes temporal information and was
found useful in the estimation of sound from silent video
sequences [21].

The three types of video frames investigated in the experi-
ments are illustrated in Fig. 1. These are raw, space-time and
full-processed frames. Raw video frames processed with the
space-time transformation, referred to as space-time frames,
emphasize motion from two sources: (i) camera motion and
(ii) motion due to the interaction between surgical instru-
ments and soft-tissues. In this representation, image regions
where motion is present are rendered as colored pixels. In
contrast, static image regions are shown as pixels in gray-
scale. Full-processed video frames, with mean normalization
and space-time transformation, only emphasize the motion
caused by the interaction of the surgical tool with soft-
tissues. In this representation, only this type of motion is
rendered as colored pixels, while the rest of the image is
suppressed (i.e. constant gray color).

C. Semi-Supervised Model

The SSL model, composed of an encoder network and a
LSTM network, is designed in two stages.

Fig. 1: Video frames investigated in the experiments.
Left: Raw frames. Middle: Space-time frames. Right: Full-
processed frames.

In the first stage, the encoder network is designed by
optimizing a CAE in an adversarial framework as detailed
in Fig. 2a. The encoder network Enc maps an input image
X to a latent space vector Z. This encoding process is
expressed as Z = Enc(X). The reverse operation is carried
out by the decoder network Dec, whose objective is to
reconstruct the original image X from the latent space Z.
Thus, the reconstructed image is X̃ = Dec(Z). The CAE
is optimized in an adversarial framework using two discrim-
inators. The first discriminator, represented by Discx, is a
fully convolutional neural network that distinguishes between
real (X) and reconstructed images (X̃). The output of this
discriminator is a 3 channel probability map, PX ∈ <7×10×3.
The second discriminator, Discz , is a fully connected neural
network that outputs a single scalar probability, PZ ∈ <. It
classifies latent space vectors Z as belonging to a standard
normal distribution, Zreal ∼ N (0, 1), or as generated by
the encoder network, Z = Enc(X). In Fig. 2a, the number
of output feature maps corresponding to each convolutional
layer are shown for Enc (CE1-CE5), Dec (CD1-CD5) and
Discx (C1-C6). For instance, CE1-64 indicates that layer
CE1 outputs 64 feature maps. Analogously, the size of each
fully connected layer is shown for Enc (FCE), Dec (FCD)
and Discz (FC1-FC3). Thus, FC1-4096 describes layer FC1
with a dimension of 4096. Further details of the architecture
depicted in Fig. 2a are provided in Table I. In the second
stage, the model shown in Fig. 2b referred as Encoder-LSTM
network, is trained end-to-end in a SL setting. This model
consists in three neural networks: Encvideo, Enctool and
ΦLSTM . Encvideo and Enctool process video frames Xt

and tool data Xtool
t , at each time instant t, respectively.

Xtool
t = [xt, yt, zt, st] describes the tool trajectory in 3D

space (xt, yt, zt) and its grasping status st (st = 0 if
the grasper is closed, otherwise st = 1). Encvideo has
the same topology as Enc in the UL model depicted in
Fig. 2a. Nonetheless, some changes are introduced in the
layers of Encvideo while preserving the learned parameters
from the UL stage. Enctool is a fully connected neural
network that maps tool data from a lower (Xtool

t ∈ <4)
to a higher dimensional space (Ztoolt ∈ <64). It avoids the
use of a very small representation for the tool data vector
(i.e. Ztoolt = Xtool

t ∈ <4) with respect to that computed
from video sequences (Zvideot ∈ <4096). The size of each
network’s layer, FC1-FC3, is indicated in Fig. 2b (i.e. FC1-
16 describes layer FC1 with a dimension of 16). Table I
details the design of each layer in Encvideo and Enctool.
The neural networks Encvideo and Enctool output the feature



Fig. 2: (a) In the UL stage, an encoder network Enc is designed by optimizing a CAE in an adversarial framework. An
input image X is transformed into a latent space Z by the encoder network Enc. The decoder network Dec reconstructs
the input image X from Z, rendering X̃ as output. The discriminator networks Discx and Discz are applied on image
data (X and X̃) and latent space (Z), respectively. (b) Encoder-LSTM model used in the SL stage. The neural networks
Encvideo and Enctool process video frames and tool data, respectively. Their outputs are used to create a feature vector Zt at
every time instant t, which is modeled over T time steps by an LSTM-CIFG network, ΦLSTM . (c) Design of the two-layer
LSTM-CIFG network. Each layer has 256 blocks and processes the feature vectors Zt over T = 64 time steps. 50 % of the
outputs from the last cell are averaged. A fully connected layer (of dimension 6) with linear activation is used as the output
layer. To prevent over-fitting, dropout is applied with probability P during training at the output of each LSTM-CIFG cell.

vectors Zvideot and Ztoolt , respectively. Zvideot and Ztoolt are
concatenated into a single feature vector Zt. Thereafter, a
two layer LSTM network, ΦLSTM , processes a sequence
of feature vectors Zt over T time steps to render the final
estimated force F̂t. In this model T = 64 time steps. The
neural network described here is the LSTM network with
Coupled Input-Forget Gates (LSTM-CIFG) [22]. This model
has fewer parameters than the traditional LSTM network
without sacrificing performance. Fig. 2c details the design
of the LSTM-CIFG model used in the experiments.

D. Model Optimization
The optimization of the SSL model starts with the CAE

model and ends with the Encoder-LSTM network.
1) CAE Optimization: In this stage, the CAE parame-

ters are updated by processing unlabeled samples from the
created dataset. In the following equations, the discrimina-
tors Discx and Discz shown in Fig. 2a are represented
by Dφ and Dzα, respectively. Likewise, the CAE model,
X̃ = Dec(Enc(X)), and the encoding model for the latent

space, Z = Enc(X), are represented by the generator
networks Gθ and Gzβ , respectively. Given Mv samples
from a dataset (i.e. images), the discriminator network Dφ

updates its parameters φ with the loss function defined in (1).
A reconstructed image X̃ is computed by the generator
network Gθ as an encoding-decoding process. Therefore,
X̃ = Gθ(X) = Enc(Dec(X)). Gθ updates its parameters θ
with the loss function defined in (2).

LD(φ) = −
1

Mv

Mv∑
i

(
log(Dφ(X)) + log(1−Dφ(Gθ(X)))

)
(1)

LG(θ) = −
1

Mv

Mv∑
i

log(Dφ(Gθ(X))) (2)

The distribution of the latent space Z is shaped to follow
standard normal distribution N (0, 1) by using an adversarial
framework. The discriminator Dzα and generator Gzβ net-
works have parameters α and β, respectively. Dzα and Gzβ
are optimized with to the loss functions defined in (3) and (4),
respectively. The L1-loss expressed in (5) was selected to



TABLE I: Design of each layer in the UL & SL models.

UNSUPERVISED LEARNING MODEL
Layer Name Design

CAE: Encoder Enc & Decoder Dec
CE1-CE5 CONV5 ↓ 2 → BN → RELU
CD1-CD5 DECONV5 ↑ 2 → BN → RELU
FCE, FCD DENSE

Discriminator Discx
C1-C4 CONV5 ↓ 2 → BN → LRELU
C5 CONV5 → BN → LRELU
C6 CONV5 → SIGMOID

Discriminator Discz
FC1, FC2 DENSE → BN → LRELU
FC3 DENSE → SIGMOID

SUPERVISED LEARNING MODEL
Layer Name Design

Encoder Encvideo
CE1 CONV5 → RELU → MAXPOOL
CE2-CE5 CONV5 → BN → RELU → MAXPOOL
FCE LINEAR → BN → TANH

Encoder Enctool
FC1, FC2 DENSE → BN → RELU
FC3 DENSE → BN → TANH

CONV5: Convolution with a kernel of size 5 × 5 (same
padding). Whenever indicated, downsampling (↓ 2) is per-
formed with a stride of 2, otherwise stride 1. DECONV5:
Transposed convolution with a kernel of size 5 × 5. Up-
sampling (↑ 2) is performed with a stride of 2. DENSE:
Fully connected layer (without activation). BN: Batch nor-
malization layer. MAXPOOL: Max-Pooling layer. RELU:
Rectified linear activation. LRELU: Leaky RELU activation
with slope of 0.2. SIGMOID (TANH): Sigmoid (Hyperbolic
tangent) activation.

penalize the difference between the ground-truth X and the
reconstructed images Gθ(X). This loss function produces a
lower blurring effect with respect to the L2-loss. Equation (6)
is applied to the layers of the discriminator Dφ. It measures
the distance between the hidden representations produced in
D

(l)
φ at a layer l, given as input ground-truth (Dφ(X)(l)) and

reconstructed (Dφ(Gθ(X))(l)) images.

LDz(α) = −
1

Mv

Mv∑
i

(
log(Dzα(X)) + log(1−Dzα(Gzβ(X)))

)
(3)

LGz(β) = −
1

Mv

Mv∑
i

log(Dzα(Gzβ(X))) (4)

LL1(X) = ‖X −Gθ(X)‖1 (5)

LACT (X; l) =
∥∥∥Dφ(X)(l) −Dφ(Gθ(X))(l)

∥∥∥
1

(6)

The total image reconstruction loss in (7), represents a
linear combination of the loss functions (2), (4), (5) and
(6), weighted by the scalars λG, λGz , λL1 and λACT ,
respectively.

LR(X, θ, β) = λG LG(φ) + λGz LGz(β)

+λL1 LL1(X) + λACT LACT (X; l) (7)

2) Encoder-LSTM Optimization: In this stage, the param-
eters of Encvideo are initialized from the pre-trained encoder
network Enc of the CAE model. Therefore, during the op-
timization, the parameters of Encvideo are fine-tuned while
those of Enctool and ΦLSTM are optimized from scratch.
Equation (8) describes the loss function used for the joint
training of the Encvideo, Enctool and ΦLSTM networks,
which define the Encoder-LSTM model (see Fig. 2b). It
is a linear combination of the Root Mean Squared Error
(RMSE) and Gradient Difference Loss (GDL) weighted by
λRMSE and λGDL, respectively. The RMSE defined in
(9), penalizes the distance between ground-truth F

(i)
t and

estimated F̂
(i)
t force components at time t, indexed by

i = 0, ..., N − 1, where N is the total number of force
components. On the other hand, the GDL defined in (10)
measures the distance between the gradients of ground-truth
and estimated force components, referred as ∂F (i)

t /∂t and
∂F̂

(i)
t /∂t, respectively. These gradients are approximated by

convolving the i-th force component F (i)
t with the kernel

h = [−1 0 1 ]. Therefore, ∂F (i)
t /∂t = F

(i)
t ∗ h and

∂F̂
(i)
t /∂t = F̂

(i)
t ∗ h. Finally, in (9) and (10), samples are

summed over a temporal window from t = 0, ..., TS , being
TS the total number of samples.

L(F, F̂ ) = λRMSE LRMSE(F, F̂ ) + λGDL LGDL(F, F̂ ) (8)

LRMSE(F, F̂ ) =

TS∑
t

√√√√ 1

N

N∑
i

(F
(i)
t − F̂ (i)

t )2 (9)

LGDL(F, F̂ ) =

TS∑
t

N∑
i

∣∣∣∣∣∣∣∣∂F
(i)
t

∂t

∣∣∣−∣∣∣∂F̂ (i)
t

∂t

∣∣∣∣∣∣∣∣ (10)

III. EXPERIMENTS & RESULTS

The dataset consists of ∼780K samples split in 77% as
the training set and 23% as the test set. Each sample is
represented by an RGB frame, downsized from 200 × 300
to 100 × 150 pixels. In addition, every frame is provided
with a 6D vector of ground-truth interaction forces and a 4D
vector of tool data. This proportion of samples (unlabeled
video sequences) are used in the UL stage. Afterward, in
the SL stage, a subset of samples (video sequences, force
and tool data) of size ∼320K and ∼40K are taken from the
training and test sets, respectively. Relatively, these samples
represent a proportion of 89% as the training set and 11%
as the test set. However, with respect to the total size of
the dataset (∼780K samples), they represent a percentage of
41% and 5% as the training and test sets, respectively. The
neural network models were implemented in Tensorflow [23]
and the experiments were carried out using a single NVIDIA
Titan X Graphic Processing Unit.

A. Convolutional Auto-Encoder: Image Reconstruction

The CAE was optimized over 241K iterations (∼257
hours) with the Adam [24] solver, starting with a learning
rate of 1 × 10−4. In every iteration, two gradient descent
updates were applied on the parameters of the generator



Fig. 3: (a) A sample of reconstructed images by the CAE at test time. (b) Visualization of the feature maps computed by
the encoder network at each layer (CE1, ..., CE5) during the supervised learning stage. The feature maps are shown for
different input video frames (corresponding to cases A, B, and C) while the network is being optimized. Setup of the 6D
force sensor and surgical tool used in the experiments. During the training (inference) stage, the Encoder-LSTM network
processes (estimates) force and torque data measured with respect to Os = {Xs, Ys, Zs}, which is the reference frame of
the force sensor with respect to the world. The force sensor z-axis, Zs, is aligned with the tool shaft.

network Gθ, using the loss in (7). Afterward, a single
update operation was performed on the parameters of the
discriminator networks, Dφ and Dzα, using the loss func-
tions (1) and (3), respectively. The hyper-parameters of the
loss defined in (7) are: λL1 = 200 and λG = λGz = λACT =
1. Moreover, the loss function in (6) was applied to the
discriminator D(l)

φ at layer l = 4. This layer is shown in
Fig. 2a as C4-384. The input video frames were corrupted
with noise ηf ∈ <100×150×3 from an uniform distribution
U(0, 1). This noise varied with intensity ηi ∈ [0, 0.6] during
training, according to an uniform distribution U(0, 1). A
sample of reconstructed images (test set) rendered by the
CAE model are shown in Fig. 3a. In this illustration, a small
blurring effect is observed in reconstructed images due to the
L1-loss. Nonetheless, most of the image details are correctly
reproduced using the adversarial framework.

B. Encoder-LSTM Network Model: Force Estimation

The Encoder-LSTM model was investigated using the
three types of input data depicted in Fig. 1. This results
in cases A, B and C, in which the model process raw,
space-time and full-processed frames, respectively. In all
cases, the Encoder-LSTM model was trained end-to-end,
using Adam as optimizer and the loss function in (8) with
the hyper-parameters λRMSE = 1.0 and λGDL = 0.20.
The parameters of Encvideo were initialized from the UL
stage, while the parameters of Enctool and ΦLSTM were
initialized from scratch (see Fig. 2b for reference). Dropout
was applied to the LSTM-CIFG model with probability of
P = 0.25 as shown in Fig. 2c. The models studied in the
cases A, B and C, were optimized starting with a learning
rate (exponential decay applied) of 1 × 10−3, 5 × 10−4,
and 5 × 10−4, completing over 86K (∼93), 109K (∼94),
and 128K (∼160) iterations (hours), respectively. A fourth
experiment was added to evaluate the impact of the GDL
in the loss function (8) by setting, λRMSE = 1.0 and
λGDL = 0.0. This results in case D, in which the model

TABLE II: Estimated force signal quality for each case
studied (best values are highlighted in bold).

CASE† ESTIMATED FORCE COMPONENTS
fx fy fz τx τy τz

Pearson Correlation Coefficient (PCC)
A 0.1598 0.0370 0.1570 0.1435 0.1916 0.0899
B 0.1978 0.1457 0.1211 0.0540 0.1853 0.1045
C 0.2487 0.2328 0.8084 0.1839 0.5131 0.0585
D 0.2294 0.1097 0.7190 0.1392 0.0486 0.0723

Root Mean Squared Error (RMSE)
Units N Nm

A 0.0615 0.0593 1.2825 0.1456 0.1577 0.0160
B 0.0553 0.0397 1.3439 0.1401 0.1589 0.0120
C 0.0562 0.0406 0.8929 0.1232 0.1332 0.0118
D 0.0630 0.0436 1.0099 0.1373 0.1639 0.0133

† The models studied in cases A, B and C process raw, space-time
and full-processed frames, respectively. The RMSE and GDL are
considered in the loss function. In case D, the model takes as input
the full-processed frames and only considers the RMSE in the loss
function.

takes full-processed frames as input data (as in case C).
However, the model studied in case D was optimized over
95K iterations (∼120 hours) with a learning rate of 9×10−4

and a dropout probability of P = 0.30.
The estimated force signal quality (test set) measured by

the Pearson Correlation Coefficient (PCC) and Root Mean
Squared Error (RMSE), for each case (A-D), is presented
in Table II. These results suggest that the Encoder-LSTM
model has difficulties in learning from raw (case A) and
space-time (case B) frames. This problem is alleviated by
explicitly providing the Encoder-LSTM model information
about the interaction between the surgical instrument and
soft-tissues. Such information is emphasized in the model
investigated in case C by using raw frames processed with
mean normalization and space-time transformation. Nonethe-
less, other techniques with similar objective can potentially



work. For instance, the use of optical flow or an attention
model. By inspecting some of the feature map activations in
the encoder network during the training stage, as depicted
in Fig. 3b, it is possible to understand how difficult is to
process raw and space-time frames. This illustration reveals
that meaningful information, specifically motion due to tool-
tissue interactions, is only propagated through the encoder
network layers when this model is fed with full-processed
frames (see bottom row in Fig. 3b). Regarding the loss
function design, by comparing cases C and D, it is clear
that using the GDL in the loss function provides advantages
in the learning process. This result indicates that the RMSE
and GDL ease the modeling of smooth and sharp details
found in force signals, respectively.

It is important to notice that the interaction forces reported
in the experiments are mainly transmitted along the surgical
instrument shaft while performing pushing actions. During
data acquisition, the z-axis of the force sensor was aligned
with the surgical tool shaft (see Fig. 3c for reference).
Therefore, in Table II, the PCC and RMSE values attributed
to the estimated force fz are the most representative. The
quality of this force component, which corresponds to case C,
is shown in Fig. 4b by plotting the estimated vs the ground-
truth data samples. For the same case, a sample of force
signals computed over time by the Encoder-LSTM model is
presented in Fig. 4a. In this illustration, the amplitude of the
estimated force fz differs (at some points over time) with
respect to ground-truth data. However, its shape is almost
completely recovered. The rest of forces and torques have
smaller values as a result of the pushing actions.

An insight from the proposed approach is that the LSTM-
CIFG network is performing a time series estimation from a
latent (Zt ∈ <4160) to a force data space (F̂t ∈ <6). From
that perspective, the initial samples estimated by this network
should have a large error. However, Fig. 4a shows that such
samples are close to the ground-truth data (i.e. see the force
component fz). This result can be explained by the initial
state of the tool in the recorded dataset. That is, the tool is
not in contact with soft-tissues, and therefore, the force close
to zero.

The force sensing accuracy, usually measured with the
RMSE, is reported to fall below 0.1 N, both in prototyped
sensors [25] and in those developed under a vision-based
approach [9]. In terms of this metric, the proposed model
needs to be improved for real operational purposes (see the
RMSE reported for fz corresponding to case C in Table II).

IV. CONCLUSIONS

In this work, a VBFS model designed in a SSL setting
has been investigated. The results from the UL stage, suggest
(qualitatively) that the CAE model designed in an adversarial
framework, provides reconstructed images with sharp details
(Fig. 3a). However, some difficulties appear in the learning
process during the SL stage, when the encoder network of the
CAE is serially connected with the LSTM-CIFG network.
The encoder network, used as a feature vector extractor,

Fig. 4: (a) Estimated force signals over time for a pushing
action. The amplitude of these signals is shown in force (N)
and torque units (Nm). (b) Estimated vs ground-truth force
data (in Newtons) related to the fz component. The ideal line
fitting the data samples (circles colored in blue) is shown
in dotted style and black color. The best fitting line with a
correlation coefficient of R = 0.8084, is depicted in solid
style and magenta color.

has difficulties in finding a good representation of raw and
space-time frames, useful for its processing by the LSTM-
CIFG network. The best results are obtained when raw
frames are processed with mean normalization and space-
time transformation. Therefore, this suggests the importance
of providing the neural network with information about the
motion that results from the interaction between the surgical
tool and soft-tissues. Additionally, in the SL stage, a loss
function that considers the distance between ground-truth
and estimated force (i.e. using the RMSE) is not enough
to provide force estimates with good quality. By taking into
account the distance between the gradients of ground-truth
and estimated force (i.e using the GDL), the quality of
force estimates is improved. As future work, three research



directions can be explored to improve the accuracy of the
proposed approach. First, the use of depth information could
help to reduce the gap between the amplitude of ground-
truth and estimated force signals, i.e. using a method such
as [26]. Second, an attention model [27] would allow to
automatically process those image regions that contribute to
the force. Finally, the proposed model is to be improved by
interpreting its predictions with methods such as layer-wise
relevance propagation [28], [29].
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