
Active Object Perceiver: Recognition-guided Policy Learning for Object
Searching on Mobile Robots

Xin Ye1, Zhe Lin2, Haoxiang Li3, Shibin Zheng1, Yezhou Yang1

Abstract— We study the problem of learning a navigation
policy for a robot to actively search for an object of interest
in an indoor environment solely from its visual inputs. While
scene-driven visual navigation has been widely studied, prior
efforts on learning navigation policies for robots to find objects
are limited. The problem is often more challenging than target
scene finding as the target objects can be very small in the
view and can be in an arbitrary pose. We approach the
problem from an active perceiver perspective, and propose a
novel framework that integrates a deep neural network based
object recognition module and a deep reinforcement learning
based action prediction mechanism. To validate our method,
we conduct experiments on both a simulation dataset (AI2-
THOR) and a real-world environment with a physical robot.
We further propose a new decaying reward function to learn the
control policy specific to the object searching task. Experimental
results validate the efficacy of our method, which outperforms
competing methods in both average trajectory length and
success rate.

I. INTRODUCTION

Developing an autonomous mobile robot which can re-
liably search, locate and reach an arbitrary object in an
indoor environment is both fascinating and extremely chal-
lenging which motivates multi-disciplinary research ideas
across robotics, computational perception, machine learning.
In practice, a solution to this task will have a wide range
of robotics applications, such as an assistant robot to search
for survivors from an unknown disastrous environment for
the first responders, or an elderly care-giving robot to locate
and/or retrieve objects of interest for its clients. Solving this
challenge has the potential to kick off the next phase of our
human life style revolution that aims to increase people’s
living standard and enrich people’s everyday life.

We fully acknowledge that studies approaching the prob-
lem have a long history. Tracing back to the 1970s and 1980s,
when the concept coined as the “active perception” was
widely explored, this “robot with vision that finds object”
task was one of the major motivating tasks to show that
“vision is active” [1]. As stated in a recent survey article
[2], two primary aspects of “active perception” are 1) from
intelligent control point of view, it is about intelligent control
strategies applied to the perception process [3], and 2) from
computational perception point of view, it is about manipu-
lating the perception constraints to improve the quality of

1 Xin Ye, Shibin Zheng and Yezhou Yang are with the Active Perception
Group at the School of Computing, Informatics, and Decision Systems En-
gineering, Arizona State University, Tempe, AZ, USA, Email: {xinye1,
szheng31, yz.yang}@asu.edu

2 Zhe Lin is with Adobe Systems, Inc. San Jose, CA, USA, Email:
zlin@adobe.com

3 Haoxiang Li is with Aibee. Email: hxli@aibee.com

Fig. 1: An illustration of the “Robot with vision that finds
objects” task. Red dot: the random initial location; White line
and arrow: the generated robot trajectory from our turtle-bot
experiment; Upper left image: the final view of the robot
with the target object detection (the target object in this
experiment is “shear”.)

the perceptual outputs [4]. These two aspects reflect two
essential sub-tasks, object recognition and robot navigation,
for enabling active object searching on mobile robots.

With the coherent and organic unity in mind, from 1970s
to early 2010s, we observed the two research areas, i.e. object
recognition and robot navigation, are explored relatively
independently and tremendous progress has been made in
both tasks with novel computational models and algorithms.

More recently, with the re-emergence of neural networks
and deep learning, we witnessed significant breakthroughs
in object recognition [5], [6], and robotic motor control [7]
with powerful convolutional neural networks and reinforce-
ment learning algorithms. More importantly, the “commu-
nication barrier” between the two research areas starts to
fade due to convergence of solutions in both tasks onto deep
neural networks based models. This motivates us to explore
a unified embodiment of yet another “active perceiver” and
re-visit the task of “robot with vision that finds object”. A
special case in this task, “robot with vision that finds a
specific visual scene”, has been recently introduced in [8]
based on joint modeling of image matching and navigation
policy learning. Inspired by this work, in this paper, we
attempt to move a step further to develop a joint model of
object recognition and navigation policy learning to approach
the general “robot with vision that finds object” task. Our
object searching task is more challenging than the scene
search task as the object can be very small, located in any
location with an arbitrary pose.

ar
X

iv
:1

80
7.

11
17

4v
1

 [
cs

.A
I]

 3
0

Ju
l 2

01
8

To study the aforementioned task, we collect a simulation
dataset and a real-world dataset as benchmarks for training
and evaluation. The simulation dataset is based on the
recent AI2-THOR challenge platform [9] which provides a
simulation environment as a testbed. However, the challenge
is designed for the aforementioned special case: “robot with
vision that finds a specific visual scene”. To further augment
the dataset to test the general task of “robot with vision
that finds object”, we further supplement the benchmarking
platform with objective annotations. A real-world dataset is
collected with a real turtle-bot in a conference room at an
office building with multiple, scattered objects. We intend to
make both the augmented AI2-THOR data as well as the new
real world dataset publicly available for follow-up research.

We summarize our contributions in three-fold: 1) we
propose a new framework seamlessly integrating a deep
neural network based object recognition module with a deep
reinforcement learning based visual navigation module to
learn for recognition-guided action policy learning; 2) we
conduct experiments with a variety of reward functions and
propose a new decaying reward accumulation scheme which
yields the best performance; 3) we augment the AI2-THOR
simulation platform with object bounding box labels and
collect a new real world dataset to benchmark to evaluate
our system and future research in this task.

II. RELATED WORK

Object recognition: Object recognition and detection has
been extensively studied during the past few years with deep
learning approaches. One of the most popular methods are
region proposal based, such as Fast R-CNN [10] and Faster
R-CNN [11]. These methods first generate multiple object
proposals from the original image, then the features of these
proposals are extracted to perform object classification and
bounding box regression. YOLO [12] is the other kind of
approach to do object detection. It adopts a single neural
network to predict both bounding boxes and class prob-
abilities from images without proposal generation. Some
improvements to YOLO are also proposed by the authors
in [6]. We also adopt a deep neural network based object
recognition module as the guidance to our policy learning
module, but different from those existing works, we feed an
image of the target object as another network input (along
with the current robot view) and train a class-agnostic object
detector. We will later show the details of the module and
explain why our module fits smoothly in the overall policy
learning framework in Sec. III-B.

Target-driven visual navigation: Among the approaches
to vision-guided navigation policy learning, recently, [8]
proposed a promising approach to tackle the problem of
having robots match a given target scene solely based on
visual inputs in indoor environments. They adopted deep
reinforcement learning to learn the relationship between the
current state (from camera input) and the actions that need
to be taken to achieve the final goal (match a specific
scene). In order to generalize this approach to different
targets and scenes, they took the target state as the input and

adopted scene-specific layers in the model. Building upon the
first model, [13] proposed several incremental extensions,
whereas the extensions has limited contribution to better
visual navigation performance.

SLAM supported object recognition: [14] proposed
a method to integrate object recognition, and simultaneous
localization and mapping (SLAM) together into a unified
framework, and experimentally showed that with the SLAM
supported algorithm, the robot is able to recognize objects
better. Instead of studying robot navigation to assist object
recognition, we aim to leverage recognition as a guidance to
help navigation, and object searching and reaching.

Limitations of the previous work and our take: The
final target of the robot to find in both [8] and [13] denotes
a specific scene image, and the goal of the robot is to
navigate to reach the location where the target image was
taken. In such a scenario, the users must have access to
the specific image, or have taken this image by themselves,
which significantly limits the potential application of these
methods. In this paper, we move a step further and tackle the
task of learning policies for robots to allow object searching
and reaching. Thus, the target image the user provides will
only depict an instance of the object (i.e. an image of the
object downloaded from web or an image of an object
captured with a mobile camera), not exactly the object in
the scene with the environment. Moreover, the robot is asked
to detect the bounding box of the specified object in its
viewpoint with a certain size to accomplish the task (Fig. 1
depicts the overall general task).

III. OUR APPROACH

A. Problem Formulation

Our general idea is to learn action policies for an active
agent (mobile robot) to locate a user-specified target object
in indoor environments using only visual inputs (here, we
assume a single stream image sequences from an on-board
camera mounted in a robot). The target object is specified as
an RGB image of the object which contains no contextual in-
formation. With the learned policies, when the user provides
the robot an image of a target object, the robot is expected to
take a relatively small number of steps to approach the target
object from its random starting position. Moreover, the robot
is expected to return a bounding box of the target object in
its viewpoint (as shown in Fig 1).

Specifically, we propose a new deep reinforcement
learning-based framework which integrates two basic mod-
ules: 1) an object recognition module trained to detect any
given object in its viewpoint; and 2) a sequential decision
making model guiding the robot to make action decisions
at each time step and location to approach the target object.
The input to the sequential decision making model includes
the current visual observation captured by its camera, the
target object image a user provides and the object location
in the current observation (if any) that is detected by the
object recognition module. We will describe the two modules
respectively in the following sections.

B. Object Recognition Module with Target Object Given

A standard object detection process typically consists of
two steps: 1) detect the candidate regions of objects in an
image; and 2) predict a class label to each region (a bounding
box representation is typically used). However, under the
active perceiver setting, the target object is given, and the
object recognition module only needs to detect whether the
specific object exists in the current range of view at any
time step. Following this observation, we adopt a deep neural
network that simply takes the target object image as the first
input, along with the whole image of robot’s current view as
the second input, to predict the bounding box coordinates of
the target object in the current view if there is one. Fig. 2
shows an illustration of the proposed network architecture.
To train such a network, we minimize the loss function as
defined in Eq. 1. We present the details in the following.

Fig. 2: The architecture of the object recognition network.

Network architecture: As shown in Fig. 2, the module
takes both the current view (one full image frame) and the
target object image and feed them into a shared, ResNet-
50 network [15] to extract the 1024 dimensional features
at the output of the res4f layer for both inputs. Here, we
take the pre-trained ResNet model (trained on ImageNet)
and fix them during our subsequent training and testing
pipelines. A fully-connected layer is attached after each of
the 1024 dimensional feature inputs and projects each of
them down into a 512 dimensional vector. The two 512
dimensional vectors are then concatenated and aggregated
into a 512 dimensional joint vector by an additional fully-
connected layer. Finally, we feed the 512 dimensional joint
vector into a classification layer and a regression layer, each
of which includes another two fully-connected layers. The
classification layer is designed to predict whether the target
object appears in the input whole image or not, and the
regression layer is designed to predict the 4 parameters of the
target object bounding box, i.e. the center coordinate (x, y),
the width w and the height h of the bounding box.

Loss function: Eq. 1 shows the loss function we design
for the object recognition module.

L =
∑
i

−
[
p∗i log(pi) + (1− p∗i)log(1− pi)

]
+ λ

∑
i

1obji ‖bi − b∗
i ‖22

(1)

The first term denotes the cross-entropy loss for binary
classification, where p∗i is the ground-truth label of the ith
image and its value equals to 1 if the object appears in the
image, and 0 if it doesn’t. pi is the predicted probability of
the object appears in the image i that is the output from
the previous classification layer. The second term in the
loss function is the L2 loss between ground truth bounding
box coordinates b∗i and that predicted coordinates bi, where
bi = (xi, yi, wi, hi) (likewise for b∗i). 1obji is an indicator
function indicates that if the object is in the image i. In
this formulation, the regression loss will only be activated
when the target object is detected in the current view. λ is
the weight factor that balances between these two losses.
In practice we found a weight value of 0.5 works well, so
we fix it throughout all our reported experiments. The object
recognition network is trained by minimizing the overall loss
function with the standard stochastic gradient decent (SGD)
optimization.

C. Recognition-guided Action Policy Learning

With the object recognition module, the task is to make a
decision on which action is the best to take given the current
robot state. Here, we build upon a basic deep reinforcement
learning based framework similar to [8], in order to learn a
mapping from the state space to the action space with the
guidance from the recognition module.

In general reinforcement learning setting, robot learns the
optimal action policy through trail and error interactions with
the environment. Specifically, at each time step, the robot
takes an action to transit its current state to a new state, and
receives a scalar reward as the feedback. The robot stops
either it reaches the goal state or it runs out of the maximum
number of steps. The optimal action policy is learned by
maximizing the expected cumulative reward. Here, we adopt
a deep neural network to approximate the policy function.
We elaborate these key ingredients, as known as robot states,
action space, network architecture and reward function under
our active perceiver setting.

Robot states: Since we aim to handle an unknown indoor
environment, the system is not able to access a global map
and neither can it locate itself using odometers. The RGB
image stream captured by the robot’s camera is thus the only
source of information that encodes the robot’s current state.
Since the goal of the robot is to find the target object, we
define goal states as those ones captured when the robot’s
current view contains a bounding box of the target object.
At the same time, the size of the bounding box needs to be
larger than a predefined threshold to determine a success.
In practice, we found the size of the fifth largest bounding
box (among all the ground-truth bounding box instances) is a
reasonable threshold, and it yields 5 goal states (top 5 images
with the largest target object detected).

Action space: To constrain the number of possible robot
states and allow off-line batch learning, we consider the robot
actions as the set of discrete movements in the physical
searching space. In practice, the robot action space has eight
different ones that can be categorized into: 1) Translation

forward, backward, left or right with a fixed distance; 2) Tilt
the mounted camera up or down with a fixed angle to adjust
the current view; 3) Rotate left or right with π

2 angle to alter
the frontal direction of the robot.

Network architecture: Fig. 3 depicts the architecture of
our proposed deep reinforcement learning-based model for
the general active perceiver task. The model takes both the
observed visual view and the target object image as the
inputs. Then the scene-specific layer is used to predict the
action policy for each scene. As suggested by [8], such
a network model has a good generalization ability across
different targets and scenes. Our model does not share the
weights between the two fully connected layers when fusing
the target and input streams. One primary motivation for this
is that under the general active perceiver setting, the input
image of the target object could come from very different
domains from the object observed in the scene image so that
it can’t be projected to the same embedding space as the
observation image. In addition, we further feed the object
location information generated from the object recognition
module into the embedding fusion layer. Here, the object
location information is encoded as a 5 by 5 binary image
that specify the object’s location. We follow the same training
protocol described from [8] to train this model.

Fig. 3: The deep reinforcement learning architecture.

Reward function: Most reinforcement learning problems
adopt a straight-forward reward function design, which is to
give a positive reward at goal states, and a fixed negative or
zero rewards at all other intermediate states, (such as the one
suggested in [8]). However, these reward functions usually
require an extra care being taken on the exploit-exploration
trade-off. More specifically, when the training process is
trapped in a local optimum action policy, allowing more
exploration to find more globally optimal policy usually leads
to a slower convergence since more steps will be wasted
by visiting many meaningless states. In the general active
perceiver problem setting, due to the step limitation of the
training episodes, the goal state may never be reached due
to the low exploration rate, or the optimal policy may not
converge when training is over.

Here, we design a more sophisticated reward function

tailored for our task. It will improve the convergence rate
in our problem greatly, but also can potentially generalize to
other reinforcement learning tasks as it resists to local optima
as shown in the experiments.

For each state, we define the reward as the size (the area)
of the detected bounding box that contains the target object,
if there is one. For all states where the robot cannot detect
the object, we set the reward to zero. Since there might exist
many states where the robot can detect a bounding box with
a smaller-than-the-threshold size, and these states tend to
be next to each other in the exploration process, the robot
can easily stuck between these states, since moving back
and forth between them will always yield positive rewards.
In order to encourage the robot to keep searching states
with possibly larger detected bounding boxes, we further set
reward as zero to a state, if at this state the robot do detect a
bounding box but the size of it is smaller than the bounding
boxes that have been detected earlier in one episode. In other
words, our proposed reward function keeps the records of
the largest box size in the current episode and accumulates
discounted rewards in an incremental way with respect to
the records.

More formally, consider a0, a1, ..., as where ai(0 ≤ i ≤
s) ≥ 0 are the areas of the bounding boxes the robot have
seen during one episode, the total reward for this episode is
set to be:

Reward = γi1ai1 + γi2ai2 + ...+ γitait , (2)

where ai1 < ai2 < ... < ait(i1 < i2 < ... < it), and γ
denotes the discount factor for the penalty over time. The
rationale supporting this design is that this reward function
encourages more exploration only around these aforemen-
tioned and potential trapping states, instead of having a
higher uniform exploration rate across the whole state space,
regardless of whether these states being worth exploring or
not. In this way, we can achieve both faster convergence and
more meaningful exploration paths at the same time, and
experimental results we observed validates the effectiveness
of our setting.

IV. EXPERIMENTS

We evaluated our framework in both simulation and real
environments. In the simulated environment, we set up a
variety of experiments with multiple target objects in four
indoor scenes. We further implement our framework on
a real mobile robot platform (a turtle-bot with a pan-tilt
camera) and demonstrate its efficacy in a real indoor scene
(a conference room) in finding the target objects.

A. Dataset

In this section, we describe our datasets for our empirical
evaluation in both simulation and real world scenario.

Simulation platform is adopted from the THOR Chal-
lenge platform 1. This platform provides 30 photo-realistic

1http://vuchallenge.org/thor.html

indoor scenes (15 kitchens and 15 living rooms) from AI2-
THOR dataset [9] for training (20 scenes) and validat-
ing (10 scenes) autonomous robotic systems to navigate
and search for objects in these virtual environments. The
available actions for the robot are predefined as 8 discrete
actions, namely MoveAhead, MoveRight, MoveLeft,
MoveBack, LookUp, LookDown, RotateRight and
RotateLeft. Following the simulation setting, each virtual
scene can be discretized into a set of images taken from
each robot state, and the whole set of images characterize
the overall state space of the robot. Moreover, the platform
also provides a set of target images for each scene. These
target images contain only objects without any background,
which can well-support our experiments.

In order to train the object recognition module, we need
to further augment the data with annotated object bounding
boxes. Without the loss of generality, we select 4 scenes
randomly and for each scene we retrieve all images from
every robot state. We further select 4 objects that can be
found in the scene and take their target images as the input
target images to our system. Finally, we manually labeled the
bounding box for each target object in each scene image, and
treat them as the ground-truth bounding boxes in training our
object recognition module. We adopted the standard cross-
validation mechanism to mitigate the risk of over-fitting.

(a) Sample testing images and corresponding loca-
tions on the map.

(b) Sample training images taken from another room.

Fig. 4: Sample testing and training images from our real
world dataset.

Real world scenario: we equipped a turtle-bot with
a pan/tilt camera to conduct the experiment. The action
set available for the turtle-bot consists of, MoveAhead,
MoveBack, RotateLeft, RotateRight, LookUp, and
LookDown (pan/tilt camera). We discretized the scene space
(which is a conference room) into 27 locations. At each
location, the robot takes 8 RGB images with its pan/tilt
camera (turn left/right, look up/down). This leads to a total
of 216 RGB images for our experiment, representing all
possible states of the turtle-bot in this real world scenario.

For the objects presented in the scene, we collected another
group of 150 images each for training the object recognition
module. In testing, we set the turtle-bot at a random starting
location in the conference room, and search for a given object
with the trained model. Fig. 4 shows a few sample testing
and training data.

B. Experimental Results

TABLE I reports the performance of different methods in
finishing our tasks. We designed four tasks as following.

1) Locate 1 object in 1 simulated scene. In order to test
if our proposed framework can successfully find the target
object or not in one scene, we first conduct this experiment.

2) Locate 4 objects in 1 simulated scenes. To validate the
generalization ability of our method to multiple objects and
avoid over-fitting to one specific target object, we train one
model to find any given one of 4 different objects.

3) Locate a total of 16 objects in 4 different simulated
scenes. To verify that the models have the generalization
ability across different scenes, we trained one model which
has 4 scene-specific branches as shown in Fig. 3 to learn 4
action policies for 4 scenes.

4) Turtle-bot experiment in a real world scenario. We
conduct an experiment using a turtle-bot to search for an
object in a real world scene (a conference room) to validate
the real-world efficacy of our method.

For each experimental setting, we compare our method
with the following baseline and variants to demonstrate the
superiority of our method. Note that we don’t compare our
method with the classical search algorithms, such as A∗,
depth-first or breadth-first search since we assume the global
map of the environment is unknown. The robot will simply
remain on the current state if the action it takes cause col-
lision. This non-deterministic transition characteristic makes
these deterministic algorithms unusable.

1) Random walk. In this baseline method, the robot
randomly takes an action from its available action set at each
state. We take this method as our baseline.

2) Reward function 1. We adopt our model architecture
but with a reward function different from the one defined
in [8] in training. The reward function is defined to give
a positive reward (10) at goal states, and a small negative
reward (−0.01) for all the other states.

3) Reward function 2. We trained our model with another
intuitive reward function. We define the reward as the area of
the object’s bounding box at each state, no matter if the size
of the current bounding box is smaller than the previous one.
This means that if a0, a1, ..., as where ai(0 ≤ i ≤ s) ≥ 0
are the areas of bounding boxes the robot have seen during
one episode, the total reward for this episode is a0 + γa1 +
...+ γsas and γ is the discount factor.

4) Our reward function with high exploration rate. We use
our reward function defined in Eq. 2 to train our model, with
a relatively high exploration rate.

5) Our reward function with a low exploration rate. We
reduce the exploration rate to train our model without any
other change compared to method 4).

TABLE I: The performance metrics of the different methods from the simulation and the real world experiments.

Experiment Scenario

Methods

Random Walk Reward Func. 1 Reward Func. 2 Our Reward Func. Our Reward Func.
(high exploration) (low exploration)

Avg. len. Suc. rate Avg. len. Suc. rate Avg. len. Suc. rate Avg. len. Suc. rate Avg. len. Suc. rate
1 object in 1 scene 2050.3 60.0% 2880.2 50.0% - 0% 1957.6 80.0% 52.9 100%
4 objects in 1 scene 1911.6 72.5% ∼ ∼ ∼ ∼ 1643.2 92.5% 30.1 75.0%
16 objects in 4 scenes 2057.6 84.3% ∼ ∼ ∼ ∼ 1430.7 87.5% 593.0 75.0%
turtle-bot experiment 820.9 99.0% ∼ ∼ ∼ ∼ 176.8 100% 63.3 100%

(a) Bread (b) Mug (c) Apple (d) Plate

Fig. 5: Robot’s trajectory in finding each object. The smaller red dots denote the discrete scene space, and the bigger dots
with different colors denote the goal states for different target objects. Here we only show the top-down view of the 2
dimensional trajectories, omitting the orientations and the pan/tilt actions.

TABLE II: Model performance for each target object for the
4 objects in 1 scene setting.

Target Object High Exploration Rate Low Exploration Rate
Avg. len. Suc. rate Avg. len. Suc. rate

Bread 2566.1 80% 52.9 100%
Mug 1426.8 100% 36.8 100%
Plate 1114.5 100% - 0%
Apple 2366.6 90% 30.8 100%

After the model is trained, it takes about 0.5 seconds (on an
Nvidia GeForce GTX 1080 Ti machine) to feed forward our
object recognition network and deep reinforcement learning
network to generate an action at each state. We report the
performance of all methods with two metrics, namely the
average number of actions that need to be taken to find the
target object (also known as the average trajectory length),
and the success rate of the robot finally finds the target object.
For a fair comparison, for each target object, we randomly
initialize the robot’s starting position and run each method
for 10 episodes. An episode ends when the robot finds the
target object or it has already taken 5000 steps (and it
claims a failure). Only when the robot finds the target object
successfully, we count the episode as a successful trail, and
the corresponding trajectory length will then contribute to the
average trajectory length metric. “-” indicates the model does
not converge or during testing the robot is trapped in sub-
optimal states for good. Here we want to mention a caveat:
because both the reward function 1 and 2 do not perform
well even on the 1 object 1 scene scenario and due to the
limited computing resource we have, we did not test them
for the other three scenarios (we use “∼” in the table).

We observed that: 1) trained model based on our proposed
reward function outperforms other baseline methods with a
significant margin (less steps to find the target object with
a higher success rate; 2) our experiments show that reward
function 1 and 2’s performances are worse than random walk,
or can not converge (see Fig. 6), which indicates they are not

Fig. 6: Illustration of the average trajectory length profiles.
Using the reward function 1 from [8] and reward function 2
the model is not able to converge.

suitable for the general “robot with vision that finds object”
task; 3) model trained with multiple objects and multiple
scenes outperforms the model trained on one object with
one scene, it partially reflects the generalization capability
of the system; and 4) our reward function is sensitive to
the exploration rate, which we will discuss in details in the
following section.

C. Analysis and Discussion

(a) Initial Entropy (b) After 10000 itera-
tions of training

(c) After 30000 itera-
tions of training

Fig. 7: Illustration of the evolution of the average entropy
over the action policy at each 2-d position for one testing
scene (a simulated kitchen environment). Higher entropy
with darker color coded corresponds to more random action
policy, and vice versa.

Generalizing over multiple objects and the role of
the exploration rate: we further analyze our method more
closely under the scenario of finding 4 objects in 1 scene. In
this case, our deep reinforcement learning model as shown
in Fig.3 needs only one scene-specific layer. Following the
training protocol, we assign 4 threads, each of which takes
one of the four target object images as an input and learns
the action policy to find the object. All threads keep a copy
of the global network and update the weights of the global
network per each episode.

We trained this model using our reward function with
either a high or a low exploration rate. In practice, we
add a negative entropy of the predicted action policy to the
loss function of our deep reinforcement learning model to
encourage exploration. We control the exploration rate by
changing the weight of this entropy item. Here, we set a
weight equals to 0.1 as a high exploration rate, and 0.01 as
a low exploration rate. During testing we observed that the
model with high exploration rate has long average trajectory
length but high success rate, while the low exploration rate
model has much shorter average trajectory, however the
success rate is relatively low.

To further analyze the performance, we list the two metrics
achieved for each object in TABLE II. It shows that with the
model of a high exploration rate, it is able to find all objects
from various random starting points, although the average
trajectory taken is longer. While under the low exploration
setting, the robot can find the three objects within almost
optimal amount of steps, but it fails to find the object “plate”
for all trails. To further discuss the observed experimental
results, we explore the scene and depict robot’s trajectory
generated by the model with low exploration rate in Fig. 5.
We find that the goal states of the other 3 objects are actually
close to each other in this scenario. Such a case may provide
the robot strong prior knowledge during the training process
that the target object is among these locations. As a result,
the robot would first go to check these locations, and with
low exploration rate, the robot would have a high chance to
stuck there. This observation indicates a trade-off between
the average trajectory length and the success rate, and setting
a proper exploration rate becomes critical.

Action policy learning: To further illustrate that our
action policy learning through the proposed system and
reward function design converges well, we show the average
entropy of the action policy at each 2-d position in Fig. 7.
Here we calculate the entropy as follows: Entropy(π) =
−
∑n
i=1 π(i)logπ(i), where π is the action policy (a belief

distribution over all possible actions (n here) to take given
the target object). After around 30000 iterations of training,
the figures show that our model converges well.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an active object perceiver
system to enable “robot with vision that finds object” that
features two novel improvements from previous ones: 1)
we proposed and implemented a object recognition-guided
policy learning mechanism through an integration of two

deep neural networks based architectures; 2) we put forward
a novel decaying reward function for the deep reinforce-
ment learning part, and augment the public available dataset
with new object-hood annotations. Experiments conducted
on both public AI2-THOR [9] platform and a new indoor
environment dataset (a conference room), in simulation and
on a physical robot executing the challenging object finding
task validated the proposed approach.

The study presented in this paper also opens several
avenues for future studies. First, an active perceiver also
relies on its memory unit to decide whether a state has been
visited. In such a case, further research on integrating an
explicit memory unit is needed. Moreover, humans bring
prior knowledge about the world to enable efficient decision
making. Especially for this object finding task, how to
incorporate both action policy learning through exploration
with structured forms of common-sense knowledge (such as
cup is more likely to be found on a table than on the floor)
requires an explicit knowledge distillation mechanism.

Acknowledgments. This work is partially supported by
NSF CAREER IIS-1750082 and a gift from Adobe. We
acknowledge NVIDIA for the donation of GPUs.

REFERENCES

[1] J. M. Tenenbaum, “Accommodation in computer vision.” Stanford
Univ Ca Dept of Computer Science, Tech. Rep., 1970.

[2] R. Bajcsy, Y. Aloimonos, and J. K. Tsotsos, “Revisiting active per-
ception,” Autonomous Robots, vol. 42, no. 2, pp. 177–196, 2018.

[3] R. Bajcsy, “Active perception,” Proceedings of the IEEE, vol. 76, no. 8,
pp. 966–1005, 1988.

[4] J. Aloimonos, I. Weiss, and A. Bandyopadhyay, “Active vision,”
International journal of computer vision, vol. 1, no. 4, pp. 333–356,
1988.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[6] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” arXiv
preprint arXiv:1612.08242, 2016.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[8] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” in Robotics and Automation (ICRA),
2017 IEEE International Conference on. IEEE, 2017, pp. 3357–
3364.

[9] E. Kolve, R. Mottaghi, D. Gordon, Y. Zhu, A. Gupta, and A. Farhadi,
“AI2-THOR: An Interactive 3D Environment for Visual AI,” arXiv,
2017.

[10] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440–1448.

[11] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” in Advances in
neural information processing systems, 2015, pp. 91–99.

[12] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
779–788.

[13] L.-H. Chen, M. P. S. Moorthy, P. Sharma, and P. Kawthekar, “Imi-
tating shortest paths for visual navigation with trajectory-aware deep
reinforcement learning.”

[14] S. Pillai and J. Leonard, “Monocular slam supported object recogni-
tion,” Robotics: Science and Systems XI, 2015.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

	I Introduction
	II Related Work
	III Our Approach
	III-A Problem Formulation
	III-B Object Recognition Module with Target Object Given
	III-C Recognition-guided Action Policy Learning

	IV Experiments
	IV-A Dataset
	IV-B Experimental Results
	IV-C Analysis and Discussion

	V Conclusion and Future Work
	References

