
Deeply Informed Neural Sampling for Robot Motion Planning

Ahmed H. Qureshi and Michael C. Yip

Abstract— Sampling-based Motion Planners (SMPs) have
become increasingly popular as they provide collision-free path
solutions regardless of obstacle geometry in a given envi-
ronment. However, their computational complexity increases
significantly with the dimensionality of the motion planning
problem. Adaptive sampling is one of the ways to speed up
SMPs by sampling a particular region of a configuration space
that is more likely to contain an optimal path solution. Although
there are a wide variety of algorithms for adaptive sampling,
they rely on hand-crafted heuristics; furthermore, their per-
formance decreases significantly in high-dimensional spaces. In
this paper, we present a neural network-based adaptive sam-
pler for motion planning called Deep Sampling-based Motion
Planner (DeepSMP). DeepSMP generates samples for SMPs
and enhances their overall speed significantly while exhibiting
efficient scalability to higher-dimensional problems. DeepSMP’s
neural architecture comprises of a Contractive AutoEncoder
which encodes given workspaces directly from a raw point
cloud data, and a Dropout-based stochastic deep feedforward
neural network which takes the workspace encoding, start and
goal configuration, and iteratively generates feasible samples
for SMPs to compute end-to-end collision-free optimal paths.
DeepSMP is not only consistently computationally efficient
in all tested environments but has also shown remarkable
generalization to completely unseen environments. We evaluate
DeepSMP on multiple planning problems including planning
of a point-mass robot, rigid-body, 6-link robotic manipulator
in various 2D and 3D environments. The results show that on
average our method is at least 7 times faster in point-mass and
rigid-body case and about 28 times faster in 6-link robot case
than the existing state-of-the-art.

I. INTRODUCTION

Sampling-based Motion Planners (SMPs) have emerged
as a promising framework for solving high-dimensional,
constrained motion planning problems [1] [2]. SMPs ensure
probabilistic completeness, which implies that a probability
of finding a feasible path solution, if one exists, approaches
to one as the limit of the number of randomly drawn
samples from an obstacle-free space increases to infinity
[2]. However, despite their ability to compute motion plans
irrespective of the obstacles geometry, these methods exhibit
slow convergence to computing path solutions due to their
reliance on the extensive exploration of a given obstacle-
free configuration space [3] [4]. Recent research shows that
biasing a sample distribution towards the region with high
probability of finding a path solution can considerably en-
hance the performance of classical single-query SMPs such
as RRT and RRT* [3]. To the best of our knowledge, there
does not exist any effective and reliable solution that uses
the knowledge from the past planning problems to bias the

A. H. Qureshi and M. C. Yip are with Department of Electrical and
Computer Engineering, University of California San Diego, La Jolla, CA
92093 USA. {a1qureshi, yip}@ucsd.edu

sample distributions towards the region of the configuration
space containing an optimal path solution.

In this paper, we propose a neural network-based adap-
tive sampler that generates samples in particular regions
of a configuration space where there is likely to exist an
optimal path solution. Our method consists of two neural
models, i.e., an obstacle-space encoder and random samples
generator. We use a Contractive AutoEncoder (CAE) [5] for
the encoding of an obstacle-space into an invariant, robust
feature space. A samples generator that comprises a Dropout-
based [6] stochastic Deep Neural Network (DNN) that takes
the obstacle-space encoding, start and goal configuration as
an input, and generates samples distributing over the region
of configuration space containing the path solutions. We
evaluate our method on various complex motion planning
tasks such as planning of a rigid-body (piano-mover prob-
lem) and 6 degree-of-freedom (DOF) robotic arm (UR6),
and planning through narrow passages. We also benchmark
our method against existing biased-sampling based state-
of-the-art SMPs including Informed-RRT* [7] and Batch
Informed Trees (BIT*) [8]. The results show that our al-
gorithm generates samples that enable unbiased SMPs such
as RRT* to compute near-optimal paths in a considerably
lesser computational time than BIT* and Informed-RRT*.

II. RELATED WORK

Many biased-sampling heuristics have been proposed to
enhance the computational speed of RRT [1] and its variants.
For instance, Rickert et al. [9] used gradient information to
balance exploration and exploitation. Urmson and Simmons
method [10] heuristically biased samples in RRT while
Ferguson and Stentz [11] presented the anytime RRT algo-
rithm by using multiple independent RRTs. Although these
methods are useful, they lack asymptotic optimality due to
the underlying RRT algorithm.

RRT* [2] extends RRTs to guarantee asymptotic optimal-
ity by incrementally rewiring the RRT graph connections
such that the shortest path is asymptotically guaranteed [2].
However, to determine an ε-near optimal path in d ∈ N
dimensions, roughly O(1/εd) samples are required, which
makes RRT* no better than grid search methods [12].
Likewise, experiments in [3] [7] also confirmed that RRT*
exhibits slow convergence rates to optimal path solution in
higher-dimensional spaces. The following sections discusses
various existing biased/adaptive sampling methods to speed
up the convergence rate of SMPs to compute optimal/near-
optimal path solution.

ar
X

iv
:1

80
9.

10
25

2v
1

 [
cs

.R
O

]
 2

6
Se

p
20

18

A. Adaptive Sampling Methods

Gammell et al. [7] proposed the Informed-RRT* algorithm
which takes an initial solution from RRT* algorithm to
define an ellipsoidal region from which new samples are
drawn to minimize the initial solution for a given cost
function. Although Informed-RRT* demonstrated enhanced
convergence towards an optimal solution, this method suffers
in situations where finding an initial path solution takes most
of the computation time. To address this limitation, Gammell
et al. proposed Batch Informed Trees (BIT*) [8]. BIT* is
an incremental graph search technique where an ellipsoidal
subset, containing configurations to update the graph, is
incrementally enlarged. BIT* is shown empirically to out-
perform prior methods such as RRT* and Informed-RRT*.
However, confining a graph search to ellipsoidal region slows
down the performance of an algorithm in maze-like scenarios
especially where the start and goal configurations are very
close to each other, but the path among them traverses a
complicated maze stretching waypoints far away from the
goal. Furthermore, such a method would not translate to non-
stationary environments or unseen environments.

B. Learning-based Search Methods

Many approaches exist that use learning to improve
classical SMPs computationally. A recent method called a
Lightning Framework [13] stored paths into a lookup table
and used a learned heuristic to write new paths as well as
to read and repair old paths. Another similar framework by
Coleman et al. [14] is an experience-based strategy to cache
experiences in a graph instead of individual trajectories.
Although these approaches exhibit superior performance in
higher-dimensional spaces when compared to conventional
planning methods, lookup tables are memory inefficient and
incapable of generalizing well to new planning problems.
Zucker et al. [15] proposed a reinforcement learning-based
method to bias samples in discretized workspaces. However,
reinforcement learning-based approaches are known for their
slow convergence as they require a large number of interac-
tive experiences.

III. PROBLEM DEFINITION

This section presents the notations we will be using in
this paper, along with the definitions of fundamental motion
planning problems addressed by our work.

Let S be a list of finite length N ∈ N then Si is a
mapping from a given index i ∈ N to an element of S at
i-th index. For algorithms described in our paper, S0 and
ST corresponds to the initial and last elements of a list,
respectively. Let a given state space be denoted as X ⊂ Rd,
where d ∈ N≥2 denotes the dimension of a state space.
The collision and collision-free state spaces are denoted
as Xobs ⊂ X and Xfree = X\Xobs, respectively. Let the
initial state and goal region be represented as xinit ∈ Xfree

and Xgoal ⊂ Xfree, respectively. Let a trajectory be denoted
as a non-empty finite-length list σ : [0, T] ⊂ X . For a
given path planning problem, a trajectory σ is said to be
feasible if it connects xinit and x ∈ Xgoal, i.e. σ0 = xinit

and σT ∈ Xgoal, and a path formed by connecting all
consecutive states in σ lies entirely in the obstacle-free
space Xfree i.e.,

Problem 1 (Feasible Path Planning) Given a triplet
{X,Xfree, Xobs}, an initial state xinit and a goal region
Xgoal ⊂ Xfree, find a path σ : [0, T] → Xfree such that
σ0 = xinit and σT ∈ Xgoal.

Let a cost function c(·) computes a cost of a given
path σ in terms of a summation of Euclidean distances
between all the consecutive states in σ. Let a set of all
feasible path solutions to a given planning problem be
denoted as Π. The optimality problem of motion planning is
then to find the optimal, feasible, path solution σ∗ ∈ Π that
has a minimum cost among all other feasible path solutions
i.e.,

Problem 2 (Optimal Path Planning) Assuming that
multiple solutions to Problem 1 exists, find a path σ∗ ∈ Π
such that c(σ∗) = {minσ∈Πc(σ)}.

Let Ω ⊂ Xfree be a potential region containing optimal/near-
optimal path solution. The problem of adaptive sampling,
also known as biased sampling, is to generate collision-free
samples x ∈ Ω such that SMPs compute the optimal path
σ∗ in a least possible time t ∈ R. The problem of adaptive
sampling is formalized as follow.

Problem 3 (Adaptive Sampling) Given a planning
problem {xinit, Xgoal, X}, generate samples x ∈ Ω,
where Ω ⊂ Xfree, such that the sampling-based motion
planning methods compute optimal path solution σ∗ in a
least-possible time t ∈ R.

IV. INFORMED NEURAL SAMPLER

This section presents our novel informed neural sampling
algorithm called DeepSMP1. It comprises two neural mod-
ules. The first module is an autoencoder which learns an
invariant and robust feature space to embed a point cloud data
from obstacle space. The second module is a stochastic DNN
which takes obstacles encoding, start and goal configurations
to generate samples incrementally for SMPs during online
execution. Note that any SMP can utilize these informed
samples for rapid convergence to the optimal solution and
that the method works for unseen environments via the
obstacle space encoding. The following sections describe
both neural modules, online sample generation heuristic
called DeepSMP, dataset collection, and hyper-parameters
initialization.

A. Obstacle Encoding

A Contractive AutoEncoder (CAE) is used to learn a
latent-space embedding Z of a raw point cloud data xobs ⊂
Xobs (see Fig. 1 (a)). The encoder and decoder functions

1Supplementary material is available at sites.google.com/view/deepsmp

(a) Offline: CAE (b) Offline: DeepSampler (c) Online: Neural Sampling

Fig. 1: DeepSMP consists of two neural models, a Contractive AutoEncoder (CAE), and a stochastic deep feedforward
neural network (DeepSampler). These models are trained offline and are used to generate samples during online execution
incrementally.

of CAE are denoted as f(xobs;θ
e) and g(f(xobs);θ

d),
respectively, where θe and θd are parameters of their corre-
sponding approximating functions. CAE is trained through
unsupervised learning using the following objective function.

LCAE

(
θe,θd

)
=

1

Nobs

∑
x∈Dobs

||x−g(f(x))||2 +λ
∑
ij

(θeij)
2

(1)
where ||x − g(f(x))||2 is a reconstruction loss, and
λ
∑
ij(θ

e
ij)

2 is a regularization term with a coefficient λ.
Furthermore, Dobs contains a dataset of point clouds xobs ⊂
Xobs from Nobs ∈ N different workspaces. The regular-
ization term allows the feature space Z := f(xobs) to be
contractive in the neighborhood of the training data which
results in an invariant and robust feature learning [5].

1) Model Architecture: Since the decoding function
g(f(xobs)) is an inverse of encoding function f(xobs), we
present the architectural details of encoding unit only.

The encoding function consists of three fully-connected
linear hidden layers followed by an output linear layer. The
output from each hidden layer is passed through a Parametric
Rectified Linear Unit (PReLU) [16].

For 2D workspaces, the input point cloud is of size 1400×
2 where three hidden layers transform the inputs to 512,
256 and 128 units, respectively. The output layer takes 128
units and transforms them to latent space embedding Z of
size 28 units. The decoding function takes the latent space
embedding Z to reconstruct the raw point cloud data.

For 3D workspaces, the hidden layers 1, 2 and 3 transform
the input point cloud 1400× 3 to 786, 512, and 256 hidden
units, respectively. Finally, the output layer transforms the
256 units from preceding hidden layer to a latent space of
size 60 units.

B. Deep Sampler

Deep Sampler is a stochastic feedforward deep neural
network with parameters θ. It takes obstacles encoding Z,
robot state xt at step t, and goal state xT to produce a next

state x̂t+1 ∈ Xfree that would take a robot closer to the goal
region (see Fig. 1(b)) i.e.,

x̂t+1 = DeepSampler((xt, xT , Z);θ) (2)

We use RRT* [2] to produce near-optimal paths to train
DeepSMP. The training paths are in the form of a tuple
i.e., σ∗ = {x0, x1, · · · , xT }, such that the path formed by
connecting all following states in σ∗ is a feasible solution.
The training objective is to minimize mean-squared-error
(MSE) between the predicted states x̂t+1 and the actual states
xt+1 given by RRT*, i.e.,

LMSE(θ) =
1

Np

N̂∑
j

T−1∑
i=0

||x̂j,i+1 − xj,i+1||2, (3)

where Np ∈ N corresponds to the total number of paths N̂
times their path lengths.

1) Model Architecture: Deep Sampler is a twelve-layer
deep neural network where each hidden layer is a sandwich
of a linear layer, PReLU [16] and Dropout (p) [6] with
an exception of last hidden layer which does not contain
Dropout (p). The twelveth layer is an output layer which
takes hidden units from preceding layer and transforms them
to the desired output size which is equal to the dimension of
robot configurations. The configurations for the 2D point-
mass robot, 3D point-mass robot, rigid-body and 6 DOF
robot have dimensions 2, 3, 3 and 6 respectively. For all
presented problems, except planning of 6 DOF robot, the in-
put to Deep Sampler is given by concatenating the obstacles’
representation Z, robot’s current state xt and goal state xT .
For 6 DOF, we assume a single environment, therefore, the
input to Deep Sampler comprises of current state xt and goal
state xT only.

C. Online Execution of DeepSMP

During the online phase, we use our trained obstacle
encoder and DeepSampler to generate random samples for a

Algorithm 1: DeepSMP(xinit, xgoal,xobs)

1 Initialize SMP(xinit, xgoal, X)
2 xrand ← xinit

3 Z ← f(xobs)
4 for i← 0 to n do
5 if i < nlimit then
6 xrand ← DeepSampler

(
Z, xrand, xgoal

)
7 else
8 xrand ← RandomSampler()

9 σ ← SMP
(
xrand

)
10 if xrand ∈ Xgoal then
11 xrand ← xinit

12 if σT ∈ Xgoal then
13 return σ

14 return ∅

given SMP. Fig. 1 shows the flow of information between
encoder f(xobs) and DeepSampler. Algorithm 1 outlines
DeepSMP which combines our informed neural sampler with
any classical SMP such RRT*.

Algorithm 1 starts by initializing a given SMP (Line 1).
The obstacles encoder f(xobs) provides an encoding Z
of a raw point cloud data from Xobs (Line 3). DeepSMP
algorithm runs for n ∈ N iterations (Line 4). DeepSampler
incrementally generates samples between given start and goal
configurations until i < nlimit (Line 5-6), where nlimit < n.
Upon reaching a given goal configuration, DeepSampler is
executed again to produce samples from a given start con-
figuration to the goal configuration by re-initializing random
sample xrand to xinit (Lines 10-11). After nlimit iterations,
DeepSMP switches to random sampling (Line 7-8) to ensure
completeness guarantees of an underlying SMP. Note that σ
is a feasible path solution returned by SMP. The path σ is
continually optimized for a given cost function c(·) for a
given number of iteration n. Finally, after n iterations, a
feasible, optimized path solution σ, if one exists, is returned
as a solution to a given planning problem (Lines 12-13).

D. Data Collection

The data collection consists of creating a random set of
workspaces, sampling collision-free start and goal config-
urations in those workspaces, and generating paths using
a classical motion planner for every start and goal pair.
The following sections describe the procedure to create
workspaces, start and goal pairs, and near-optimal paths.

1) Workspaces: Many different 2D and 3D workspaces
were generated by randomly placing various quadrilateral
blocks without repetition in the operating region of 40× 40
and 40 × 40 × 40, respectively. Each random placement of
the obstacle blocks led to a different workspace.

2) Start and goal configuration: For each generated
workspace, a number of start and goal configurations were
sampled randomly from its obstacle-free space.

(a) n = 523, t = 0.96s (b) n = 418, t = 0.82s

Fig. 2: DeepSMP in simple 2D environments (s2D).

3) Near-optimal paths: Finally, for each generated start
and goal pair within all workspaces, a feasible, near-optimal
path was generated using the RRT* motion planner.

Complete dataset comprised 110 different workspaces for
the presented scenarios in the results section i.e., simple 2D
(s2D), complex 2D (c2D), complex 3D (c3D), and rigid-
body (rigid). The training dataset contained 100 workspaces
with 4000 training paths in every workspace. There were
two types of test datasets. The first test dataset comprised
already seen 100 workspaces with 200 unseen start and
goal configurations in each of the workspaces. The second
test dataset comprised entirely unseen 10 workspaces where
each contained 2000 unseen start and goal configurations.
For rigid-body case, the range of angular configuration was
scaled to the range of positional configurations, i.e., −20
to 20, for training and testing. In case of 6 DOF robot,
we consider only a single environment thus no environment
encoding is included, and only start and goal configurations
are sampled to collect example trajectories (50,000) from
collision-free space to train our feedforward neural network
(DeepSampler). The test scenario for 6 DOF robot is to
generate paths for unseen start and goal pairs.

E. Hyper-parameters

DeepSMP neural models were trained in mini-batches
using Adagrad [17] optimizer with a learning rate of 0.1.
CAE was trained on raw point cloud data from Nobs =
30, 000 different workspaces which were generated randomly
as described earlier. The regularization coefficient λ was set
to 10−3. For DeepSampler, Dropout probability p was kept
constant to 0.5 for both training and testing. The number
nlimit is set to the number of nodes in the longest path
available in the training data. For RRT*, gamma of ball-
radius was set to 1.6 whereas tree extension step sizes
for point-mass and rigid-body were kept at 0.01 and 0.9,
respectively. Finally for the 6-DOF robot, we use OMPL’s
RRT* and ROS with their default parameter settings for path
generation.

V. RESULTS

This section presents the results of DeepSMP for the mo-
tion planning of a point-mass robot, rigid-body, and Univer-
sal 6 DOF robot (UR6) in both 2D and 3D environments. All

(a) n = 821, t = 1.21s (b) n = 913, t = 0 = 1.32s (c) n = 1087, t = 1.48s (d) n = 785, t = 1.02s

Fig. 3: DeepSMP in complex 2D environments (c2D). The path and goal are indicated in red and blue colors, respectively.

(a) n = 521, t = 0.79s (b) n = 974, t = 1.32s

Fig. 4: DeepSMP generating samples in complex 3D envi-
ronments (c3D). The obstacles, indicated as blocks in beige
color, are made slightly transparent to display path profiles
behind them.

experiments were carried out on a computer with 3.40GHz×
8 Intel Core i7 processor with a 16 GB RAM and GeForce
GTX 1080 GPU. DeepSMP, implemented in PyTorch, was
compared against Informed-RRT* and BIT* implemented in
Python. In the following results, the datasets seen-Xobs and
unseen-Xobs comprised 100 workspaces seen by DeepSMP
during training and 10 workspaces not seen by DeepSMP
during training, respectively. Both test datasets seen-Xobs

and unseen-Xobs contained 200 and 2000 unseen start and
goal configurations, respectively, for every workspace. Note
that every combination of either seen or unseen environment
with unseen start and goal pair constitutes a new planning
problem, i.e., not seen by DeepSMP during training. For
each planning problem, we ran 20 trials of all presented
SMPs to calculate the mean computational time. Figs. 2-5
show different example scenarios named as simple 2D (s2D),
complex 2D (c2D), complex 3D (c3D) and rigid-body (rigid)
where DeepSMP with underling RRT* method is planning
motions. The mean computational time (in seconds) and
iterations took by DeepSMP for each scenario are denoted
as t and n, respectively.

Table I presents the mean computational time compari-
son of DeepSMP with an underlying RRT* SMP against
Informed-RRT* and BIT* for computing near-optimal paths
in different environments s2D, c2D, c3D and rigid. Note that,
unbiased RRT* method is not included in the comparison as

Fig. 5: DeepSMP computed optimal path for a rigid body in
1.12 seconds.

the computation time of RRT*, for computing near-optimal
paths, is much higher than all presented algorithms. We
report the mean (tmean), maximum (tmax), and minimum
(tmin) time taken by an algorithm in every environment. It
can be seen that in all test cases, the mean computation
time of DeepSMP:RRT* remained consistently around 2
seconds. However, the mean computation time of Informed-
RRT* and BIT* increases significantly as the dimensionality
of the planning problem increases slightly. Furthermore, the
rightmost column presents the ratio of mean computational
time of BIT* to DeepSMP, and it is observed that on average,
our method is at least 7 times faster than BIT*, the current
state-of-art motion planner.

From experiments presented so far, it is evident that BIT*
outperforms Informed-RRT*, therefore, in the following ex-
periments only DeepSMP and BIT* are compared. Fig. 6
compares the mean computation time of DeepSMP: RRT*
and BIT* in two test cases, i.e., seen-Xobs and unseen-
Xobs. It can be observed that the mean computation time of
DeepSMP stays around 2 seconds irrespective of the given
problem’s dimensionality. Furthermore, the mean computa-
tional time of BIT* not only fluctuates but also increases
significantly as the dimensionality of the planning problem
increases slightly. Finally, Fig. 7 shows DeepSMP planning
motions for a Universal 6-DOF robot. In Fig. 7 (a), the
robotic manipulator is at the start configuration whereas its

target configuration is symbolized as a shadowed region.
Fig. 7 (b) shows the traces of a path planned by DeepSMP
for the given start and goal pair. In this problem, the
mean computational times taken by DeepSMP and BIT* are
1.7 and 48.8 seconds, respectively, which makes DeepSMP
around 28 times faster than BIT*.

VI. DISCUSSION

A. Stochasticity through Dropout

Our stochastic feedforward DeepSampler uses Dropout [6]
in every layer except the last two layers during both offline
and online execution. Dropout is applied layer-wise to a
neural network, and it drops each unit in the hidden layer
with a probability p ∈ [0, 1]. In our models, the dropped
out units are indicated as dotted circles in Fig. 1. Thus, the
resulting neural network is a sliced version of the original
deep model, and in every iteration during online execution,
a different model emerges through randomly dropping some
hidden units. These perturbations in DeepSampler through
Dropout enables DeepSMP to generate different samples in
the region likely to contain path solutions.

(a) Test-case 1: seen-Xobs

(b) Test-case 2: unseen-Xobs

Fig. 6: Computational time comparison of DeepSMP:RRT*
and BIT* on test datasets. The plots show DeepSMP is more
consistent and faster than BIT* in all test cases.

B. Bidirectional Sampling

Since our method incrementally generates samples, it can
be easily extended to produce samples for bidirectional
SMPs such as IB-RRT* [18]. To do so, treat both start and
goal configuration as random variables xrand1 and xrand2,
respectively, and swap their roles by the end of every iteration
in Algorithm 1. This way, two trees in bidirectional SMPs
can be made to march towards each other to rapidly compute
end-to-end collision-free paths.

C. Completeness

SMPs ensure probabilistic completeness. Let V SMP
n de-

notes the tree vertices of SMP after n ∈ N iterations. Since
all SMPs begin to build a tree from initial robot state xinit

i.e., V SMP
0 = xinit, and randomly explore the entire config-

uration space by forming a connected tree as n approaches
to infinity, they guarantee probabilistic completeness i.e.,

limn→∞P(V SMP
n ∩Xgoal 6= ∅) = 1 (4)

DeepSMP also starts generating a connected tree from
xinit and after exploring a region that most likely contains a
path solution for nlimit iteration, it switches to uniform ran-
dom sampling (see Algorithm 1). Therefore, if nlimit � n,
DeepSMP also ensures probabilistic completeness i.e., as the
number of iterations n approach to infinity, the probability of
DeepSMP finding a path solution, if one exists, approaches
to one:

limn→∞P(V DeepSMP
n ∩Xgoal 6= ∅) = 1 (5)

D. Asymptotic Optimality

RRT* and its variants are known to ensure asymptotic
optimality i.e., as the number of iterations n approaches to
infinity/large-number, the probability of finding a minimum
cost path solution reaches to one. This property comes from
incrementally rewiring the RRT graph connections such that
the shortest path is asymptotically guaranteed in RRT*. It is
proposed that if the underlying SMP of DeepSMP is RRT* or
any optimal variant of RRTs, DeepSMP is guaranteed to be
asymptotic optimal. This follows from the fact that DeepSMP
samples a selective region for fixed number of iterations and
switches to uniform randoms sampling afterwards. Thus if
the number of iterations goes infinity, through incremental
rewiring of DeepSMP graph, the asymptotic optimality is
also guaranteed.

E. Computational Complexity

A forward pass through a deep neural network is known
to exhibit O(1) complexity. It can be seen in Algorithm 1
that adaptive samples are generated incrementally by forward
passing through our stochastic DeepSampler. Hence, the
proposed neural sampling method does not add any extra
computational overhead to any underlying SMP for path
generation. Thus, the computational complexity of DeepSMP
method will essentially be the same as underlying SMP
in Algorithm 1. For instance, as in our case, RRT* is an
underlying SMP method, therefore, in presented experiments,

Environment Test case DeepSMP:RRT* Informed-RRT* BIT* BIT : tmean

DeepSMP : tmeantmean tmax tmin tmean tmax tmin tmean tmax tmin

Simple 2D (s2D) Seen Xobs 0.90 1.09 0.78 9.61 11.90 3.21 4.62 10.68 1.79 5.13
Unseen Xobs 0.92 1.00 0.87 9.89 9.24 6.19 5.05 3.68 1.45 5.49

Complex 2D (c2D) Seen Xobs 1.62 2.19 1.09 10.81 14.30 7.11 6.56 12.02 3.22 4.05
Unseen Xobs 1.46 2.11 1.00 11.21 12.51 4.36 5.72 9.89 2.92 3.92

Complex 3D (c3D) Seen Xobs 1.16 1.72 0.72 18.15 74.50 16.69 16.92 49.03 6.19 14.68
Unseen Xobs 1.36 1.96 0.94 18.43 49.37 12.17 15.96 26.16 12.53 11.74

Rigid-body (rigid) Seen Xobs 1.61 2.65 0.71 42.78 209.12 38.34 16.01 34.64 7.81 9.94
Unseen Xobs 1.72 2.81 1.01 43.74 188.63 27.45 16.61 34.65 7.85 9.65

TABLE I: Time comparison (in seconds) of DeepSMP against Informed-RRT* and BIT* on two test datasets.

(a) (b)

Fig. 7: DeepSMP with RRT* planning motions for a 6 DOF
manipulator. Fig (a) indicates the robot at start configuration
and the goal configuration is indicated as a shadowed region.
Fig (b) shows the path traces followed by the robot. In this
problem, the mean computational times of DeepSMP and
BIT* are 1.7 and 48.8 seconds, respectively, which makes
DeepSMP about 28 times faster than BIT*.

the computational complexity of DeepSMP is O(nlogn),
where n is the number of nodes in the tree.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we present a deep neural network based
sampling method called DeepSMP which generates samples
for Sampling-based Motion Planning algorithms to compute
optimal paths rapidly and efficiently. The proposed method
1) adaptively samples a selective region of a configuration
space that most likely contains an optimal path solution,
2) combined with SMP methods consistently demonstrate
mean execution time of about 2 second in all presented
experiments, and 3) generalizes to new unseen environments.

In our future work, we plan to propose an incremental
online learning method that begins with an SMP method,
and trains DeepSMP simultaneously to gradually switch from
uniform sampling to adaptive sampling. To speed up the
incremental online learning process, we plan to propose a
method that prioritizes experiences to learn from selectively
fewer training examples.

REFERENCES

[1] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

[2] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research,
vol. 30, no. 7, pp. 846–894, 2011.

[3] A. H. Qureshi and Y. Ayaz, “Potential functions based sampling
heuristic for optimal path planning,” Autonomous Robots, vol. 40,
no. 6, pp. 1079–1093, 2016.

[4] A. H. Qureshi, M. J. Bency, and M. C. Yip, “Motion planning
networks,” arXiv preprint arXiv:1806.05767, 2018.

[5] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contrac-
tive auto-encoders: Explicit invariance during feature extraction,” in
Proceedings of the 28th International Conference on International
Conference on Machine Learning. Omnipress, 2011, pp. 833–840.

[6] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting.” Journal of machine learning research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[7] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed rrt*:
Optimal sampling-based path planning focused via direct sampling of
an admissible ellipsoidal heuristic,” in Intelligent Robots and Systems
(IROS 2014), 2014 IEEE/RSJ International Conference on. IEEE,
2014, pp. 2997–3004.

[8] J. D. Gammell, S. Srinivasa, and T. D. Barfoot, “Batch informed
trees (bit*): Sampling-based optimal planning via the heuristically
guided search of implicit random geometric graphs,” in Robotics and
Automation (ICRA), 2015 IEEE International Conference on. IEEE,
2015, pp. 3067–3074.

[9] M. Rickert, O. Brock, and A. Knoll, “Balancing exploration and
exploitation in motion planning,” in Robotics and Automation, 2008.
ICRA 2008. IEEE International Conference on. IEEE, 2008, pp.
2812–2817.

[10] C. Urmson and R. Simmons, “Approaches for heuristically biasing
rrt growth,” in Intelligent Robots and Systems, 2003.(IROS 2003).
Proceedings. 2003 IEEE/RSJ International Conference on, vol. 2.
IEEE, 2003, pp. 1178–1183.

[11] D. Ferguson and A. Stentz, “Anytime rrts,” in Intelligent Robots and
Systems, 2006 IEEE/RSJ International Conference on. IEEE, 2006,
pp. 5369–5375.

[12] K. Hauser, “Lazy collision checking in asymptotically-optimal motion
planning,” in Robotics and Automation (ICRA), 2015 IEEE Interna-
tional Conference on. IEEE, 2015, pp. 2951–2957.

[13] D. Berenson, P. Abbeel, and K. Goldberg, “A robot path planning
framework that learns from experience,” in Robotics and Automation
(ICRA), 2012 IEEE International Conference on. IEEE, 2012, pp.
3671–3678.

[14] D. Coleman, I. A. Şucan, M. Moll, K. Okada, and N. Cor-
rell, “Experience-based planning with sparse roadmap spanners,” in
Robotics and Automation (ICRA), 2015 IEEE International Conference
on. IEEE, 2015, pp. 900–905.

[15] M. Zucker, J. Kuffner, and J. A. Bagnell, “Adaptive workspace biasing
for sampling-based planners,” in Robotics and Automation, 2008.
ICRA 2008. IEEE International Conference on. IEEE, 2008, pp.
3757–3762.

[16] L. Trottier, P. Giguère, and B. Chaib-draa, “Parametric exponential
linear unit for deep convolutional neural networks,” arXiv preprint
arXiv:1605.09332, 2016.

[17] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, no. Jul, pp. 2121–2159, 2011.

[18] A. H. Qureshi and Y. Ayaz, “Intelligent bidirectional rapidly-exploring
random trees for optimal motion planning in complex cluttered envi-
ronments,” Robotics and Autonomous Systems, vol. 68, pp. 1–11, 2015.

	I Introduction
	II Related Work
	II-A Adaptive Sampling Methods
	II-B Learning-based Search Methods

	III Problem Definition
	IV Informed Neural Sampler
	IV-A Obstacle Encoding
	IV-A.1 Model Architecture

	IV-B Deep Sampler
	IV-B.1 Model Architecture

	IV-C Online Execution of DeepSMP
	IV-D Data Collection
	IV-D.1 Workspaces
	IV-D.2 Start and goal configuration
	IV-D.3 Near-optimal paths

	IV-E Hyper-parameters

	V Results
	VI Discussion
	VI-A Stochasticity through Dropout
	VI-B Bidirectional Sampling
	VI-C Completeness
	VI-D Asymptotic Optimality
	VI-E Computational Complexity

	VII Conclusions and Future work
	References

