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 

Abstract— The use of sensor technologies for material 

characterization is rapidly growing and innovative  

advancement is observed. However, the use of sensor 

combinations for a raw material characterization in mining is 

very limited and automation of the material identification 

process using a combined sensor signal is not defined. Potential 

sensor technologies for raw material characterization were 

evaluated based on the applicability and technological 

maturity. To ensure a rapid implementation of the Real-time 

mining (RTM) project concept, mature technologies such as 

Red Green Blue (RGB) imaging, Visible Near Infrared (VNIR) 

hyperspectral imaging, Short Wave Infrared (SWIR) 

hyperspectral imaging, Fourier-Transform Infrared 

Spectroscopy (FTIR), Laser Induced Breakdown Spectroscopy 

(LIBS) and Raman were selected. Each selected technology was 

assessed for automation in sensing and applicability (for 

characterization of the test case materials). Based on the results 

the sensor data were further considered for data fusion. The 

proposed sensor combinations approach encompasses three 

levels of data fusion: low-level, mid-level and high-level. The 

data of the different sensors are fused together in order to 

acquire a wide range of mineral properties within each 

lithotype and an improved classification and predictive models. 

The preferred level of data fusion and preferred sensor data 

combinations will be used to develop a multi-variate statistical 

interpretation rule which relates combination of sensors signals 

with raw material properties. Thus a tool which integrates the 

combined sensor signal with materials properties will be 

developed and used to automate the material characterization 

process. 

Key words: sensors data, data fusion, automation, material 

characterization, polymetallic sulphides 

 

I. INTRODUCTION 

 

Current mineral resource management is a discontinuous 

process where data collection, resource model updating, 

mine planning and process monitoring are performed in a 

sequential manner. This approach reduces mining 

productivity efficiency due to intermittent information flow 

and decision making [1]. Therefore there is a need for a near 

continuous process control and optimization in resource 

extraction. This is the aim of the RTM project. RTM 

requires a real-time feedback control loop that connects 

online sensor data with a sequentially up-datable resource 

model [2]. Achieving this goal involves multiple distinct 

scientific disciplines such as sensors for material 

characterization, rapid resource model updating and 
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underground positioning system. This study focuses on the 

online sensor based material characterization aspect of the 

RTM project, particularly on automation potential in sensing 

and material characterization. 
Both automation in sensing and automation in raw 

material characterization are crucial for real-time resource 
model updating and real-time mine operational planning and 
decision making. Sensor technologies can provide accurate 
and precise online data on raw materials. Automation in 
sensing is related to the data acquisition speed of an 
instrument. With the current innovative advancement of 
sensor technologies sensor data can be acquired in micro 
seconds. For example, the acquisition speed of Fourier-
transform infrared spectroscopy (FTIR) is 30 seconds, and 
SisuROCK SWIR hyperspectral camera has a scanning speed 
of 20 mm/second [3-4]. Online sensors data can be used for 
automated material characterization either in an open-pit or in 
an underground mine. For that reason automation is one of 
the advantages of sensors utilization in mining. 

A.  Sensor combinations  

Sensor technologies operate over different wavelength 
ranges of the electromagnetic spectrum and provide 
information on several aspects of material properties. The 
detection limit, sensitivity and the material properties that the 
instrument detects and measures varies from sensor to sensor. 
Thus single sensors do not necessarily provide the complete 
picture of materials. As a result sensor combinations are 
required to convey a near complete descriptions of materials. 
For example, most ores and rocks likely contain a wide range 
of minerals, different elemental ratios and different states of 
crystallinity. Combinations of sensor can be used for a near 
complete description of the materials. A comprehensive view 
of minerals is advantageous; 

 in understanding the formation process of minerals, 

 gives important information for mineral 
processing,  

 can be used as input for resource model updating,  

 provides information in finding indirect proxies 
which can be linked to further quantify 
economically important minerals.  

      Combination of sensors has advantages over a single 
sensor due to improved accuracy, improved precision, 
reduced uncertainty (reduces penalties from the use of 
sensors separately or redundancy - data on the same target 
from different sources to increment the confidence) and 
supports effective decision making [5-12]. Accordingly an 
improved classification accuracy and predictive performance 
can be achieved using sensor combinations for material 
characterization. 
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In recent years there has been considerable research on 
the use of sensor combinations for better material 
identification and classification purposes. However, most of 
the applications are for pharmacological, military, 
agricultural and biological purposes [8, 13-16, 22]. In the 
area of mineral characterization only a few studies were 
carried out. For example; researches demonstrated that fusing 
of LIBS and Raman data resulted in better classification of 
minerals, enhanced detection of explosives and enhanced 
efficiency of object identification than the individual 
techniques [5,6,9]. [10] showed that the use of the full range 
VNIR-SWIR-LWIR hyperspectral imagery improved the 
geological units and hydrothermal alteration mapping results. 
[11] has investigated the effectiveness of LIDAR and 
hyperspectral imagery data fusion for geological analysis or 
understanding of mineralogical and mechanical properties of 
rocks. [11] has been shown that an integrated optical and 
chemical drill core scanner resulted in improved capability of 
rapid and non-destructive chemical analysis of drill cores.  

Sensor combinations for material characterization has 
become an emerging research area. However, an automated 
tool (spectral library) for characterization of polymetallic 
sulphide ore using a combined sensor signals (VNIR-SWIR 
hyperspectral image, MWIR, LWIR, Raman and RGB 
images) is undefined. The aim of this work is to develop a 
conceptual framework for an automated material 
characterization using a combined sensors signals. Therefore 
this paper addresses the data fusion approach and the 
implementation strategy of the multi-variate statistical 
interpretation rule which links the combined sensors signals 
with raw materials properties. The concept presented here is 
part of an ongoing research work.  

B. Selected sensor technologies  

The sensor technologies were selected based on 
applicability, technological maturity and sensors parameters 
for instrument specification. The selected technologies are 
Visible Near Infrared (VNIR) hyperspectral imagery, Short 
Wave Infrared (SWIR) hyperspectral imagery, Mid-Wave 
Infrared (MWIR), Long-Wave Infrared (LWIR), Raman, 
Laser-induced breakdown spectroscopy (LIBS) and Red-
Green-Blue (RGB) images. 

A strategic three sampling campaigns were carried out to 
undertake in-situ measurements and collect representative 
samples in an underground mine as a case study. Later, 
laboratory scale test measurements were conducted using the 
collected samples from drill cores, channel cuts and rock 
chips. The application potential and an outlook of the 
selected technologies are summarized below.  

RGB images were acquired at the mine face. The 
acquired images were georeferenced, mosaicked and a 
mineral map was produced. Acceptable classification results 
were achieved for mineral mapping and definition of ore 
geometry. RGB imaging has a good potential for mapping of 
visually distinct minerals in underground mines [12]. 
Moreover, the classification process can be automated. 
Considering sensor data acquisition speed requirements at the 
mine face, RGB imaging has a good potential for real-time 
application.  

FTIR operates over a wider range of the electromagnetic 
spectrum ( 2.5µm to 15 µm). This gives an opportunity to 
assess the potential of the MWIR (3µm -7µm) and the LWIR 
(7µm -14µm) regions data for characterization of the test case 
materials separately. The MWIR and LWIR  data were 
successfully used to discriminate ore-waste materials of the 
test case [17,18]. Furthermore, FTIR combined with Partial 
Least Square Discriminant Analysis (PLS-DA) has a 
potential for rapid automated on-line discrimination of ore 
and waste material if the model is calibrated with certain 
threshold compositional information for the two material 
types (ore and waste).  

SWIR hyperspectral data can be used for ore-waste 
discrimination of drill cores. This was achieved without any 
particular absorption features of the sulphide minerals (since 
most of the sulphides are opaque). The featureless nature of 
sulphide minerals was used as a characteristic value in 
endmembers to discriminate the ore from the waste. The 
VNIR hyperspectral data shows potential to detect and 
classify the sulphides. However, due to the narrow range of 
the region, careful analysis is required for accurate 
identification of the minerals. VNIR and SWIR hyperspectral 
images can be used for material characterization of the test 
case [19]. Automation of the mineral  identification process 
(especially for sulphide minerals) might be challenging since 
each mineral mixture is likely to cause differences in spectral 
response. However, the variation in the spectra can be 
accommodated by considering a training library with wider 
range of mineral mixtures simulated based on the mineral 
composition of the test case materials.  

Raman and LIBS methods are also considered. LIBS can 
detect the elemental composition of materials. Most of the 
elements of the test case can be detected using a LIBS 
system. Raman test measurements were performed with two 
excitation laser sources of 532nm and 785nm. For the 
samples of the test case, the 785nm laser source gave a better 
signal than the 532nm laser source. Thus using the 785nm 
laser, Raman was used for identification of minerals such as 
pyrite, sphalerite and calcite. However,  it does not provide a 
complete description of the minerals in a sample. Therefore it 
can be considered as a complementary technique. Raman is a 
rapid technique [20] with a proper deposit specific mineral 
spectral library (which can accommodate the observed 
heterogeneity of materials), so automation of the Raman 
measurement is promising. Though, this requires a case 
specific standards generated using suitable samples. 

The selected technologies showed a good potential in 
terms of application (characterization of materials) and 
automation. Thus the technologies are further considered to 
test combinations of sensor concept.  

C.  Datasets 

The datasets comprise both image and point data. 
Compared to the point measurements the image data has a 
wider coverage. The image data shows the spatial distribution 
of minerals and point data provides information at a specific 
measurement location. Table 1 summarizes the output of the 
selected sensor technologies. 

 



  

Table 1: The operating wavelength ranges of the selected 
sensor technologies, the geological parameters or material 
properties that can be derived from the sensor data and the 
data format 

 

For full use of automated sensor data within a 3D 
resource model framework, accurate knowledge of the 
precise location of the data is required. Therefore each 
dataset is spatially constrained. 

II. PROPOSED METHOD FOR AUTOMATED MATERIAL 

CHARACTERIZATION 

As illustrated in Fig. 1, data were acquired using the 
selected sensor technologies and Design of Experiment 
(DoE) was developed to test possible scenarios. Based on the 
DoE, the 3 levels of data fusion approaches are then tested 
for classification and prediction of materials. Once the 
preferred data fusion and sensor combinations are selected, a 
multivariate statistical rule that links the important variables 
with mineral properties will be developed. This tool can be 
used to automate characterization of materials using a 
combined sensor signal. The details of each step are 
presented below.   

A. Data fusion techniques  

Sensor combinations can be implemented by integration 
of physical sensors on a single platform, data fusion or using 
a hybrid system. The approach described here is the data 
fusion method. Data fusion or combination of the different 
data sources can be realized at three levels: low-level, mid-
level and high-level Fig 1.  

Low-level data fusion is implemented by concatenating data 

matrices or data blocks from different data sources [21]. 

Thus the data matrix has rows size the same as the number 

of samples analysed and columns size the same as the 

variables measured by the instruments.  
The single matrix is used to calculate a single 

classification or prediction model. Low-level data fusion 
considers the correlation between variables of the different 
data blocks. 

Mid-level data fusion is a feature level fusion which is 
implemented with variable screening. First it extracts 
important variables from each data source separately. These 
informative variables are concatenated into a single array and 
used to perform classification and prediction for material 
characterization [22]. The variable selection reduces data 
dimensionality and therefore it is useful to treat each data 
block individually (without the influence of other dataset).  
Mid-level data fusion requires an optimal combination of 
extracted features that describe most of the variation in the 
data. The low-level and mid-level data fusion methods 
combine the data sources at data level. 

High-level data fusion combines model outputs and the 
data sources at a decision level. Separate models are built for 
each available sensor output. High-level data fusion 
combines model outputs to produce a fused response [8]. 

B. Classification and prediction models 

The class discriminating and prediction techniques 
considered in this study are PLS-DA and Support Vector 
Machine (SVM). PLS-DA is a supervised classification 
method, that builds classification rules (model) for pre-
specified classes. PLS-DA is useful to identify key variables 
for class separation. Therefore it helps in understanding 
differences among groups of samples [23, 24]. Later, the 
PLS-DA model can be used for assigning unknown samples 
to the most probable class (prediction).  

SVM is a supervised learning model that is applicable for 
both classification and regression analysis. For classification, 
SVM finds the optimal boundary (hyper-plane) that 
differentiate the two classes using kernel functions in many 
forms [25]. Thus it has the ability to handle nonlinear 
classification cases. In the case of regression, SVM 
transforms non-linear systems into linear systems before the 
use of regression. For this, SVM selects the optimal kernel by 
tuning its parameters. 

C. Design of Experiment (DoE) 

DoE is developed to test possible scenarios (Table 2). 
Thus the DoE will be used as a guideline, to assess the 
optimal data pre-processing method for each dataset 
separately, to identify the optimal sensor combinations for 
better classification and prediction and to assess precision 
and reliability as function of sensor combinations.  

The implementation of data fusion starts with combination 

of two techniques datasets. The complexity of data fusion 

will increment to integration of 3 or more sensors datasets. 

Therefore the classification and prediction models response 

for integration of 2 or more datasets will be evaluated.   
 

 

No. Sensors Operating 

Wavelength 

(µm) 

Geological 

parameters 
Data format 

 1 RGB 

Imaging 
0.4 - 0.7 Mineralogical Image (3 

bands) 

2 VNIR 

Hyperspectr

al Imaging 

0.4 – 1.0 Mineralogical Image (196 

bands) 

3 SWIR 

Hyperspectr

al Imaging 

1.0 – 2.5 Mineralogical Image (288 

bands) 

4 MWIR 2.5 - 7.0 Mineralogical  Point 

5 LWIR 7.0 – 14.0 Mineralogical  Point 

6 LIBS 0.175 – 0.9  Elemental Point 

7 RAMAN 0.244 – 

1.064 

Mineralogical  Point  



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 1: A work flow for the proposed approach  
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Table 2: Some examples of the DoE for possible data pre-

processing, sensor combinations, single versus combined 

sensors and for integration of 3 or more datasets. 

 

D. Current status of implementation of the conceptual 
framework   

Low level data fusion has been implemented using 
MWIR and LWIR data. The data blocks of the MWIR and 
LWIR datasets were concatenated into a single array. Using 
the data matrix and PLS-DA, the classification and predictive 
performance of the models for individual techniques and 
combined techniques were evaluated. The current 
experimental results show that fusing of the MWIR and 
LWIR data resulted in more accurate classification and 
prediction models than the individual techniques. For 
example, the classification accuracy of the MWIR and LWIR 
fused data for ore-waste discrimination is 97%. Whereas both 
MWIR and LWIR datasets have a classification accuracy of  
95% (unpublished results). Therefore preliminary results 
suggest that data fusion is an effective strategy for a 
comprehensive description and enhanced material 
characterization. 

 

E. Multivariate statistical interpretation rule  

The combined sensors output is then related to raw 
materials properties using a defined multivariate statistical 
interpretation rule. Depending on the preferred data fusion 
level and preferred sensor combination, the informative 
variables or the concatenated spectral data blocks are linked 
to material properties. Using either the informative variables 
or the concatenated full spectra data blocks, distinctive 
characteristics of each material of interest at each important 

variable location in the spectra are defined. For example, for 
ore -waste discrimination, the important variables for the two 
classes separation will be identified. Subsequently, the 
distinctive features at each important variable location of the 
spectra will be linked to each material type (ore or waste). 
This results in a tool that integrates the combined sensor 
signal with material properties. 

F. Way towards automation 

Automation can be achieved using the defined tool that 
links the combined sensors signals with material properties. 
The tool can be used as a case specific mineral library that 
can be extended to different case studies. The approach is 
similar to a spectral library that relates sensors signals to 
material types. The new tool differences from the other well-
known mineral libraries (e.g RRUFF, USGS)  is the response 
for material identification that is based on the combined 
sensor signals. The implementation starts with ore-waste 
discrimination and later will be extended into multiple 
minerals streaming. The specific deposit type will define the 
material properties that can be measured by sensors. Thus 
case specific mineral libraries facilitate automation of the 
material characterization process using sensor data.  

With current technological advancements, state of the art 
portable sensor technologies are emerging. For example 
mobile hyperspectral camera - Specim IQ, handheld Raman 
spectrometer and portable FTIR spectrometers [26-28]. These 
technologies can be mounted on relatively small platform so 
as to achieve automated mining using intelligent mining 
robots. However this also requires a framework for 
integration of the sensor outputs as presented in this paper. 
Overall the conceptual framework developed in this paper 
can be extended into other applications that use sensor data. 
For example the approach can be used for environmental 
monitoring and rehabilitation after mine closure.  

 

G. Challenges to address  

Implementation of the proposed data fusion approach 
may not be straightforward. There may be challenges related 
to platform interoperability ( due to the use of different 
sensors), instrument sensitivity, ambiguity of spectra 
response due to instrument artefacts, the megavariate nature 
of data (a very high variables-to-sample ratio), the properties 
of target minerals related to a deposit type, target minerals 
not commonly identified with various sensor technologies 
and possibly other factors. 

The platform interoperability issues can be resolved by 
importing all datasets into the same data format. For 
example, in the hyperspectral image data, each pixel value 
can be extracted as point spectral data, to address the 
observed rock samples heterogeneity multiple points will be 
considered for each sample. From the RGB imaging, the 
RGB values can be extracted at each pixel location. 

III. CONCLUSION 

Data fusion from a combinations of sensors is a valuable 
approach for a comprehensive description and accurate 
characterization of materials. A promising result was 
obtained from the low-level data fusion of MWRI and LWIR 

No.  Pre-

processing 

techniques 

Sensor 

combinations  

Single Vs. 

combined 

sensors 

data 

fusion 

using 3 

or more 

datasets 

1 Baseline  MWIR and 

LWIR 

MWIR Vs. 

MWIR and 

LWIR 

combined 

MWIR, 

LWIR, 

SWIR, 

VNIR 

2 Normalize  VNIR and 

SWIR 

VNIR Vs. 

VNIR and 

SWIR 

combined 

VNIR, 

SWIR, 

LWIR 

3 Auto- scaling  LIBS and 

Raman 

Raman Vs. 

LIBS and 

Raman 

LIBS, 

Raman, 

SWIR 

4 Combination 

of Baseline 

with 

Normalize 

RGB and 

SWIR 

SWIR Vs. 

RGB and 

SWIR 

Combined 

RGB, 

SWIR, 

VNIR 



  

datasets. Looking forward, better results are possible with 
extended application of other sensor data. The approach can 
be used throughout the mining value chain including during 
mineral exploration, extraction and processing. However, in-
situ application of sensors requires automation in sensing, 
automation in material characterization and system 
robustness for harsh environmental conditions.  
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