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Modular Sensor Fusion for Semantic Segmentation

Hermann Blum, Abel Gawel, Roland Siegwart and Cesar Cadena

Abstract— Sensor fusion is a fundamental process in robotic
systems as it extends the perceptual range and increases
robustness in real-world operations. Current multi-sensor deep
learning based semantic segmentation approaches do not pro-
vide robustness to under-performing classes in one modality,
or require a specific architecture with access to the full aligned
multi-sensor training data. In this work, we analyze statistical
fusion approaches for semantic segmentation that overcome
these drawbacks while keeping a competitive performance. The
studied approaches are modular by construction, allowing to
have different training sets per modality and only a much
smaller subset is needed to calibrate the statistical models. We
evaluate a range of statistical fusion approaches and report their
performance against state-of-the-art baselines on both real-
world and simulated data. In our experiments, the approach
improves performance in IoU over the best single modality
segmentation results by up to 5%. We make all implementations
and configurations publicly available.

I. INTRODUCTION

Semantic segmentation has become a popular discipline
in recent years [1]. It most commonly deals with the pixel-
wise categorical classification of image data, but can be
employed for various sensor data, e.g., 3D data [2f], [3[. In
robotics, semantic segmentation is relevant for scene under-
standing in autonomous driving [4], localization tasks [5]], or
natural human-machine interaction [6]. While architectures
for single modalities, e.g., RGB or 3D data are becoming
increasingly accurate, there remain perceptually difficult
cases that single sensors are unable to reliably classify.
Lane-markings and Pictures on a wall are invisible to depth
sensors. RGB cameras, on the other hand, are much more
sensitive to weather and lighting conditions. Using multiple
sensors can increase performance, compensating for other
sensors’ weaknesses or failures. Recently, several approaches
were proposed to address the challenge of fusing multiple
sensor inputs for semantic segmentation. One avenue of
research leads towards training one specific network for all
modalities together [7]-[9]. Another avenue is to leverage
single-modality expert networks and a trained fusion net-
work [10]-[12]. One major pitfall of these solutions is the
requirement of training for any sensor combinations and
therewith aligned multi-modal training data.

In contrast, we wish to design segmentation systems that
remain modular, and can fuse different expert networks in-
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Fig. 1: Individual semantic segmentation classifiers are combined
modularly using different statistical methods, resulting in improved
semantic segmentation without additional training.

dependently trained on single modalities. Apart from neural
networks, fusion of classifers has been a part of Machine
Learning literature for decades already [13]. Dependent
on well-known statistics like confusion matrices, classifier
outputs are combined using statistical methods.

In this work, we propose a novel, scalable semantic
segmentation fusion architecture based on separately trained
expert networks that are statistically fused using Bayesian
fusion or Dirichlet Fusion. The individual experts can thus
be trained on different datasets, and no additional training
is required to fuse their outputs. In addition, due to its
modularity, input modalities can be added and removed on-
the-fly. Hence, failures of single experts can be compensated
if detected.

This paper presents the following contribution:

¢ A novel statistical fusion method for multi-modal se-
mantic segmentation based on the Dirichlet distribution.

o The first fusion network alternative that does not require
training on aligned data.

« Evaluation and analysis of different statistical fusion
methods on real-world and synthetic datasets.

II. RELATED WORK
A. Semantic Segmentation

Semantic Segmentation is commonly understood as the
task of pixel-wise classification of image data [|1]]. While be-
ing an important discipline in the Computer Vision commu-
nity, it has relevance for various robotics applications, espe-
cially scene understanding and interaction [4]-[6]]. Presently,
the best performing algorithms for semantic segmentation
on popular benchmarks, e.g., PascalVOC [14] are based on



Convolutional Neural Networks (CNNs). Here, a common
architecture is the encoder-decoder structure [15[]-[17]. The
encoder aims to capture features on multiple abstractions of
the images, as commonly used in image classification tasks.
The decoder then unfolds the feature data back to the pixel-
level.

In this work, we base our semantic segmentation structure
on the Fully Convolutional Network (FCN) [17] and Adap-
Net [[11].

B. Fusion

While semantic segmentation is a maturing discipline for
RGB-based systems, a fusion with complementary sensor
data can further improve the segmentation results [7[], [[11],
especially in challenging classes for the visual sensor. Based
on CNN architectures, different mechanisms for fusion have
been developed. In principle, we distinguish between two
architectures, i.e., networks fully designed for fusion [[7]]—[9]],
and unimodal expert networks with an added fusion net-
work [10], [[11]], as originally proposed by Jacobs et al. [18]].
FuseNet [7] fuses features from RGB and Depth images
gathered from two VGGI16-encoders [19] and decodes the
fused features into a semantic segmentation. A similar ap-
proach is used in [8]], where features are extracted from
different layers’ outputs of the encoder in an adapted FCN
structure. A multimodal autoencoder is proposed in [9]] where
the possible deficiencies in one modality have to be foreseen
and introduced in training time. The works by [[11]] and [10]
explore different mechanisms that fuse classifier outputs at
a later stage, they find that a gating network learning factors
for a weighted sum of the individual segmentation outputs
works best for their network.

In contrast, our approach is inspired by work on fusion of
classifiers [[13]. While the original work deals with uni-modal
handwriting recognition, we extend it towards multi-modal
semantic segmentation by replacing the simple classification
output with a full output score vector. In addition, we
omit the possibility of rejecting classifications present in the
original work.

Further general fusion techniques have been developed
to deal with ensembles of neural networks. These include
averaging over a range of experts or voting principles. In
such a setup, classifiers are trained equally to specialize on
different aspects of a problem, e.g., by employing techniques
like bagging [20] and boosting [21]. However, as we deal
with architectures that train on different input modalities, we
do not have the same control over the specific strengths and
weaknesses of the different classifiers, which is necessary for
simple fusion techniques like voting to work. Moreover, these
techniques require a multitude of expert networks, which is
impracticable with big CNNs.

III. METHOD

A. Semantic Segmentation

As baseline systems for semantic segmentation we use two
different neural network architectures. The FCN structure
was first introduced by Long et al. in 2015 [17]] and used by

Xiang et al. to fuse different modalities [8]]. The FCN uses
the VGG-16 encoder [|19]], which consists of iterating 3 x 3
convolutions and 2 x 2 max-pooling layers that maps an input
image onto a lower dimensional feature map. This feature
map is then scaled up again with deconvolutions and mapped
onto the output class using 1 x 1 convolutions. When we
refer to the FCN in experiments, we mean the version shown
in Figure [5] as used in [§], which reduces complexity by
replacing the trainable deconvolutions with simple bilinear
interpolation. While not achieving the performance of more
complex networks, we used this simpler model for testing
many different fusion methods and report the comparison.

AdapNet [11] is a structure designed to improve some
of the shortcomings of the FCN. It uses the ResNet en-
coder [22]] where every dimensionality-reducing stage is split
into convolutions applied on different scales of the input to
make the feature map more independent against different
scales of an input object. Similar to the FCN above, different
scales of this feature-map are then processed independently
and stacked together before using 1 x 1 convolutions and
deconvolutions to map the features onto the output classes.
While the training is slower and complex, Valada et al. found
the evaluation time of the AdapNet to be faster than that of
the FCN and other methods [11].

B. Statistical Classifier Combination

For modality fusion, we train individual baseline networks
for every input modality completely independent of each
other. The fusion is then applied based on the outputs of
all these different baselines that were evaluated on the same
scene.

All of the approaches introduced in have in common
that the fusion process is part of the network structure, i.e.
the fusion is not adaptable to different sensor combinations,
and requires retraining. Moreover, with the exception of the
gating network [11], none of these systems can deal with
crashing sensors by exchanging or disabling input experts.

As a more modular approach, we propose a fusion tech-
nique that is based on statistically merging the outputs of
individual classifiers. In this sense, this work is heavily
inspired by techniques described by Xu et al. in 1992 [13].

Bayes Categorical Fusion: For every pixel we want
to produce a probability p(k|all expert outputs) for every
possible class k € 1,...,K, given the outputs of all uni-modal
experts. From this, we can then choose for every pixel the
class with the highest probability. This is sometimes called
the believe of a class bel(k). Based on Xu et al. [[13] and
Bayes’ formula, we find:

p(k|all expert outputs) o< p(all expert outputs|k) p(k)

w<pk) T[] plouti|k)
i€modalities
with out; the classification output of expert i. p(out;|k) is a
categorical distribution over the expert’s classification output,
which we will know at inference time. We use that the
conditionals p(out;|k) are independent of each other, as the



Expert A

Expert B

outp

K] Mii' J[K]

argmax p(outa | k) p(outs | k) p(k)
k

Fig. 2: Example of the Bayesian categorical fusion with 2 modal-
ities. The classification output is used as index to the confusion
matrix in order to produce the conditional class likelihoods. For
fusion, the class with the biggest joint likelihood is choosen.

interdependency between the different modalities is exactly
given by the ground truth class k.

Each of the individual conditional categorical distributions
is given by the confusion matrix M; of the corresponding
classifier. If the first dimension of the matrix is the actual
expert output out; and the second dimension is the ground-
truth class k, it follows:

M; [out,-] [k]

5 Milj][K]

p(out;|k) =

The prior p(k) can also be set on basis of the class-
occurrence in these confusion matrices.

We find the fused classification by choosing the class that
has the highest log-probability:

output class = argmax p(k|all expert outputs)
k

)+ Z log p(out; |k)

= argmax |log p(k
k icexperts

)

A schematic of this technique is shown in Figure [2}

Dirichlet Fusion: In the above approach, we fuse the
different experts on basis of their classification output.
However, this disregards important information, especially in
such cases of special interest for fusion where two or more
classes are equally likely. To take these cases into account,
we have to produce p(y|k) that is dependent on the full
softmax output vector y and therefore contains score values
for all possible classes. This distribution is given by the
Dirichlet distribution, the conjugate prior of the categorical
distribution.

y ~ Dirichlet(ex)
r (Z/ 1 a})

K
J 1T Jj=

-1
pitE

1

pdf(y) =

The concentration parameters & of this distribution are
constrained by o; >0 Va; € @. The higher 0o/ Y5, o), the
higher is the probability of a vector close to y; = 1,.

In order to find the correct concentration parameters for
every conditional class and every expert, we make use of the
fast Expectation-Maximization (EM) algorithm developed
by Minka [23] and improved and translated to python by
Sklar [24]. Both make use of the fact that there is a sufficient
statistic for the EM fitting of the Dirichlet distribution S =

N logy™. Without the sufficient statistic over a set
of N pixels, the M-Step would have to compute over all
the images in every iteration. Instead, s can be produced
from measurements over the data before starting the EM
algorithm, which then can validate the likelihood of the
produced parameters at every iteration against the sufficient
statistic.

The standard loss function of the EM algorithm is the
likelihood of the parameters & against the data:

=N |logT’ (ZO@) —Y logI'(at))
J J
L
:N’; logyg.")

We found that this standard method does produce reasonable
parameters ¢, but the resulting conditional likelihoods do not
work well in our decision function from Equation (T). The
main problems are edge cases where two classes get similar
scores in y. In this case, conditionals found with Equation (]Z[)
assign equally low likelihoods to all classes. Therefore,
we introduced 2 regularization terms: We added the norm
Zajz as a regularization term to prevent the concentration
parameters to grow too large, which in turn would produce
low likelihoods for any y that is not close to a one-hot vector.
In addition, we do not aim for parameters & that explain our
classifier output best, but we want to distinguish between dif-
ferent conditionals. Therefore, we build a sufficient statistic
S of all classifier outputs for different ground-truth than the
conditional class we search for and add —f8 .Z(e,3) into the
Loss. With these 2 additions, and omitting the constant factor
N, as proposed by Sklar [24]], we arrive at the following loss
function for the EM algorithm:

logl <Z Ocj> - Zlogl“(aj)]

o;—1)logs

Z(a,s)

1)log SJ] 2

g/(avsvs) :(1 _ﬁ)
_3):

Jrz oj—1) logSfSZaJZ
J J

Once the concentration parameters for all ground-truth
classes a® are found, fusion can be performed with the
following decision function:

output class = argmax |log p(k) + Z log f (yilk)
k

icexperts

Filk) = pdf(y;, a*)



IV. EXPERIMENTS

We conduct experiments with implementations in tensor-
flowand train with RMS Prop [25] using default configura-
tions.

We test our methods on the Synthia-Rand-Cityscapes [|12]
and the Cityscapes datasets [26], both showing urban street
scenes. The Synthia dataset comes from simulation and
features alongside RGB also very precise depth images,
and pixel-wise semantic segmentation into 13 classes. The
real-world Cityscapes dataset contains RGB, noisy dispar-
ity images from stereo matching, and pixel-wise semantic
segmentation into 30 different classes. For both datasets,
we use a common set of 12 classes that was also used
in [11[l: void, sky, building, road, sidewalk, fence, veg-
etation, pole, car/bus/truck, traffic sign, pedestrian, bicy-
cle/motorcycle/rider. Furthermore, we resized input images
to 768x384 following the experiments of [[11]]. As there is no
given split between train- and test-set in the Synthia-Rand-
Cityscapes, we take a random 10% sample as test-set, and
another 10% sample as a validation and development set. The
images in the dataset are produced from random viewpoints,
which makes this simple split feasible. The development set
is used to compute the confusion matrices and conditional
Dirichlet distributions. For Cityscapes, we take a random
5% sample out of the given training set as development set.
The parameters 3 and & for the Dirichlet fusion are found
with a grid search on the development set before evaluating
the method with the found parameters on the separate test
set. We run the EM algorithm with a maximum of 1000
iterations.

During training, we employ cropping and flipping as
augmentation methods, after which we finetune the baselines
on small batches of full images. The semantic segmentation
performance is always measured in Intersection over Union
(IoU) [14]. For overall performance, we take the mean over
all available classes. In cases where we do not report the per-
class IoU, we additionally report Average Precision (AP).

All implementations and configurations of the experiments
are available at https://github.com/ethz-asl/
modular_semantic_segmentation.

A. Fusion on Synthetic Data

We design 2 experimental setups. First, we use the pre-
viously listed 12 classes and later we add lane-markings as
an additional class. In this context, lane-markings are a very
interesting example for fusion as they are indistinguishable
from roads on a depth image and therefore only visible to
an RGB expert. Following the evaluation of [11]] for seman-
tic segmentation of RGB and Depth images, we compare
Averaging, and our Bayes Categorical and Dirichlet fusion.
Averaging fuses the experts by taking the mean over all
softmax outputs and choosing the class with the highest mean
score. Tables |I| and [lI] show the results of our evaluation,
Figure [3] shows qualitative examples.

In general, we find that the statistical fusion significantly
improves the semantic segmentation with respect to the
two uni-modal baselines. We also find that the inclusion of

TABLE I: Fusion of AdapNet Baselines on Synthia Rand
Cityscapes
Lane-
markings Dirichlet Bayes Average @ RGB  Depth
no IoU 71.27 78.62 78.70 73.39 7270
no AP 83.31 86.12 84.04 80.87  79.54
yes TIoU 80.19 79.91 79.05 7592  63.76
yes AP 87.43 86.92 83.65 83.34 7020

TABLE II: Per-Class IoU of AdapNet Baselines on Synthia Rand
Cityscapes with Lanemarkings

Class  Dirichlet Bayes Average @ RGB  Depth

Mean 80.19 79.91 79.05 7592 63.76

Sky 97.39 97.41 95.57 95.54 9.47
Building 96.85 96.76 96.20 93.70  79.86
Road 94.09 92.78 93.11 91.58  88.92
Sidewalk 95.07 94.04 94.70 91.71  93.60
Fence 74.76 72.97 74.54 68.30  71.89
Vegetation 89.89 90.62 90.02 81.42  90.32
Pole 65.53 66.42 64.79 56.17  60.19

Car 93.19 91.39 92.81 87.81  90.56

Traffic Sign 41.75 51.54 48.31 4577 37.76
Pedestrian 79.94 74.73 79.72 73.70 7277
Bicycle 65.47 63.11 64.42 58.57  59.40
Lane-marking 68.29 67.17 54.39 66.73  10.44

lane-markings changes the comparison between the different
fusion methods. Without lane-markings, we observe only a
minor difference between averaging and the Bayes Categor-
ical fusion. However, when including lane-markings, we see
that the training of the Depth expert is much harder, resulting
in a worse individual performance of this modality alone.

One effect of this is that the Bayes categorical fusion
improves over the averaging due to its ability to ‘pick’ the
better performing expert based on the classification outputs
and mirror its performance.

The second effect is that the Dirichlet fusion is producing
the best results in most individual classes, and the overall
mean performance. We observe that in the classes where
the Dirichlet fusion produces the best results, it usually also
improves the classification with respect to both individual
experts, instead of mirroring the performance of the better
one. We offer the conclusion that this is possible through the
more detailed input into the fusion mechanism.

B. Fusion on Real-World Data

To validate the results from the synthetic data, we test the
same methods on the Cityscapes [26] dataset. The results of

TABLE III: Fusion of AdapNet Baselines on Cityscapes

Class  Dirichlet Bayes Average RGB  Depth
Mean 69.22 68.77 68.47 69.20 54.12

Sky 86.97 90.45 88.93 90.54  78.60
Building 84.60 83.59 84.32 84.09 72.83
Road 92.37 91.71 92.59 91.53  91.79
Sidewalk 67.66 65.01 67.25 66.42 5758
Fence 41.54 37.92 40.79 39.84  23.62
Vegetation 87.13 88.04 84.48 88.04 66.56
Pole 44.23 42.11 43.77 4194 3328
Vehicle 87.62 86.20 87.02 86.54  77.92
Traffic Sign 51.29 51.37 48.33 5212 18.85
Person 64.90 63.54 64.75 63.54 5227
Bicycle 53.13 56.54 50.98 56.57  22.00
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Fig. 3: Qualitative Examples from the Synthia Rand Cityscapes
Fusion Experiments. Left Due to some error in the simulation,
the pole right in Front of the camera is not visible to the depth
expert. Because the class-scores from the RGB experts are very
high, the fusion methods mostly recover from this failure. Center
Lanemarkings are not visible to the depth expert, even tough it
predicts them below pedestrians crossing the street. The correct
classification from the RGB expert is fused into the output by all
methods. Right Fusion can improve robustness for different weather
conditions, as shown here for heavy rain occluding most of the RGB
Input.

this experiment are shown in table Qualitative examples
can be found in figure ] The Synthia Rand Cityscapes is
especially designed to cover the same classes and urban street
scenes present in Cityscapes, enabling a fair comparison
of the results. The Cityscapes dataset does not provide
depth images from a separate depth sensors, but disparity
maps computed from stereo cameras. Due to considerable
noise in the depth estimation, we observe in general much
worse performance of the Depth expert, compared to the
experiments on synthetic data. We also find that the fusion
methods offer no significant improvement in segmentation,
compared to the RGB expert. While the fusion improves the
segmentation on classes such as pole or vehicle, it has lower
performance than the RGB expert on classes like sky.

C. Modalities Trained on Different Datasets

An important advantage of our modular fusion methods is
that unimodal experts do not require simultaneous training.
They can be trained independently, even on different datasets,
as not every modality may be available for every dataset.
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Fig. 4: Qualitative Examples from the Cityscapes Fusion Ex-
periments. As the depth images are visibly worse than in the
synthetic data, and there are no different weather conditions, fusion
improvements are less obvious. The biggest improvements can be
found for poles in the background, as well as the left wall in the
center column.

We therefore test our fusion methods in the following
scenario: There is very little labelled data for a new modality
(depth) available. We take a Depth baseline that is trained on
simulation data and just plug it into our system, calibrating
it against a few labelled example images.

In this experiment, we take the Depth baseline trained on
synthia data and fuse it together with the RGB baseline from
experiment [[V-B] validating the system on the cityscapes test
set. The results are shown in Table [[V] While averaging was
a competitive method in the earlier experiments, it fails in
this experiment as it is the only method without calibrating
the experts. We can also see that the validation of the experts
is working as expected. In fact, the simple Bayes Categorical
fusion is mirroring the output of the RGB baseline.

For those classes where the depth expert carries some in-
formation, the Dirichlet fusion is always learning to improve
the output of the RGB expert. The overall fusion results for
Bayes and Dirichlet fusion are even better than with the
depth baseline trained on Cityscapes. We attribute this to
the observation that the Bayes and Dirichlet fusion perform
well in a setting where they can choose between the experts,
but as this experiment shows their model does not cope well
with one expert that is always worse.
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Fig. 5: The FCN architecture adapted from [8|] and used in our experiments. It consists of the VGG-16 encoder [19] of stacked convolutions,
and poolings. Instead of trainable deconvolutions, this architecture uses bilinear interpolations for the decoder, thus reducing the complexity
of the network. Dropout is applied only for the variance fusion experiment. In case of multiple encoders, the marked green encoder outputs

are stacked together before applying the 1 x 1 convolution.

TABLE IV: Fusion of AdapNet Baselines on Cityscapes. RGB is
trained on Cityscapes, Depth is exclusively trained on Synthia Rand
Cityscapes.

Class  Dirichlet Bayes Average RGB  Depth
Mean 69.28 69.20 62.65 69.20  3.37

Sky 90.16 90.53 89.63 90.54  0.00
Building 84.18 84.09 68.99 84.09  14.09
Road 91.56 91.53 91.63 91.53  0.00
Sidewalk 66.45 66.42 62.91 6642  0.03
Fence 39.75 39.84 35.76 39.84  0.00
Vegetation 88.07 88.04 79.85 88.04  22.60
Pole 42.22 41.94 32.34 41.94  0.36
Vehicle 86.82 86.54 86.15 86.54  0.00
Traffic Sign 52.37 52.11 43.21 5212 0.00
Person 63.89 63.54 50.87 63.54  0.00
Bicycle 56.60 56.57 47.86 56.57  0.00

D. Further Benchmarks

In this section, we conduct additional tests with different
FCN-based [17] architectures and further investigate pos-
sibilities of modular fusion and the performance of our
proposed methods. The principle architecture we use is
shown in Figure [3]

In the experiments before, we could compare the improve-
ments of each method with the uni-modal baselines. As we
now compare between fusion methods that are not based on
any baselines, this is no longer possible. We therefore train
all FCNs to their best possible performance and compare
overall results.

Additionally, we evaluate the inference time per image of
every method. The inference time is measured over 10000
trials and every method is evaluated on constant input of
the same size as an image, to further reduce the influence
of caching and data loading on the measurements. All
computations are conducted on a single GPU. Dependent on
the available hardware, the methods may benefit differently
from different degrees of parallellisation.

a) Fusion by Variance: Using Dropout-Monte-
Carlo [27], we can measure model uncertainties from each
modality expert at inference time. In theory, this variance
GJZ should contain information about the uncertainties of
the different classifiers, trained on different modalities. The

per-pixel certainty @ is then approximated by

lel

Where K is the number of classes and ¢ is measured from
the softmax output class scores y over a number of samples.
We fuse the experts with a weighted sum.
Yo oy
oS 3)
Yo O
The class score vector y; of every uni-modal expert 0 <i <M
is weighted by the certainty of the given pixel and expert.
Note that if the certainties of all the experts are assumed
equal, this is reduced to the averaging fusion used before.
During the development we found that this method is very
sensitive to the type of dropout performed. In particular, any
dropout close to the output layer leads to very noisy fusion
outputs, requiring a large number of Monte-Carlo samples to
compensate. Following the findings from [28]], we choose to
introduce a dropout layer after the third pooling, before the
network branches into two parts and not immediately before
a pooling layer. This is also indicated in Figure [3}

b) Full Fusion Network: As described in [[I-B] fusion
is often conducted with a fully integrated network. As a
benchmark we use the structure from [§]] with two encoders
fused together into one decoder, but without the recurrent
layer. It is therefore following the architecture shown in
figure [5] We train on aligned RGB and Depth images until
convergence.

The results are shown in Table [V] The experiment is again
conducted with the standard set of 12 classes.

As expected, the fully integrated network expresses best
performance. Contradictory to the experiments with AdapNet
on the same dataset reported in section [[V-A] the averaging
fusion is performing significantly better than both the Bayes
categorical and the Dirichlet fusion. We attribute this to the
fact that both baselines have very similar performances.

We find that the variance fusion and the Dirichlet fusion
express lower performance than the uni-modal experts. Both
methods are based on mechanisms that attempt to measure

Yfused =



TABLE V: FCN-based Fusion Methods on Synthia Rand Cityscapes

FuseFCN Average Bayes Dirichlet Variance RGB Depth
ToU 76.90 76.38 74.99 66.96 66.35 72.24 72.01
AP 83.79 83.54 8291 73.82 73.83 80.35 81.15
Inference Time 72422 ms 43+11ms 46+16ms 524+24ms 310£18 ms 22+11ms 22+12 ms

uncertainties of individual experts. Further investigation for
the Dirichlet fusion revealed that opposed to AdapNet, the
FCN architecture often produces outputs that assign similar
probabilities to more than two different classes. The AdapNet
baselines from section [[V-A] however, usually express higher
certainty and assign high probability scores to one or two
classes, also at the border of objects. We conclude that
the Dirichlet fusion method, in particular the proposed EM
fitting, is not able to capture the variability of the FCN output
well.

While the Average Fusion is on average faster than the
Bayes or Dirichlet fusion, as would be expected from the
complexity of the calculation, the difference in inference time
between the three methods stays within one standard devi-
ation. We also note that the modular methods are all faster
then the integrated FusionFCN, even tough this architecture
is a ‘late-fusion’ method with independent encoders.

V. DISCUSSION

Our results indicate that statistical fusion of modalities is a
promising avenue for semantic segmentation in cases where
we cannot or do not want to retrain a fusion network on
aligned data. Despite the good performance of the averaging
on the synthetic data, we argue that it is only advisable to
use this technique when the experts have comparably good
performance. Especially in real-world applications, we usu-
ally have sensors expressing much better performance than
the others. Here, the averaging fails to produce convincing
results.

The statistical fusion is able to exploit the information even
in cases of very strong performance differences and improve
the segmentation result. Although not expressing superior
performance in all tested cases, statistical fusion generally
improves the segmentation performance over single modality
systems without the need for cumbersome training.

We notice that the Dirichlet model is in general the best
performing technique. However, the current EM algorithm
to find the concentration parameters suffers under very
flat, under-confident class probability outputs of the single
experts. In these cases, the Dirichlet model cannot produce
parameters that result in suitable decision functions for the
fusion. Consequently, in cases of under-confident uni-modal
experts, the Dirichlet fusion looses its expressiveness power
to combine the modalities on every class.

A general finding from our experiments is that the Bayes
Categorical fusion, and also the Dirichlet fusion, work best
with experts that have complementary strengths. Here, these
frameworks show their power to pick the best performing
expert for every class or even learn on basis of their combi-
nation. In practice, we showed that this depends both on the

set of classes as well as the quality of the input data for the
different modalities.

An analysis of the inference time for the different methods
further shows that statistical fusion is a promising method of
time-critical systems, as the inference time is significantly
lower than a fully integrated fusion network architecture.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have presented and evaluated two mod-
ular approaches to fuse multiple modalities for semantic
segmentation. The novel proposed Dirichlet fusion shows
the best results of the statistical fusion methods, especially
when using modalities with complementary strengths and
weaknesses. Furthermore, the modularity in terms of the used
segmentation experts allows for a seamless extension to new
experts without re-training the already existing ones.

The performance of the proposed fusion scheme is close to
the performance of specifically trained fusion networks, but
requires no additional training on aligned data. It therefore
gives wider access to datasets that do only contain a single
modality.

The findings are consistent over different datasets from
simulation to real world scenarios. The biggest problems
with the statistical fusion were encountered in cases of low-
confidence classifier outputs. In future work, we will there-
fore test whether measurements of input based uncertainties
of the neural network classifiers can further improve the
results of statistical fusion.

To conclude, the proposed statistical fusion promises to
be a powerful basis of a modular framework for semantic
segmentation. With this framework, we can produce semantic
scene descriptions for a diverse set of robots, enabling
collaboration and mutual scene understanding.
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