
Active Structure-from-Motion for 3D Straight Lines*

André Mateus, Omar Tahri, and Pedro Miraldo

Abstract— A reliable estimation of 3D parameters is a must
for several applications like planning and control, in which
is included Image-Based Visual Servoing. This control scheme
depends directly on 3D parameters, e.g. depth of points, and/or
depth and direction of 3D straight lines. Recently, a framework
for Active Structure-from-Motion was proposed, addressing the
former feature type. However, straight lines were not addressed.
These are 1D objects, which allow for more robust detection,
and tracking. In this work, the problem of Active Structure-
from-Motion for 3D straight lines is addressed. An explicit
representation of these features is presented, and a change of
variables is proposed. The latter allows the dynamics of the line
to respect the conditions for observability of the framework. A
control law is used with the purpose of keeping the control effort
reasonable, while achieving a desired convergence rate. The
approach is validated first in simulation for a single line, and
second using a real robot setup. The latter set of experiments
are conducted first for a single line, and then for three lines.

I. INTRODUCTION

There are many robotic applications for which the recovery
of 3D information is required. Among those is Image-Based
Visual Servoing, which consists in using visual information
(e.g. image points) to control a robot [1]. This kind of
control is highly dependent on a good estimation of 3D
parameters, for instance the depth of points, and/or the depth
and direction vector of lines [2].

A way to estimate 3D information is Structure-from-
Motion, which consists in estimating 3D parameters from
images taken by a moving camera [3], [4]. It is a well
studied problem in Computer Vision, with emphasis on
points and lines. Even though those works present solutions
to the problem, they suffer from considering either big
displacement between views or more than two views. Thus,
preventing their use in Visual Servoing, since it requires con-
tinuous estimation. In order to cope with these issues, some
authors adopt filtering strategies, by taking measurements
from consecutive camera images and the displacement of
the camera between each frame (assumed to be known) [5],
[6], [7], [8].

A non-linear state estimation scheme for unknown param-
eters is presented in [9], and is applied to the estimation
of image points’ depth, and focal length of a camera. The
observer is proved to be stable, as long as, the persistency of

*This work was partially supported by the Portuguese FCT grants
PD/BD/135015/2017 (through the NETSys Doctoral Program) &
SFRH/BPD/111495/2015, and ISR/LARSyS Strategic Funding by the
FCT project PEst-OE/EEI/LA0009/2013.

A. Mateus & P. Miraldo are with Institute for Systems and Robotics
(ISR/IST), LARSyS, Instituto Superior Técnico, Univ. Lisboa, Portugal
{andre.mateus, pedro.miraldo}@tecnico.ulisboa.pt.

O. Tahri is with INSA Centre Val de Loire, Université d’Orléans,
PRISME EA 4229, Bourges, France omar.tahri@insa-cvl.fr.

excitation condition is satisfied. More approaches, based on
non-linear state estimators, are presented in [10], [11], [12],
[13], [14], [15]. A comparison of a filtering solution with a
non-linear estimation framework is presented in [16].

Some authors addressed the control of a camera to opti-
mize 3D estimation (Active Vision [17]). In [18], a method
to recover the 3D structure of points, cylinders, straight
lines, and spheres is presented. It consists in using the
Implicit Function Theorem, to obtain an explicit expression
of the 3D information as a function of image measurements,
their time derivative, and the camera’s velocity. The active
component (control law) attempts to simultaneously keep
the features static in the image, and perform a desired
trajectory (depending on the feature). This approach requires
the features time derivative (on the image plane) to be known,
which are not directly available, and thus require discrete
approximation. Besides, the control law used does not give
much insight on how it may affect the estimation error.

The optimization of the camera’s motion, in order to have a
desired estimation error response, is addressed in [19], where
a framework for Active Structure-from-Motion is presented.
This is a general framework, that can be used for a wide
variety of visual features, and its convergence behavior is
well defined. The framework has been applied to several
feature types, like points, cylinders, spheres [20], planes from
measured image moments [21], [22], and rotational invariants
[23], [24]. A method for coupling this framework with a
Visual Servoing control scheme is presented in [25].

Active Vision has been addressed for a large set of visual
features, yet straight lines have not been explored. The main
focus has been the estimation of a point’s depth. However,
in practice, it is useful to use richer features. In particular,
straight lines which are 1D objects, and whose one-to-one
association from the image to the world is easier to obtain.
Besides, lines are also easier to detect in images (e.g. Hough
Transform [26]), and allow for a more robust tracking [27].
To the best of our knowledge, active vision for lines has been
previously addressed by two works. The first is [18], whose
shortcomings have already been stated. The second is [20],
where lines are only considered indirectly, in the estimation
of a cylindrical target radius. In fact, the estimation scheme
that allows a full line recovery is not explored, since the
authors resort to a formulation specific to cylinders.

This work studies the problem of Active Vision for 3D
straight lines. Previous works represented these features as
the intersection of two planes [18]. That representation is
implicit, and does not have a direct counterpart in the image
plane. Thus, it is usually used together with the (ρ, θ)
representation in the image plane, which even though is

ar
X

iv
:1

80
7.

00
75

3v
2

 [
cs

.R
O

]
 1

2
D

ec
 2

01
8

minimal, is also periodical [2]. Furthermore, the coupling
of this two representations leads to complex dynamics. In
this work lines are represented by binormalized Plücker
coordinates [2], which are presented in Sec. II-A, along
with their dynamics. This coordinates are explicit (a set of
coordinates defines a single line); define lines everywhere in
space (except if they contain the camera optical center); and
have a direct representation in the image plane (the moment
vector is the normal of the line’s interpretation plane)1.

State estimation is addressed by the framework in [19],
which is presented in Sec. II-B. Since, the dynamics of the
binormalized Plücker coordinates do not respect the require-
ments for convergence, a change of variables is presented in
Sec. III. Followed by the dynamics in the new coordinates,
and the non-linear observer for 3D straight lines structure.

The proposed observer is validated in simulation for a
single line, whose setup and results are presented in Sec. IV-
A. The control law used for active structure estimation is
also presented. This was designed to keep the control effort
relatively low (in terms of the norm of the velocity vector),
while achieving a desired convergence rate. Those results are
replicated with a real robotic platform [28], in Sec. IV-B. In
Sec. IV-B.2, an application of the observer for recovering
the 3D structure of three lines is presented. Finally, the
conclusions are presented in Sec. V.

II. BACKGROUND

This section presents the theoretical background and con-
cepts required for this work. First, the representation of 3D
straight lines and their dynamics are presented, followed by
the framework for Active Structure-from-Motion.

A. Dynamics of the 3D Straight Lines

Plücker coordinates are a common way to represent 3D
lines [29], given that they can represent lines everywhere
in the space (except if they intersect the camera’s optical
center). Besides, they have a direct representation in the
image plane, since they contain the normal vector to the
interpretation plane. This coordinates are defined as

L ∼
[

u
m

]
, with L ⊂ P5 (1)

where P5 is the five-dimensional projective space, u ∈ R3,
and m ∈ R3 represent the line’s direction and moment
respectively, up to a scale factor, and satisfy

uTm = 0. (2)

By normalizing the direction vector, we obtain the Eu-
clidean Plücker coordinates [2]

L =

[
d

n

]
dTn = 0

dTd = 1,

(3)

1Plane containing the line and the optical center of the camera.

where d = u
||u|| , and n = m

||u|| . This representation is
explicit, since a set of coordinates represents a single line.

Keep in mind that n represents the normal vector to
the interpretation plane, thus it is possible to represent the
projection of the line in the image h [30] as

h =
n

||n||
. (4)

Let l = ||n|| be the depth of the line. If we recall that for
every point p ∈ R3 in the line it holds

n = p× d, (5)

and since ||d|| = 1. Then ||n|| = ||p||sin(φ), with φ being
the angle between the point and the direction. If the depth of
the line is considered to be the distance of the point closest
to the origin, then the norm of n will always be equal to the
depth. Finally, the binormalised Plücker coordinates [2] can
be defined as

L =

[
d
lh

]
. (6)

Let vc = [νc,ωc]
T ∈ R6 be the camera velocity, with

νc ∈ R3 and ωc ∈ R3 being the linear and angular velocities
respectively. Then the dynamics of (6) are

ḋ = ωc × d (7)

ḣ = ωc × h− ν
T
c h

l
(d× h) (8)

l̇ = νTc (d× h). (9)

Let us consider the coordinates of a straight line to be
our state vector. Thus, (7), (8), and (9) give us the state
equations. From those the state estimation scheme can be
designed, whose background is presented in the next section.

B. Active Structure-From-Motion

This section presents the framework for Active Structure-
from-Motion [19]. Let x = [s,χ]

T ∈ Rm+p be the state
vector, whose dynamics are given by{

ṡ = fm(s,ωc) + ΩT (s,νc)χ

χ̇ = fu(s,χ,vc),
(10)

where s ∈ Rm is the vector of the measurable components
of the state, and χ ∈ Rp the unknown components. Besides,
let x̂ = [ŝ, χ̂]T be the estimated state, and e = [s̃, χ̃]T be the
state estimation error, with s̃ = s− ŝ and χ̃ = χ− χ̂. Then,
to recover the unknown quantities, the following estimation
scheme can be used{

˙̂s = fm(s,ωc) + ΩT (s,νc)χ̂+ Hs̃
˙̂χ = fu(s, χ̂,vc) + αΩ(s,νc)s̃,

(11)

with H positive definite, and α > 0.
According to the persistency of excitation condition [9],

convergence of the estimation error to zero is possible, iff
the matrix ΩΩT is full rank. Then, it is possible to prove
that, the convergence rate will depend on the norm of that
matrix, and in particular, on its smallest eigenvalue σ2

1 . This
depends on the measurable components of the state and

on the camera’s linear velocity, which can be optimized to
control the convergence rate.

Let UΣV = Ω be the singular value decomposition of
matrix Ω, where Σ = [S 0], with S = diag({σi}), i =
1, ..., k. Then, H ∈ Rm×m may be chosen as

H = V

[
D1 0
0 D2

]
VT , (12)

where D1 ∈ Rp×p is a function of the singular values
of Ω, and D2 ∈ R(m−p)×(m−p) is set to be the identity
matrix. Following [19], the former is defined as D1 =
diag({ci}), ci > 0 with ci = 2

√
ασi, and i = 1, ..., k. This

choice prevents oscillatory modes, thus trying to achieve a
critically damped transient behavior.

In order to get a desired rate, one can either tune the gain
α and/or act on the input to lead the eigenvalue to a desired
value. In this work, we focus on the latter. Let us compute
the total time derivative of the eigenvalues of matrix ΩΩT .
Using the results in [19], we conclude that

˙(σ2
i) = Jνc,iν̇c + Js,iṡ with i = 1, .., k, (13)

where matrices Jνc,i Js,i are the Jacobian matrices yielding
the relationship between the eigenvalues of ΩΩT , and the
linear velocity and the measurable components of the state
respectively. In particular

Jνc,i =

[
vTi

∂ΩΩT

∂νx
vi,v

T
i

∂ΩΩT

∂νy
vi,v

T
i

∂ΩΩT

∂νz
vi

]
, (14)

with vi being the normalized eigenvector associated with the
ith eigenvalue of ΩΩT . A differential inversion technique
can be used to regulate the eigenvalues, by acting on vector
ν̇c. Notice that, when applying an inversion technique, it
may not be possible to compensate for the second term on
the right-hand side of (13). A way to compensate, for the
effect of ṡ in the dynamics, is to enforce ṡ ' 0. In this
work, that effect is compensated making use of the angular
velocity as described in Sec. IV-A.

III. ACTIVE STRUCTURE-FROM-MOTION USING
3D STRAIGHT LINES

Sec. II-B presents the framework for Active Structure-
from-Motion. This consists of a full state observer, whose
state is partially measured. In this work, the measurement
consists of vector h, which is the normal vector to the
interpretation plane of the line. Besides h, our representation
consists of the direction vector and the line’s depth. These
will only be retrieved from the estimated state. A requirement
is that the unknown variables appear linearly on the dynamics
of the measurable ones. From (8), we can conclude that this
does not happen. In order to cope with this issue, the change
of variables

χ =
d

l
, (15)

can be considered. Using (9) and (7), it is easy to conclude
that

χ̇ = ωc × χ− χνTc (χ× h). (16)

Then, from (11) and (8), one can define

Ω = −νTh[h]×, (17)

where [h]× is a 3× 3 skew-symmetric matrix that linearizes
the cross product (χ× h = −[h]×χ).

Convergence of the estimation error e to 0 is possible
iff the square matrix ΩΩT is full rank. From (17), this
is not the case, since its rank is equal to 2 (this happens
because of the multiplication by the skew-symetric matrix,
which has, by definition, rank 2). In order to deal with
this issue, the orthogonality of the Plücker coordinates is
explored. The obtained system belongs then to the large
family of Differential Algebraic Systems [31]. Since, the
algebraic condition is linear, a solution consists in expressing
the coordinate of χ, corresponding to the coordinate of h
with highest absolute value, as a function of the others. This
will not require a switching strategy2, since the condition
ḣ ' 0 is enforce. Thus, the coordinate with the highest
absolute value is always the same throughout the task. Notice
that, by enforcing ḣ ' 0, the angular velocity is used to
maintain the interpretation plane of the line constant. This
allows us to compensate for the effects of ḣ in the dynamics
of σ2

i , and thus the linear velocity of the camera can be used
to obtain a desired convergence rate.

Let us consider the case where the z coordinate of χ is
fixed. Solving the orthogonality constraint for χz , we obtain

χz = −
χxhx + χyhy

hz
. (18)

By replacing (18) in (8) and (16), and changing the state to
x = [h, χx, χy]

T , the dynamics become

ḣ =ωc × h + νTc h

 −hxhy

hz
−hz −

h2
y

hz

hz +
h2
x

hz

hxhy

hz

−hy hx

[χx
χy

]
(19)

χ̇x =− ωczχy − ωcy
hxχx + hyχy

hz
− ...

− νcx
(
hzχxχy +

hyχx(hxχx + hyχy)

hz

)
+ ...

+ νcy

(
hzχ

2
x +

hxχx(hxχx + hyχy)

hz

)
− ...

− νcz (hyχ2
x − hxχyχx) (20)

χ̇y =ωczχx + ωcx
χxhx + χyhy

hz
− ...

− νcx
(
hzχ

2
y +

hyχy(hxχx + hyχy)

hz

)
+ ...

+ νcy

(
hzχxχy +

(hxχy(hxχx + hyχy)

hz

)
+ ...

+ νcz (hyχ
2
x − hyχyχx). (21)

2A switching strategy (in this context) is a change of the state variables
in runtime, i.e., if the moment vector is not constant the coordinate with
the highest absolute value is not always the same, and thus it would be
necessary to fix a different coordinate of χ.

(a) Real and estimated state evolution. (b) State estimation error over time.

(c) Camera’s Linear and Angular Velocities. (d) Evolution of the Eigenvalues of ΩΩT

Fig. 1: Simulation results for a single line. The real and the estimated state are presented in the top left plot, and the
corresponding state estimation error in the top right plot. The velocities of the camera throughout the task are presented in
the bottom left plot. Finally the eigenvalues of the matrix ΩΩT are presented in the bottom right plot.

For simplicity sake, let us define χ̇x = fux
(h, χx, χy,vc),

and χ̇y = fuy (h, χx, χy,vc). These definitions will be
used henceforward to refer the dynamics of the unknown
variables. In this formulation

Ω = νTc h

[
−hxhy

hz
hz +

h2
x

hz
−hy

−hz −
h2
y

hz

hxhy

hz
hx

]
, (22)

and ΩΩT is full rank, as long as the linear velocity and the
moment vector are not orthogonal (this restriction is included
in (17) also). The observer can thus be written as

˙̂
h = ωc × h + ΩT

[
χ̂x

χ̂y

]
+ Hh̃

˙[
χ̂x

χ̂y

]
=

[
fux

(h, χ̂x, χ̂y,vc)

fuy
(h, χ̂x, χ̂y,vc)

]
+ αΩh̃.

(23)

Notice that, the same approach can be replicated for both the
x and y coordinates of h, yielding matrices Ω compliant with
the requirements for convergence. The observer is validated
with simulation tests, which will be presented next.

IV. RESULTS

We start by validating our approach, resorting to simula-
tion tests for a single line. Then, we apply the method in a
real mobile robot [28], considering a single line, and finally
three lines simultaneously.

A. Simulation Results

This section presents the simulation results for active
observation of vector χ. The goal here is to keep the norm of
the linear velocity relatively low, so the control effort does
not increase excessively, while maintaining the possibility
to lead the eigenvalues of ΩΩT to a desired value (σ2

des).
Let Jνc = [JTνc,1,J

T
νc,2]

T ∈ R2×3 be the Jacobian matrix,
which relates ν̇c with the time derivative of the eigenvalues of
ΩΩT , and σ2 = [σ2

1 , σ
2
2]
T ∈ R2 be the current eigenvalues.

Then, the control law used is

ν̇c = k1J
†
νc
(σ2

des − σ2) + k2
(
I2 − J†νc

Jνc

)
νc, (24)

which as been proposed in [19], where I2 ∈ R2×2 is an
identity matrix, k1 > 0 and k2 > 0 are positive constants,
and J†νc

is the Moore-Penrose pseudo-inverse of the Jacobian
matrix.

In order to compensate the effect of ḣ in the dynamics
of the eigenvalues, the condition ḣ ' 0 is enforced. This
is achieved using the angular velocity, which is obtained by
setting (8) to zero and solving for ωc yielding

ωc = (νTc h)χ̂. (25)

The observer in (23) was simulated in MATLAB, con-
sidering a perspective camera, with the intrinsic parameters
matrix given by I3 ∈ R3×3. All six degrees-of-freedom (dof)
are assumed to be controllable. The true coordinates of the
line are obtained by generating a random point in a cube
with 3m side in front of the camera, then a unit direction is

(a) Robotic Platform. (b) Camera Image with tracked lines and points for
pose estimation.

Fig. 2: On the left the robotic platform used in the exper-
imental results is shown. It is an omnidirectional platform,
and thus with 3 dof (2 linear, and 1 angular). On top there
is a Pointgrey Flea3 USB3 [35] camera, which is the visual
sensor used in the experiments. On the right an image from
the camera with the four points, of the chessboard, used for
pose estimation (to obtain the true coordinates of the lines)
and the lines tracked with the moving-edges tracker [33].

randomly selected, and the moment vector is computed using
(5). Finally, the change of variables (presented in Sec. III)
is applied. The initial estimate of (χ̂) is also generated ran-
domly, ĥ is initialized with its true value, since it is available
from the measurements. Fig. 1 presents the simulation results
for this case, with the following gains k1, k2 = 1, α = 2000,
and σ2

des = [0.1, 0.2]T (see (24) and (23)). Fig. 1(a) presents
the state’s evolution for both the real system and its estimate,
where we can observe that the objective ḣ ' 0 was achieved.
Fig. 1(b) presents the state error over time, where we can
see that convergence is achieved in about 1 second. Fig. 1(c)
presents the velocities. Notice that the velocity norm is kept
constant. Finally, Fig. 1(d) presents the eigenvalues over
time. Notice that they reach their desired values. The total
error of the Plücker coordinates is ||L − Lest|| = 0.0019,
where L and Lest, are the real coordinates, and the estimated
coordinates of the line as define in (6) respectively.

B. Real Experiments

Finally, the experimental results with a real robotic plat-
form [28] (see Fig. 2(a)) are presented. It is an omnidi-
rectional mobile platform having 3 dof (2 linear, and 1
angular). Our observer scheme was implemented resorting
to Robot Operating System (ROS) [32] for sending controls
to the platform, and receiving its odometry readings. Lines
are tracked with the moving-edges tracker [33], available in
ViSP [34]. The camera used was a Pointgrey Flea3 USB3
[35] mounted on top of the robot, as shown in Fig. 2(a).

1) Single line estimation: In a first step, we replicate the
experimental setup in Sec. IV-A, in order to show that the
performance is kept in a real setup. The goal is to estimate
a line defined in a chessboard. The board is used only to
obtain the initial coordinates of the line, by computing the
initial pose of the camera w.r.t. the board. For this purpose,

we used four points (marked in the Fig. 2(b)), and then
applied the POSIT algorithm [36] available in ViSP. The
camera’s velocity is retrieved from the robot’s odometry,
after applying the transformation from the robot’s base to the
camera reference frame (computed a priori). Fig. 3 presents
the experimental results for this case, with the following
gains k1, k2 = 1, α = 2000, and σ2

des = [0.1, 0.2]T . Fig. 3(a)
presents the estimated state evolution, where we can observe
that the objective ḣ ' 0 is not entirely achieved. This is due
to the reduced number of dof. Fig. 3(b) presents the state
error over time. We can see that convergence is achieved in
about 3 seconds. Notice that it takes some time for the robot
to start moving, this is a limitation on the robot’s drivers.
Fig. 3(c) presents the velocities, where we note that the
velocity readings are noisy, since they are provided by the
robot’s odometry. Finally Fig. 3(d) presents the eigenvalues,
which given the noisy velocity readings did not reached the
desired values. The total error is ||L−Lest|| = 0.0067.

2) Estimation of three lines: This section presents the
results for three different straight lines. In this case m = 9
and p = 6, meaning that we have nine measurements and six
unknowns, then ΩΩT ∈ R6×6 (see the definition of the state
in the beginning of Sec. II-B). We considered the variables
to optimize to be the mean of the eigenvalues associated with
each line, thus

σ2
3 lines =

1

3

3∑
i=1

σ2
i , (26)

where σ2
i =

[
σ2
i,1, σ

2
i,2

]T
. The Jacobian matrix, which yields

the relation between the new eigenvalues and the camera’s
linear velocity is then

Jνc,3 lines =
1

3

3∑
i=1

Jνc,i. (27)

The experimental setup is similar to the one in Sec. IV-B.1.
A chessboard is used to obtain the initial Plücker coordinates
of the 3D straight lines. Throughout the experiment lines are
tracked with the moving edges tracker of ViSP, the tracking
of the lines in a camera picture is presented in Fig. 2(b).
Fig. 4 presents the experimental results for this case, with
the following gains k1, k2 = 1, α = 1000, and σ2

des =
[0.1, 0.2]T . Figs. 4(a), 4(b), and 4(c) present the state error
estimation for the first, second, and third line respectively.
Fig. 4(d) presents the camera’s velocities, which are noisy,
since they are retrieved from the robot’s odometry. Finally,
Fig. 4(e) presents a 3D plot with the position of each line
(real and estimated coordinates). Besides it presents the final
position of the camera, and its path. The total error of the
Plücker coordinates are ||L1 − Lest,1|| = 0.0388, ||L1 −
Lest,1|| = 0.0109, and ||L1 −Lest,1|| = 0.0217.

V. CONCLUSIONS

This paper has proposed a strategy for Active Structure-
from-Motion for 3D straight lines. Contrarily to previous
approaches, binormalized Plücker coordinates were used to
represent lines, which allow for an explicit representation. A

(a) Estimated state evolution. (b) State estimation error over time.

(c) Camera’s Linear and Angular Velocities. (d) Evolution of the Eigenvalues of the matrix ΩΩT

Fig. 3: Experimental results with a real robot and camera for a single line. The estimated state is presented in the top left
plot, and the corresponding state estimation error in the top right plot. The velocities of the camera throughout the task are
presented in the bottom left plot. Finally, the eigenvalues of the matrix ΩΩT are presented in the bottom right plot.

(a) State Estimation Error First Line, which is
the red line in the bottom plot.

(b) State Estimation Error Second Line, which is
the cyan line in the bottom plot.

(c) State Estimation Error Third Line, which is
the blue line in the bottom plot.

(d) Camera Velocities. (e) Estimated and real lines in the robot’s reference frame.
Besides it is shown the camera’s final position and its path.

Fig. 4: Experimental results with a real robot and camera for three lines. The estimation state errors are presented for each
line (top three plots). The velocities of the camera throughout the task are presented in the bottom left plot. A 3D plot of
the estimated and real lines, alongside the camera and its path is presented in the bottom right.

variable change of these coordinates has been presented to
comply with the requirements of a recently presented frame-
work for Active Structure-from-Motion. The new dynamics of
the line, and an observer for retrieving the lines’ 3D structure
were then proposed. A control law was used with the purpose
of keeping the control effort relatively low, while achieving
a desired convergence rate. This approach was validated in
simulation and afterwards in a real robotic platform, for both
one and three lines. Future work consists in including both
the algebraic constraints on the Plücker coordinates in the
estimation scheme, and the observer in a Image-Based Visual
Servoing control scheme.

REFERENCES

[1] F. Chaumette and S. Hutchinson, “Visual Servo Control. I. Basic
Approaches,” IEEE Robotics & Automation Magazine, vol. 13, no. 4,
pp. 82–90, 2006.

[2] N. Andreff, B. Espiau, and R. Horaud, “Visual Servoing from Lines,”
International Journal of Robotics Research, vol. 21, no. 8, pp. 679–
699, 2002.

[3] J. Koenderink and A. Van Doorn, “Affine structure from motion,” J.
Optical Society of America A (JOSA), vol. 8, no. 2, pp. 377–385, 1991.

[4] A. Bartoli and P. Sturm, “Structure-from-motion using lines: Repre-
sentation, triangulation, and bundle adjustment,” Computer Vision and
Image Understanding, vol. 100, no. 3, pp. 416–441, 2005.

[5] L. Matthies, T. Kanade, and R. Szeliski, “Kalman filter-based al-
gorithms for estimating depth from image sequences,” International
Journal of Computer Vision, vol. 3, no. 3, pp. 209–238, 1989.

[6] S. Soatto, R. F., and P. Perona, “Motion Estimation via Dynamic
Vision,” IEEE Transactions on Automatic Control, vol. 41, no. 3, pp.
393–413, 1996.

[7] J. Civera, A. Davison, and J. Montiel, “Inverse Depth Parametrization
for Monocular SLAM,” IEEE Transactions on Robotics, vol. 24, no. 5,
pp. 932–945, 2008.

[8] J. Civera, O. Grasa, A. Davison, and J. Montiel, “1-Point RANSAC for
Extended Kalman Filtering: Application to Real-Time Structure from
Motion and Visual Odometry,” Journal of Field Robotics, vol. 27,
no. 5, pp. 609–631, 2010.

[9] A. De Luca, G. Oriolo, and P. Robuffo Giordano, “Feature Depth Ob-
servation for Image-Based Visual Servoing: Theory and Experiments,”
The International Journal of Robotics Research, vol. 27, no. 10, pp.
1093–1116, 2008.

[10] W. Dixon, Y. Fang, D. Dawson, and T. Flynn, “Range Identification
for Perspective Vision Systems,” IEEE Transactions on Automatic
Control, vol. 48, no. 12, pp. 2232–2238, 2003.

[11] F. Morbidi, G. Mariottini, and D. Prattichizzo, “Observer design via
Immersion and Invariance for vision-based leader–follower formation
control,” Automatica, vol. 46, no. 1, pp. 148–154, 2010.

[12] P. Corke, “Spherical Image-Based Visual Servo and Structure Estima-
tion,” in IEEE International Conference on Robotics and Automation
(ICRA), 2010, pp. 5550–5555.

[13] M. Sassano, D. Carnevale, and A. Astolfi, “Observer design for range
and orientation identification,” Automatica, vol. 46, no. 8, pp. 1369–
1375, 2010.

[14] A. Martinelli, “Vision and IMU Data Fusion: Closed-Form Solutions
for Attitude, Speed, Absolute Scale, and Bias Determination,” IEEE
Transactions on Robotics, vol. 28, no. 1, pp. 44–60, 2012.

[15] A. Dani, N. Fischer, and W. Dixon, “Single Camera Structure and
Motion,” IEEE Transactions on Automatic Control, vol. 57, no. 1, pp.
238–243, 2012.

[16] V. Grabe, H. Bülthoff, D. Scaramuzza, and P. Robuffo Giordano,
“Nonlinear Ego-Motion Estimation from Optical Flow for Online
Control of a Quadrotor UAV,” The International Journal of Robotics
Research, vol. 34, no. 8, pp. 1114–1135, 2015.

[17] J. Aloimonos, I. Weiss, and A. Bandyopadhyay, “Active Vision,”
International Journal of Computer Vision, vol. 1, no. 4, pp. 333–356,
1988.

[18] F. Chaumette, S. Boukir, P. Bouthemy, and D. Juvin, “Structure
From Controlled Motion,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 18, no. 5, pp. 492–504, 1996.

[19] R. Spica and P. Robuffo Giordano, “A Framework for Active Estima-
tion: Application to Structure from Motion,” in IEEE Conference on
Decision and Control (CDC), 2013, pp. 7647–7653.

[20] R. Spica, P. Robuffo Giordano, and F. Chaumette, “Active Structure
from Motion: Application to Point, Sphere, and Cylinder,” IEEE
Transactions on Robotics, vol. 30, no. 6, pp. 1499–1513, 2014.

[21] ——, “Plane Estimation by Active Vision from Point Features and
Image Moments,” in IEEE International Conference on Robotics and
Automation (ICRA), 2015, pp. 6003–6010.

[22] P. Robuffo Giordano, R. Spica, and F. Chaumette, “Learning the Shape
of Image Moments for Optimal 3d Structure Estimation,” in IEEE
International Conference on Robotics and Automation (ICRA), 2015,
pp. 5990–5996.

[23] O. Tahri, P. Robuffo Giordano, and Y. Mezouar, “Rotation Free Active
Vision,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2015, pp. 3086–3091.

[24] O. Tahri, D. Boutat, and Y. Mezouar, “Brunovsky’s linear form of
incremental structure from motion,” IEEE Transactions on Robotics,
vol. 33, no. 6, pp. 1491–1499, 2017.

[25] R. Spica, P. Robuffo Giordano, and F. Chaumette, “Coupling active
depth estimation and visual servoing via a large projection operator,”
The International Journal of Robotics Research, vol. 36, no. 11, pp.
1177–1194, 2017.

[26] J. Matas, C. Galambos, and J. Kittler, “Robust detection of lines using
the progressive probabilistic hough transform,” Computer Vision and
Image Understanding, vol. 78, no. 1, pp. 119–137, 2000.

[27] E. Rosten and T. Drummond, “Fusing Points and Lines for High Per-
formance Tracking,” in IEEE International Conference on Computer
Vision, 2005. ICCV 2005, vol. 2, 2005, pp. 1508–1515.

[28] J. Messias, R. Ventura, P. Lima, J. Sequeira, P. Alvito, C. Marques,
and P. Carriço, “A Robotic Platform for Edutainment Activities in a
Pediatric Hospital,” in IEEE International Conference on Autonomous
Robot Systems and Competitions (ICARSC), 2014, pp. 193–198.

[29] H. Pottmann and J. Wallner, Computational Line Geometry. Secaucus,
NJ, USA: Springer, 2001.

[30] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge University Press, 2003.

[31] S. L. V. Campbell, Singular systems of differential equations II.
Pitman Publishing (UK), 1982.

[32] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “Ros: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, vol. 3, no.
3.2, 2009, p. 5.

[33] E. Marchand and F. Chaumette, “Feature tracking for visual servoing
purposes,” Robotics and Autonomous Systems, vol. 52, no. 1, pp. 53–
70, 2005.

[34] E. Marchand, F. Spindler, and F. Chaumette, “ViSP for Visual Servo-
ing: A Generic Software Platform with a Wide Class of Robot Control
Skills,” IEEE Robotics and Automation Magazine, vol. 12, no. 4, pp.
40–52, 2005.

[35] FLIR Cameras. (2018) Flea3 usb3 vision cameras for industrial,
life science, traffic, and security applications. Accessed: 2018-07-27.
[Online]. Available: https://www.ptgrey.com

[36] D. Oberkampf, D. F. DeMenthon, and L. Davis, “Iterative Pose
Estimation Using Coplanar Feature Points,” Computer Vision and
Image Understanding (CVIU), vol. 63, no. 3, pp. 495–511, 1996.

https://www.ptgrey.com

	I INTRODUCTION
	II BACKGROUND
	II-A Dynamics of the 3D Straight Lines
	II-B Active Structure-From-Motion

	III ACTIVE STRUCTURE-FROM-MOTION USING 3D STRAIGHT LINES
	IV RESULTS
	IV-A Simulation Results
	IV-B Real Experiments
	IV-B.1 Single line estimation
	IV-B.2 Estimation of three lines

	V CONCLUSIONS
	References

