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Abstract— We present a novel concept for teach-and-repeat
visual navigation. The proposed concept is based on a mathe-
matical model, which indicates that in teach-and-repeat navi-
gation scenarios, mobile robots do not need to perform explicit
localisation. Rather than that, a mobile robot which repeats
a previously taught path can simply “replay” the learned
velocities, while using its camera information only to correct
its heading relative to the intended path. To support our claim,
we establish a position error model of a robot, which traverses
a taught path by only correcting its heading. Then, we outline
a mathematical proof which shows that this position error does
not diverge over time. Based on the insights from the model,
we present a simple monocular teach-and-repeat navigation
method. The method is computationally efficient, it does not
require camera calibration, and it can learn and autonomously
traverse arbitrarily-shaped paths. In a series of experiments, we
demonstrate that the method can reliably guide mobile robots in
realistic indoor and outdoor conditions, and can cope with im-
perfect odometry, landmark deficiency, illumination variations
and naturally-occurring environment changes. Furthermore, we
provide the navigation system and the datasets gathered at
www.github.com/gestom/stroll_bearnav.

I. INTRODUCTION

A considerable progress in visual-based systems capable
of autonomous navigation of long routes was achieved during
the last decade. According to [1], [2], vision-based navigation
systems can be divided into map-less, map-based, and map-
building based. Map-less navigation systems such as [3],
[4], [5] aim to recognise traversable structures (e.g. roads,
pathways, field rows, etc.) and use these to directly calcu-
late motion commands. Map-based navigation systems rely
on environment models that are known apriori [6]. Map-
building-based systems rely on maps for localisation and
navigation as well, but they can build these maps themselves.
Some of these vision-based methods can build maps and
localise the robot at the same time – these are referred to as
visual SLAM (Simultaneous Localisation and Mapping).

One of the most known visual SLAM systems,
Monoslam [7], processes an image stream from an
unconstrained-motion monocular camera in real-time, obtain-
ing the trajectory of the camera and a 3D map of salient
visual features [7]. Another method, the ORB-SLAM [8],
[9], allows exploiting stereo and depth information to build
both sparse and dense maps of the environment while esti-
mating the camera motion in 6D. Unlike the aforementioned
systems, LSD-SLAM [10] and DSO [11] do not rely on
image feature extraction but create dense, large-scale maps
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by directly processing the intensities of the image pixels. A
recent, comprehensive review of SLAM systems is presented
in [12]. While being an important component of many
navigation systems, SLAM by itself does not control the
mobile robot motion, and thus it does not navigate robots
per se. Rather than that, it provides an environment map and
a robot position estimate to the motion planning modules,
which then guide the robot towards the desired goal.

Thus, one of the typical use of SLAM methods in practice
is ‘teach-and-repeat’, where a robot uses SLAM during a
teleoperated drive, creating a map of the environment and use
this map later on to repeat the taught path [13], [14], [15].
This technique is analogous to a popular practice in industrial
robotics, where an operator teaches a robot to perform some
task simply by guiding its arm along the desired path. The
systems that use SLAM methods within the teach-and-repeat
paradigm were extended by techniques like experience-
based localisation [16], feature selection [17] or intrinsic
image [18], enabling their long-term deployment in environ-
ments that are challenging due to appearance changes [19],
[20], [21] or difficult illumination conditions [22].

In the long-term deployments, it’s assumed that the robots
start and end their forays at their recharging stations with
a known position, and occasional loss of localisation is
solved by request for human intervention [23]. Thus, teach-
and-repeat methods employed in long-term scenarios do not
typically address the kidnapped robot problem.

Some of the teach-and-repeat systems do not rely on
SLAM-built 3D maps of the environment, and employ visual
servoing principles while respecting robot dynamics [24].
For example [25], [26] create a visual path, which is a set
of images along the human-guided route, and then employ
visual servoing to guide robots across the locations these
images were captured at. Similarly, [27] represents the path
as consecutive nodes, each containing a set of salient visual
features, and uses local feature tracking to determine the
robot steering to guide it to the next node. The authors
of [28] extract salient features from the video feed on-
the-fly and associate these with different segments of the
teleoperated path. When navigating a given segment, their
robot moves forward and steers left or right based on the
positions of the currently recognised and already mapped
features. The segment end is detected by means of comparing
the mapped segment’s last image with the current view. The
same navigation principle was recently deployed on micro
aerial vehicles in [29].

At the time when the original SLAM-based teach-and-
repeat framework was published [14], another article [30]
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mathematically proved that (while being useful) explicit
localisation is not necessary for teach-and-repeat scenarios.
The results of [30] indicate that to repeat a taught path,
camera input needs to be used only to correct the robot
heading, leaving the position estimation to odometry. The
mathematical proof showed that for polygonal paths the
heading corrections suppress odometric errors, preventing
the overall position error of the robot to diverge. The proof
was supported by several long-term experiments [30], [31],
where a robot repeatedly traversed long paths in natural
environments over the period of one year. Thus, this SLAM-
less method showed good robustness to environment changes
even without using experience-based or feature-preselection
techniques [31]. However, the mathematical proof in [30]
was limited to paths consisting of straight segments. Thus,
the system based on [30] could be taught only polygonal
paths in a turn-move manner, and even a slight change of
the movement direction during the teaching phase required
to stop and turn the robot, which made the teaching tedious
and deployment of the system rather impractical.

In this paper, we reformulate the problem presented in [30]
in a continuous rather than a discrete domain. This allows us
to simplify and extend the mathematical proof of [30] to any
continuous trajectory, not only polygonal paths as in [30].
A navigation system based on this extended formulation
can thus be taught smooth, curved paths, which makes its
teaching faster and navigation more efficient.

The main contribution of this paper is the aforementioned
mathematical proof which indicates that in teach-and-repeat
scenarios, a robot can use its camera information only to
correct its heading and it does not have to build metric maps
or perform explicit localisation. Based on this principle, we
implement a teach-and-repeat navigation system and use it to
verify the aforementioned hypothesis in realistic conditions.
In a series of experiments, we compare the behaviour of the
system with the proposed mathematical model and demon-
strate the system’s ability to reliably guide robots along
the taught paths in adverse illumination conditions including
night. Furthermore, we present the system as an open-source,
ROS-based package and accompany the software with the
datasets gathered during the experiments performed [32].

II. NAVIGATION STABILITY

In this section, we analyse how heading correction influ-
ences the overall position error of a robot as it travels along
a taught path. At first, we establish a model of the robot
movement along the desired path and we outline a model of
the robot position error. Then, we examine conditions under
which the robot position error does not diverge.

A. Paths with non-zero curvature

Let us assume that a human operator placed a robot at an
initial position xp(0),yp(0) and then she drove the robot by
controlling its forward v and angular ω velocities. Let the
robot record its v and ω velocities together with the features
detected in its camera image and let the robot index the
features and velocities by the distance travelled. Thus, the

taught path P is defined by the initial point xp(0),yp(0),
velocity functions v(d), and ω(d), where d represents the
length of the path from xp(0),yp(0) to the current position.
Some locations (again indexed by d) on the trajectory are
also associated with image coordinates and descriptors of the
image features detected in the robot camera image. Since the
travelled distance d depends on the robot forward velocity
v(d) by d(t) =

∫ t
0 v(d(τ))dτ , one can express the taught

trajectory as xp(t) = xp(d(t)) and yp(t) = yp(d(t)).
Then, assume that a robot is placed at a position

xr(0),yr(0) and it is supposed to traverse the path P . The
robot, having no information about its position or orientation,
has to assume that it is at the start of the taught path,
and thus its position estimate is xp(0),yp(0). Therefore, the
robot sets its forward and angular velocity to v(0) and ω(0),
respectively. The robot also retrieves the image features it
saw at d = 0, matches them to the features in its current
view and adjust its angular velocity in a way, which would
decrease the horizontal distances (in the image coordinates)
of the matched feature pairs. As the robot moves forwards,
it calculates the distance travelled d and sets its forward
velocity to v(d) and angular velocity to ω(d)−ακ , where κ

is the most frequent horizontal displacement of the matched
feature pairs and α is a user-set constant dependent on the
robot dynamics and camera used.

rrx ,y
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l

x
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Fig. 1: Robot position error chart. The robot at a position
xr,yr uses a local feature map of the taught path P at the
position xp(t),yp(t).

Since the robot camera is facing in the direction of the
robot movement during the teaching phase, each feature that
is in the current map lies in the vicinity of the tangent to
the path at some finite distance, see Figure 1. Assuming
that the robot is able to turn fast enough to keep κ low
(i.e., it is able to turn so that the horizontal distances of the
mapped/detected feature pairs are low), the direction of its
current movement intersects the aforementioned tangent at
a certain distance l. The distance l is related to the spatial
distribution of the features in the traversed environment –
low l is typical for cluttered environments and high l occurs
mostly in large open areas.

Figure 1 illustrates that the error of the robot position
estimate over time x(t),y(t) can be defined as its position in a
local coordinate frame defined by the location and orientation
of the local map, which the robot uses to determine its
velocities. In other words, the robot position error x(t),y(t) is



defined by its position (xr(t),yr(t)) relatively to xp(t),yp(t).
In order to analyse the evolution of the position error
during the robot navigation, we form a differential equation
describing (ẋ = dx/dt, ẏ = dy/dt):

ẋ = + ω y − vr + v + sx
ẏ = − ω x − vy l−1 + sy,

(1)

where the terms ω y, ω x and −vr are caused by the rotation
and translation of the local coordinate system as the point
xp(t),yp(t) moves along the intended path, the term +v is
the movement of the robot along the path, vy l−1 reflects
the influence of the visual-based heading correction, and sx
and sy represent perturbations caused by image processing
imperfections, odometric errors and control system inac-
curacies. Since the errors sx and sy directly influence the
velocities ẋ, ẏ of the robot in our model, they encompass
not only additive errors, such as occasional wheel slippage
or imperfect image feature localisation, but also systematic
errors, such as miscalibration of the odometry causing the
vr and v to be different, or camera misalignment causing an
offset in robot heading corrections. Assuming that vr and v
are almost identical, and that their difference is included in
the perturbance sx, we can rewrite (1) in a matrix form:(

ẋ
ẏ

)
=

(
0 +ω

−ω −v l−1

)(
x
y

)
+

(
sx
sy

)
, (2)

which is a system of linear differential equations.
In general, a linear continuous system ẋ=Ax+s is stable,

i.e., the x does not diverge, if the real components of all
eigenvalues of the matrix A are smaller than 0. Thus, the
robot position error x,y does not diverge if the matrix A
from (2) has all real components of its eigenvalues negative.
Eigenvalues of a 2×2 matrix are obtainable by solving a
quadratic equation

λ (λ + v/l)+ω
2 = 0, (3)

λ1,2 =
−v/l ±

√
(v/l)2 −4ω2

2
. (4)

In cases when (v/l)2 < 4ω2, the expression
√

(v/l)2 −4ω2

is an imaginary number, and λ1,2 are complex conjugates
with the real component equal to −v/(2l). Since v and l are
always positive, −v/(2l) is always negative, which ensures
the system stability and non-divergence of the robot position
error x,y.

In the case of (v/l)2 ≥ 4ω2, the result of the square root
is positive and the real part of the λ2 eigenvalue

λ2 =
−v/l −

√
(v/l)2 −4ω2

2
(5)

is always negative. The eigenvalue λ1, which is calculated
as

λ1 =
−v/l +

√
(v/l)2 −4ω2

2
, (6)

is non-negative only if ω equals to 0. This means, that if the
robot does not move along a straight line, both eigenvalues
of A are lower than 0, and therefore, both longitudinal (x)

and lateral (y) components of the robot position error do not
diverge even if the robot uses its exteroceptive sensors only
to correct its heading. �

B. Paths containing straight segments

According to (1) and (2), if a robot travels along a straight
line, its longitudinal position error, represented by x in our
model, gradually grows due to the perturbances sx, which
are caused primarily by odometric drift. Let assume that
the taught path consists of straight segments conjoined by
segments with non-zero curvature. Let assume that a robot
started to traverse a straight segment at time t0 and ended
its traversal at t1. Its error after the segment traversal is
obtainable by integrating (2) over time as:(

x(t1)
y(t1)

)
=

(
1 0
0 e−

v
l (t1−t0)

)(
x(t0)
y(t0)

)
+

(
bx0
by0

)
.

(7)
Now, let assume that from the time t1 to the time t2, the robot
traverses a segment with non-zero curvature. Regardless of
the segment shape and curvature, the magnitude of x and y
decreases (see (2)), and thus we can state that(

x(t2)
y(t2)

)
= N1

(
x(t1)
y(t1)

)
+

(
bx1
by1

)
, (8)

where the eigenvalues of the matrix N1 are lower than one.
Rewriting the discrete system (7) in a compact form as x1 =
N0x0 +b0, and (8) as x2 = N1x1 +b1, and substituting (7)
into (8) results in:

x2 = N1(N0x0 +b0)+b1 = N1N0x0 +(N1b0 +b1). (9)

Equation 9 represents a discrete system, which allows to
estimate the robot position error after traversing a straight
segment followed by a curved one. Since the largest eigen-
value of N0 equals to 1 (see (7)) and both eigenvalues of N1
are smaller than 1, the eigenvalues of their product N1N0 are
also smaller than 1. This means that the discrete system (9)
is stable. Thus, position error of a robot, which repeatedly
traverses a path formed of conjoined straight and curved
segments does not diverge even if it is using its exteroceptive
sensors only to correct its heading.�

C. Convergence proof assumptions

The model that we established is based on two assump-
tions that might not be met in extreme cases. First, it assumes
that during the repeat phase, the robot perceives at least some
image features that it saw during the teaching. If the robot’s
initial position in the repeat phase is too far from the origin
of the teaching step, or if the robot deviates from the path too
much, the mapped features will not be in its field of view and
the navigation will fail. The actual position error that would
cause the navigation to fail depends on robot’s camera, path
shape and feature distance. In our experiments, we started
the repeat phase with an initial position error exceeding 1 m,
which is approximately an order of magnitude higher than
the accuracy of the navigation, see Figures 5, 7, and 9. Thus,
the typical navigation inaccuracy caused by sx and sy in (2)
is very unlikely to deviate from its path beyond the point



where it can correct its position error. In practice, a robot can
monitor the consistency of the feature matching and when
there are not enough correspondences, it can request human
intervention.

The second assumption is that the robot steering controller
gain (the parameter α in Section II-A) is set in a way, which
allows the robot to align the mapped and currently visible
features and steer itself as illustrated in Figure 1.

III. NAVIGATION METHOD DESCRIPTION

The considered navigation system works in two steps:
teach and repeat. In the teaching phase, a robot is guided
by an operator along a path, which is the robot supposed
to autonomously navigate in the repeat phase. During the
teaching, the robot extracts salient features from its onboard
camera image and stores its current travelled distance and
velocity. During the autonomous navigation, the robot sets its
velocity according to the travelled distance and compares the
image coordinates of the currently detected and previously
mapped features to correct its heading.

A. Image processing
The feature extraction method which detects salient ob-

jects in the onboard camera image is a critical component
of the navigation system because it is the only mechanism
which the robot employs to reduce its position error. Based
on the results from our previous work on image feature
stability in changing outdoor environments [33], we decided
to use the Speeded Up Robust Features (SURF) [34] and a
combination of the AGAST [35] and BRIEF [36] methods.

The feature extraction is composed of two steps, detection
of keypoints and description of their vicinity. The keypoint
detection indicates points in the image, which have sufficient
contrast that makes them easy to localise and track. In
the case of SURF, the keypoint detection is based on the
approximation of Hessian matrix determinant [34], while
AGAST [35] uses an optimised pixel brightness testing
scheme around the keypoint candidate. To form the descrip-
tion of a particular keypoint, BRIEF [36] calculates a binary
descriptor by comparing brightnesses of randomly-chosen
pixel pairs around the keypoint. The advantage of this de-
scriptor is an efficient calculation, low memory requirements,
and rapid matching. The SURF-based descriptor is based on
image intensity gradients near the keypoint [34]. While being
slower to calculate and match, it is more resistant to large
viewpoint changes.

Once the keypoints are detected and described, they can be
matched to the keypoints stored in a map and the associations
can be used to correct the robot heading. The quality of
the features depends on the quality of the input image
stream, which, in outdoor environments, suffers from varying
illumination. To compensate for the illumination instability,
we select the exposure and brightness of the robot camera
based on the results from [37], [38].

B. Teaching (mapping) phase
During the phase, the robot is driven through the en-

vironment by a human operator. The robot continuously

measures the distance it travelled and whenever the operator
changes the forward or angular velocity, the robot saves the
current distance and the updated velocity values – we refer
to this sequence as to a “path profile”. Additionally, the robot
continuously extracts image features from its onboard camera
image and every 0.2 m, it saves the currently detected image
features in a local map, which is indexed by the current
distance the robot travelled.

C. Repeat (navigation) phase

At the start of this phase, the robot loads the path profile
and creates a distance-indexed list of the local maps contain-
ing the image features. Then, it sets its forward and angular
velocities according to the first entry of the path profile and it
loads the first local map containing data about image features
visible at the start of the path. As the robot moves forwards,
it extracts image features from its onboard camera image
and matches them to the ones loaded from the local map.
The differences of the horizontal image coordinates of the
matched feature pairs (i.e., the positions of the features in the
camera image relative to the positions of the features in the
preloaded map) are processed by a histogram voting method.
The maximum of the histogram indicates the most frequent
difference in the horizontal positions of the features, which
corresponds to the shift of the image that was acquired during
the mapping phase relative to the image that is currently
visible from the onboard camera. This difference is used to
calculate a corrective steering speed, which is added to the
speed from the velocity profile.

If the histogram voting results are inconclusive due to the
low number of features extracted, e.g., when the robot faces a
featureless wall, the camera image is over- or under-exposed,
etc., the corrective angular speed is not added to the one from
the velocity profile. In a case the visual information is not
sufficient to determine the heading, the robot simply steers
according to the path profile data. As the robot proceeds
forwards along the taught path, it loads local maps and
path profile data that correspond to the distance travelled
and repeats the steps described above. Thus, the path profile
allows the robot to steer approximately in the same way as
during the teaching phase, and the image matching corrects
the robot heading whenever it deviates from the intended
path.

The principal advantage of the system is its robustness
to feature deficiency and uneven feature distribution in the
camera image. This makes the system robust to environment
appearance changes and adverse lighting conditions. The
histogram voting-based heading corrections are demonstrated
in videos available at [32].

D. System implementation

The navigation system was implemented in the Robotic
Operating System (ROS), in particular the version Kinetic.
The system structure is shown in Figure 2. The feature ex-
traction node extracts image features from the robot camera
and passes them to the mapper and navigator nodes. The
odometry monitor node receives data from robot odometry



Fig. 2: Software structure of the presented system

and measures travelled distance. It also sends special mes-
sages every time the robot passes a given distance (e.g.,
0.2 m) , which is used by the mapper node, see Section III-
B. The mapper node receives features from the feature
extraction node and saves them into the local map when
it receives the aforementioned message from the odometry
monitor node. It also saves the path profile. The map
preprocessor node loads all local maps and path profile, and
then sends them to the navigator node based on the travelled
distance received from the odometry monitor. The navigator
node receives the velocity profile and local feature maps
and it matches the features from the maps to the currently
visible features from the feature extraction node. It performs
the histogram voting described in Section III-C, calculates
the robot velocities and steers it along the path. All the
aforementioned modules were implemented as ROS action
servers with dynamically reconfigurable parameters and are
available as C++ open source code at [32].

IV. EXPERIMENTAL EVALUATION

The experimental evaluation of the proposed navigation
system consists of 3 different experiments performed with 2
different robotic platforms. The aim of the first experiment
was to demonstrate that without the visual feedback or path
profile information, the robot is not able to repeat the taught
path. The second experiment, which is performed under
controlled conditions and an external localisation system,
demonstrates the accuracy of the motion model established in
Section II and the ability of a minimalistic robotic platform
to converge to the taught trajectory during multiple traversals
of the intended path. The third experiment demonstrates
the trajectory convergence in challenging outdoor conditions
including night.

A. Platforms

For indoor experiments, we used a lightweight robot based
on an MMP-5 platform made by TheMachineLab 3. Its base
dimensions are 0.3×0.3×0.1 m, its mass is 2.2 kg, and it
can carry additional 2 kg payload while achieving speeds
over 1.2 ms−1. The robot has a four-wheel differential drive
with a control unit which allows setting PWM signal duty

on individual motors by a simple serial protocol. Since the
platform does does not provide any odometric information,
we estimate the travelled distance simply by the time and
motors’ PWM duty. Its vision system is based on a single

Fig. 3: MMP-5 and Cameleon ECA used in our experiments.

USB camera, which provides 320×240 colour images with
a 45◦×35◦ field of view. The computer is based on an
AT3IONT-I miniATX board with an Intel Atom 330 CPU
running at 1.6GHz with a 2GB RAM. Due to its compu-
tational constraints, this robot is using the AGAST/BRIEF
features.

For outdoor experiments, we used a heavy duty, tracked
platform, called CAMELEON ECA, which is equipped with
onboard PC and two cameras as primary sensors. Unfortu-
nately, the cameras are positioned very low, which causes
problems in grassy terrains and the onboard PC is too slow.
Thus, we equipped the robot with a superstructure with
several equipment mounts, where we placed the TARA USB
stereo camera (we use only the left camera image in our
experiments), Intel i3 laptop with 8GB RAM and the Fenix
4000 lumen torch, see Figure 3.

B. Experiment I: Proof-of-concept

To evaluate the system’s ability to repeat the taught path
and to correct position errors that might arise during the nav-
igation, we have taught the CAMELEON platform a closed,
approximately 25 m long path in the outdoor environment
in the Czech Technical University campus. The shape of
the trajectory is a closed, smooth, oval-shaped curve. After
mapping, we let the robot to drive along the taught path
repeatedly. Every time the robot completed a path loop, we
measured its distance relative to the path end/start. In this
way, we quantitatively assess the robot’s ability to adhere to
the path it has been taught. The experiments were performed
during the evening, and therefore, the lighting conditions
changed from high to low illumination, which made the
image-based navigation particularly difficult. Facing changes
in environment and lighting conditions is inevitable for long-
term navigation, that is why we chose this particular setup.

To demonstrate the interplay between the path profile
velocity setting and vision-based heading correction, we let
the robot to drive the path autonomously using only the
velocities remembered from the teaching phase (i.e. path
profile), then only using visual information and then the
combination of these. In the first test, we have deactivated
the vision-based heading corrections and we let the robot



move according to the path profile only – this corresponds
to the term vy l−1 in (2) being equal to 0. The model (2)
predicts that the errors of sx and sy will gradually accumulate,
drifting the robot off the taught path. As predicted by the
model, during this trial the robot slowly (by ∼1 m every
loop) diverged from the taught path because of the inaccurate
odometry.

During the second trial, we have let the robot run with the
method described in [30]. Thus, the robot did not use the path
profile information, but it moved forward with a constant
speed and steered its heading according to the results of
the image feature matching and histogram voting. In this
case, the robot diverged from the taught path as soon as it
was supposed to perform a sharper turn, because the visual
heading correction by itself could not perform sharp turns
and the mapped features were lost from robot’s field of view.

The final trial used both path profile and visual feedback as
described in Section III. To verify if the robot can correct po-
sition errors that arise during navigation, we have started the
autonomous navigation, not at the path start, but 0.9 m away
in longitudal and 0.8 m away in lateral direction. The reason
for the robot displacement is to demonstrate that unlike in
the previous two cases, where the position error diverged, a
combination of the vision and path profile information would
allow the robot to suppress the error and adhere to the taught
trajectory. As expected, each time the robot completed the
taught path, its position error decreased, which confirms the
assumptions stated in Section II. Further details about this
experiment are provided in a short paper [39].

C. Experiment II: Position error model verification

The indoor experiments were meant to compare the real
system behaviour with the model of the robot movement.
In these experimental trials, we used the MMP-5 robot
platform equipped with a circular marker, which allows for
an accurate tracking of the robot position. In the first trial,
we guided the robot along a 10 m long oval-shaped path
consisting of two half-circle segments connected with two
straight lines, see Figure 4. Then, we displaced the robot
1 m away from the path start and let it traverse along the
path autonomously 20 times while recording its position with
an external localisation system [40], [41].

Figure 4 shows the robot trajectory during the autonomous
traversals, which slowly converges to the mapped path. Each
time the robot finished one path traversal, we measured its
position relative to the path start. Fig. 5 shows that the
position error diminished after two loops, stabilising at 7 cm.

The convergence of the robot position during the au-
tonomous travels is visible in Figure 4 and the robot position
error evolution along the first path traversal in Figure 5. The
error evolution confirms the mathematical model presented
in Section II – one can observe that during the first 5 meters,
where the path is curved, the position error diminished
rapidly. Once the robot starts to traverse the straight segment,
the position error stabilises and it starts to diminish once
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Fig. 4: Indoor trial I: Robot path during teach and repeat.
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Fig. 5: Indoor trial I: Robot position error during the first au-
tonomous path traversal (left) and during the 20 autonomous
path repeats (right).

again when the robot starts to traverse the second semi-
circular path segment. Since the robot is nonholonomic, skid-
steer drive, the convergence of the position error implies that
its orientation conforms to the model (1).

In the second trial, we guided the robot along a 17 m
long lemniscate-shaped path consisting of four half-circle
segments connected with three straight ones and let it traverse
the path 19 times, see Figure 6. This trial was performed
in a larger hall than the previous one, and therefore, the
average distance of landmarks is bigger than in the previous
case, causing slower convergence of the robot trajectory, see
Figure 7. Furthermore, the start and end of the taught path
are about 0.15 m apart, which causes the robot to start with
0.15 m error during subsequent path traversals, which is
notable in Figure 6, where the first part of the repeated path
is slightly displaced from the taught one. Similarly to the
previous case, the error evolution shown in the left part of
Figure 6 conforms with the mathematical model presented in
Section II – the error reduction is slower during traversal of
the straight segments of the taught path. In these experiments,
a robot without any odometric system, equipped with a low
resolution, uncalibrated camera which suffered from motion
blur (see [32]) reliably traversed over 700 m, reducing the
initial ∼1 m position errors below ∼0.1 m.
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Fig. 6: Indoor trial II: Robot path during teach and repeat.
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Fig. 7: Indoor trial II: Robot position error during the
first autonomous path traversal (left) and during the 19
autonomous path repeats (right).

D. Experiment III: System robustness

The purpose of final outdoor experiments is to demonstrate
the ability of the system to cope with variable outdoor
illumination. The first trial was performed during a day,
where a robot was supposed to traverse a 60 m long path at
the Hostibejk hill in Kralupy nad Vltavou, see Figures 3 and
8. The second and third trials were performed at night at the
same location. During the first trial, we created the map in a
clear sky weather and let the robot traverse the path 7 times
one month later during a cloudy day.

In the second trial, which was performed at night, we
attached a 4000 lumen searchlight to the robot’s superstruc-
ture. The location of the trial was free of any artificial light
sources; so, the most of the robot path, it saw only parts
of the scene, which it illuminated itself, see Figure 8. After
creating the local map, we displaced the robot by 1.5 m and
let it traverse the path 7 times (the number of traversals is
limited by the capacity of the searchlight batteries).

The third trial was performed at the same location, which
at this time was partially illuminated, because three of the
local street lamps were repaired in the meantime. Again,
after teaching the robot a 60 m long path, we displaced the
robot by 1.5 m and let it traverse the path 7 times. During
these trials, we initiated the autonomous run 1.5 m from the

Fig. 8: Outdoor experiment: Hostibejk site at night and day
from the robot perspective.
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Fig. 9: Outdoor experiments: Robot position error relatively
to the path start after traversing the path n times.

taught path start and then measured the robot displacement
from the path start every time it completed the taught
path. Figure 9 shows that the initial position error quickly
diminished to values around 0.2–0.3 m. In these experiments,
a tracked robot with imperfect odometry, equipped with
an uncalibrated camera working in low-visibility conditions
(see [32]) reliably traversed over 1.2 km, reducing the initial
∼1.5 m position errors to ∼0.2–0.3 m. Furthermore, we did
10 days of additional tests at the same site over a period of
one month. In these tests, the robot successfully traversed the
taught path 66 times, 21 during the day, 25 during the night
and 20 during the sunset and covered distance over 4 km.

To compare the system’s robustness to the state-of-the-art
SLAM-based methods, we processed the data gathered dur-
ing these trials by the ORB-SLAM [8], which we modified
to take info account odometric information when initialising
camera position estimation. To do so, we had to calibrate
the camera and process the gathered data (in the form of
ROSbags) by the ORB-SLAM. In our tests, we had to replay
the ROSbags from the day trial 2.5× slower than in the
original experiment several times because of occasional loss
of tracking and subsequent breakdown of the ORB-SLAM
method. Despite trying several settings of ORB-SLAM, we
could not build a consistent map from the night data due to
feature deficiency and motion blur. This comparison indicates
the proposed method’s robustness to difficult illumination
conditions.

V. CONCLUSION

We formulated a mathematical proof which indicates that
in teach-and-repeat scenarios, explicit localisation of a mo-
bile robot along the taught route is not necessary. Rather, a
robot navigating through a known environment can use an
environment map and visual feed to correct only its heading,



while measuring the travelled distance only by its odometry.
Based on this principle, we designed and implemented a
simple teach-and-repeat navigation system and evaluated
its performance in a series of experimental trials. These
experiments confirmed the validity of the aforementioned
proof, showing that this kind of simple navigation is suf-
ficient to keep the position error of the robot limited. The
requirement to establish only the robot heading simplifies
the visual processing and makes it particularly robust to
situations, where the detected and mapped features cannot be
associated reliably. This makes our system capable of han-
dling difficult lighting conditions and environmental changes,
which is demonstrated in several experiments. Compared to
the previous work [30], the mathematical proof of bearing-
only navigation presented here is simpler, shorter and is not
limited to polygonal routes only. Thus, unlike in [30], where
the robot could only learn polygonal routes in a turn move
manner, our navigation system allows to learn arbitrarily-
shaped routes, making its real-world deployment more fea-
sible. Furthermore, we show that the robot position error
is asymptotically stable, whereas in our previous work [30]
we only proved its Lyapunov stability. In our latest work,
we extended the system so that it’s able to improve its
performance by exploiting the experience gathered during
autonomous traversals [42], [38], [43].
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[38] L. Halodová et al., “Adaptive image processing methods for outdoor
autonomous vehicles,” in Modelling and Simulation for Autonomous
Systems (MESAS), 2018, to appear.
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[42] E. Dvořáková, “Temporal models for mobile robot visual navigation,”
Bachelor thesis, Czech Technical University, May 2018.
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