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Abstract— Unsupervised depth estimation from a single im-
age is a very attractive technique with several implications in
robotic, autonomous navigation, augmented reality and so on.
This topic represents a very challenging task and the advent
of deep learning enabled to tackle this problem with excellent
results. However, these architectures are extremely deep and
complex. Thus, real-time performance can be achieved only
by leveraging power-hungry GPUs that do not allow to infer
depth maps in application fields characterized by low-power
constraints. To tackle this issue, in this paper we propose a
novel architecture capable to quickly infer an accurate depth
map on a CPU, even of an embedded system, using a pyramid of
features extracted from a single input image. Similarly to state-
of-the-art, we train our network in an unsupervised manner
casting depth estimation as an image reconstruction problem.
Extensive experimental results on the KITTI dataset show that
compared to the top performing approach our network has
similar accuracy but a much lower complexity (about 6% of
parameters) enabling to infer a depth map for a KITTI image
in about 1.7 s on the Raspberry Pi 3 and at more than 8 Hz on
a standard CPU. Moreover, by trading accuracy for efficiency,
our network allows to infer maps at about 2 Hz and 40 Hz
respectively, still being more accurate than most state-of-the-
art slower methods. To the best of our knowledge, it is the
first method enabling such performance on CPUs paving the
way for effective deployment of unsupervised monocular depth
estimation even on embedded systems.

I. INTRODUCTION

Several application fields such as robotic, autonomous
navigation, augmented reality and many others can take
advantage of accurate and real-time depth measurements.
Popular active sensors such as LIDAR, Kinect, Time-of-
Flight (ToF) infer depth by perturbing the sensed envi-
ronment according to different technologies. Despite their
effectiveness in specific circumstances (e.g., the Kinect for
close range indoor deployment), passive sensors based on
binocular/multi-view stereo, structure from motion and, more
recent, monocular depth sensors are very attractive. In fact,
they are potentially cheaper, smaller and more lightweight
than active sensors. Moreover, passive depth sensors don’t
have moving parts like LIDAR and don’t require to perturb
the sensed environment thus avoiding interference with other
devices.

The literature concerned with passive depth sensors is
large but in recent years most methods have been outper-
formed by approaches leveraging on Convolutional Neural
Networks (CNNs). In particular, CNNs allowed to effectively
increase the accuracy of passive techniques by casting the
depth data generation as a supervised learning task. CNNs
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Fig. 1: (Top) Input image from KITTI dataset [1]. Qualitative
comparison between state-of-the-art unsupervised monocular
depth estimation method [2] (Middle) and the proposed PyD-
Net architecture (Bottom). Our model runs in real-time on
standard CPUs and takes, in its most accurate configuration
reported in this figure, 1.7 s on the low-power ARM CPU
of the Raspberry Pi 3 with an overall power consumption,
including a web-camera, of about 3.5 W.

also enabled depth estimation from a single input image
thus avoiding acquisitions from multiple view points for this
purpose. While some seminal works concerned with monoc-
ular depth estimation [3], [4], [5] require a large amount of
training samples with depth labels, more recent works [6], [2]
exploit unsupervised signals in form of image reconstruction
losses to train CNNs on monocular sequences [6] or stereo
pairs [2] required only for training and not for inference.
With this latter strategy, difficult to source ground-truth
labels are replaced with standard imagery enabling to collect
training samples easily and in large amounts. Nevertheless,
current architectures for monocular depth estimation are very
deep and complex; for these reasons they require dedicated
hardware such as high-end and power-hungry GPUs. This
fact precludes to infer depth from a single image in many
interesting applications fields characterized by low-power
constraints (e.g. UAVs, wearable devices, ...) and thus in
this paper we propose a novel architecture for accurate and
unsupervised monocular depth estimation aimed at overcom-
ing this issue. By building our deep network inspired by the
success of pyramidal architectures in other fields [7], [8] we
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are able to decimate the amount of parameters w.r.t. state-
of-the-art solutions thus dramatically reducing both memory
footprint and runtime required to infer depth. We call our
model Pyramidal Depth Network (PyD-Net) and we train it
in unsupervised manner as proposed in [2], representing the
top-performing method in this field. Compared to such work,
our model is about 94% smaller enabling on CPUs a notable
speed-up at the cost of a slightly reduced depth accuracy.
Moreover, our proposal outperforms other state-of-the-art
methods. Our design strategy enables the deployment of
PyD-Net even on embedded devices, such as the Raspberry
Pi 3, thus allowing to infer a full depth map at about 2
Hz using less than 150 MB out of 1 GB memory available
in such inexpensive device. To the best of our knowledge,
our proposal is the first approach enabling fast and accurate
unsupervised monocular depth estimation on standard and
embedded CPUs.

II. RELATED WORK

Although depth estimation from images has a long history
in computer vision [9], methods using a single image are
much more recent and mostly based on machine learning
techniques. These works and other efficient end-to-end ap-
proaches for dense prediction tasks such as optical flow are
relevant to our work.

Supervised monocular depth estimation. Saxena et al.
[10] proposed Make3D, a patch-based model estimating 3D
location and orientation of planes by means of a Markov
Random Field framework. It suffers in presence of thin
structures and does not process global context information
because of its local nature. Liu et al. [5] trained a CNN
to estimate depth from single camera, while Ladicky et al.
[3] included semantic information into their model to obtain
more accurate predictions. In [11] Karsch et al. obtained
more consistent predictions by casting the problem as a
nearest neighbor search with respect to depth images from
a training set required at testing time. Eigen et al. [4]
deployed a multi-scale CNN trained on a large dataset to
infer depth for each pixel in a single image. Differently
from [5], whose network was trained to compute more robust
data terms and pairwise terms fed to a further optimization
step, this approach directly infers the depth map. Several
works followed [4] to improve its performance by means
of CRF regularization [12], casting the problem as a clas-
sification task [13], designing more robust loss functions
[14] or using scene priors for joint plane normals estimation
[15]. Ummenhofer et al. [16] proposed DeMoN, a deep
model to infer both depth and ego-motion from a pair of
subsequent frames acquired by a single camera. Common
to all these works is the supervised paradigm adopted for
training, requiring a large amount of labeled data particularly
crucial for successfully learn a robust depth representation
from a single image.

Unsupervised monocular estimation. Other recent works
exploit CNNs without using labeled data. In particular, Flynn
et al. [17] proposed DeepStereo, a deep architecture trained
on images acquired by multiple cameras to synthesize images

from new view points. In the context of binocular stereo,
given an input reference image, Deep3D by Xie et al.
[18] generates the corresponding target view by learning a
distribution over all possible disparities at each pixel on the
source image. For training, an image reconstruction loss is
minimized. Similarly, Garg et al. [19] trained a network for
monocular depth estimation using the same objective loss
principle over a stereo pair, using Taylor approximation to
make their loss linear and fully differentiable thus making
their framework trainable in end-to-end manner but resulting
in a more challenging objective function to optimize.

To overcome this issue, Godard et al. [2] used a bilinear
sampling [20] to generate images from depth predictions.
At training time, the model learns to predict depth for both
images of a stereo pair by processing reference image only,
enabling a left-right consistency check when computing the
loss signal to minimize and a simple post-processing step
to obtain a more accurate prediction. Currently, this work
represents state-of-the-art for monocular depth estimation.
Poggi et al. [21] improved [2] with an interleaved training
technique, simulating a trinocular setup out of a binocular
stereo dataset allowing to obtain a more accurate model.
While these methods require rectified stereo pairs for train-
ing, Zhou et al. [6] trained a model to infer depth from
unconstrained video sequences by computing a reconstruc-
tion loss between subsequent frames and predicting, at the
same time, the relative pose between them. This removes
the requirement for stereo pairs, but produces a less accurate
final model.

Pyramidal networks for optical flow estimation.
Encoder-decoder architectures [22] have been widely
adopted in computer vision when dealing with dense predic-
tion. Most of them use skip connections between encoding
and decoding parts to preserve fine details as done by U-net
[23]. While these models count a large number of trainable
parameters, pyramidal architectures recently proved to be
very effective for optical flow [8], [24], outperforming U-
net like architectures in terms of accuracy and, at the same
time, decimating network parameters.

III. PROPOSED METHOD

In this paper we propose a novel framework for accurate
and unsupervised monocular depth estimation with very
limited resource requirements enabling such task even on
CPUs of low power devices. State-of-the-art architectures
proposed for this purpose [2] run in real time on high-end
GPUs (e.g., Titan X), increasing the running time to nearly
a second when running on standard CPUs and more than 10
s on embedded CPUs. Moreover, they count a huge number
of parameters and thus require a large amount of memory
at forward time. For these reasons, real-time performance
with such models are feasible only with high-end and power
hungry GPUs.

To overcome this issue, we propose a compact CNN,
enabling accuracy comparable to state-of-the-art, with very
limited memory footprint at test time (i.e., < 150 MB) and
capable to infer depth at about 2 fps on embedded devices



such as the Raspberry Pi 3 and tens of fps on standard CPUs
whereas other methods are far behind.

To this aim some recent works in other fields have shown
how classical computer vision principles, such as image
pyramid, can be effectively adopted to design more compact
networks. SpyNet [8] and PWC-Net [24] are examples in the
field of optical flow estimation with the latter representing
state-of-the-art on MPI Sintel and KITTI flow benchmarks.
The main difference with U-Net like networks is the presence
of multiple small decoders working at different resolutions,
directly on a pyramid of images [8] or features [24] extracted
by a very simple encoder compared to popular ones such
as VGG [25] or ResNet [26]. Results at each resolution
are up-sampled to the next level to refine flow estimation.
This method allows for a large reduction in the number of
parameters together with a faster computation in optical flow
and we follow a similar strategy for our monocular depth
estimation network depicted in Figure 2. To train PyD-Net
we adopt the unsupervised protocol proposed by Godard et
al. [2] by casting depth prediction as an image reconstruction
problem. For training unlabeled stereo pairs are required:
for each sample, the left frame is processed through the
network to obtain inverse depth maps (i.e., disparity maps)
with respect to left and right images. These maps are used
to warp the two input images towards each other and the
reconstruction error is used as supervisory signal for back-
propagation.

IV. PYD-NET ARCHITECTURE

In this section we describe the proposed PyD-Net ar-
chitecture depicted in Figure 2, a network enabling results
comparable to state-of-the-art methods but with much less
parameters, memory footprint and execution time.

A. Pyramidal features extractor
Input features are extracted by a small encoder architecture

inspired by [24], made of 12 convolutional layers. At full
resolution, the first layer produces the first level of the
pyramid by applying convolutions with stride 2 followed
by a second convolutional layer. Adopting this scheme at
each level the resolution is decimated down to the lowest
resolution (highest level of the pyramid) producing a total
of 6 levels, from L1 to L6, corresponding respectively to
image resolution from half to 1

64 of the original input size.
Each down-sampling module produces a larger number of
extracted features, respectively 16, 32, 64, 96, 128, and 192,
and each convolutional layers deploys 3 × 3 kernels and
is followed by a leaky ReLU with α = 0.2. Despite the
small receptive field, this coarse-to-fine strategy allows us to
include global context at the higher levels (i.e., lower image
resolution) of the pyramid as well as to refine details at the
lower levels (i.e., higher image resolution) and at the same
time to significantly reduce the amount of parameters and
memory footprint.

B. Depth decoders and upsampling
At the highest level of the pyramid, extracted features

are processed by a depth decoder made of 4 convolutional
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Fig. 2: PyD-Net architecture. A pyramid of features is
extracted from the input image and at each level a shallow
network infers depth at that resolution. Processed features
are then up-sampled to the above level to refine estimation,
up to the highest one.

layers, producing respectively 96, 64, 32 and 8 feature maps.
The output of this decoder is used for two purposes: i) to
extract a depth map at the current resolution, by means of
a sigmoid operator and ii) to pass the processed features
at the next level in the pyramid, by means of a 2 × 2
deconvolution with stride 2 which increases by a factor 2 the
spatial resolution. The next level concatenates the features
extracted from the input frame with those up-sampled and
process them with a new decoder, repeating this procedure
up to the highest resolution level. Each convolutional layer
uses 3 × 3 kernels and is followed, as for deconvolutional
layers, by leaky ReLU activations, except the last one which
is followed by a Sigmoid activation to normalize the outputs.
With such design, at each scale PyD-Net learns to predict
depth at full resolution. We will show in the experimental
results how this design strategy, up-sampling depth maps
from lower resolution decoders, allows to quickly infer depth
maps with accuracy comparable to state-of-the-art. Indeed,
it requires only a subset of decoders at test time reducing
memory requirements and runtime thus making our proposal



suited for CPU deployment.

C. Training loss

We train PyD-Net to estimate depth at each resolution
deploying a multi-scale loss function as sum of different
contributions computed at scales s ∈ [1..6]

Ls = αap(Llap+Lrap)+αds(Llds+Lrds)+αlr(Lllr+Lrlr) (1)

The loss signal computed at each level of the pyramid
is a weighted sum of three contributions computed on
left and right images and predictions as in [2]. The first
term represents the reconstruction error Lap, measuring the
difference between the original image I l and the warped one
Ĩ l by means of SSIM [28] and L1 difference.

Llap =
1

N

∑
i,j

α
1− SSIM(I li,j , Ĩ

l
i,j)

2
+ (1−α)||(I li,j , Ĩ li,j)||

(2)
The disparity smoothness term, Lds, discourages depth

discontinuities according to L1 penalty unless a gradient δI
occurs on the image.

Llds =
1

N

∑
i,j

|δxdli,j |e−||δxI
l
i,j || + |δydi,j |e−||δyI

l
ij || (3)

The third and last term includes the left-right consistency
check, a well-known cue from traditional stereo algorithms
[9], enforcing coherence between predicted left dl and right
dr depth maps.

Lllr =
1

N

∑
i,j

|dli,j − dri,j+dli,j | (4)

The three terms are also computed for right image pre-
dictions, as shown in Equation 1. As in [2], the right input
image and predicted output are used only at training time,
while at testing time our framework works as a monocular
depth estimator.

V. IMPLEMENTATION DETAILS AND TRAINING PROTOCOL

We implemented PyD-Net in TensorFlow [29] and for
experiments we deployed a pyramid with 6 levels (i.e., from
1 to 6) producing depth maps at a maximum resolution of
half the original input size, up-sampled at full resolution by
means of bilinear interpolation. We adopt this strategy since
in our experiments deploying levels up to full resolution with
PyD-Net does not improve the accuracy significantly and
increases the complexity of the network. With this setting,
PyD-Net counts 1.9 million parameters and runs in about
15ms on a Titan X Maxwell GPU while [2], with the VGG
model, counts 31 million parameters and requires 35ms.
More importantly, our simpler model enables its effective
deployment even on low-end CPUs aimed at embedded
systems or smartphones. Source code is available at https:
//github.com/mattpoggi/pydnet.

We assess the effectiveness of our proposal with respect to
the result reported in [2]. For a fair comparison with [2] we
train our network with the same protocol for 50 epochs on
batches of 8 images resized to 512×256, using 30 thousand
images from KITTI raw data [1]. Moreover, we also provide
results training PyD-Net for 200 epochs, showing how the
final accuracy increases. It is worth noting that a longer
schedule does not improve the performance of [2], already
reaching top performance after 50 epochs. On a Titan X GPU
training takes about, respectively, 10 and 40 hours. Note that
[2] requires 20 hours for 50 epochs. The weights for our loss
terms are always set to αap = 1 and αlr = 1, while left-
right consistency weight is set to αds = 0.1/r, being r the
down-sampling factor at each resolution layer as suggested in
[2]. The inferred maps are multiplied by 0.3× image width,
producing an inverse depth map proportional to maximum
disparity between the training pairs. We use Adam optimizer
[30] with β1 = 0.9, β2 = 0.999, and ε = 10−8. We used a
learning rate of 10−4 for the first 60% epochs, halved every
20% epochs until the end. We perform data augmentation
by randomly flipping input images horizontally and applying
the following transformations: random gamma correction in
[0.8,1.2], additive brightness in [0.5,2.0], and color shifts in
[0.8,1.2] for each channel separately.

In [2] an additional post-processing step was proposed to
filter out and replace artifacts near depth discontinuities and
image borders induced by training on stereo pairs. However,
it requires to forward the input image twice thus doubling
the processing time and memory, for this reason we do not
include it in our evaluation.

VI. EXPERIMENTAL RESULTS

We evaluate PyD-Net with respect to state-of-the-art on the
KITTI dataset [1]. In particular, we first test the accuracy of
our model on a portion of the full KITTI dataset commonly
used in this field [4], then we focus on performance analysis
of PyD-Net on different hardware devices, highlighting how
our model can run even on low-powered CPU at about 2
Hz still enabling satisfying results, even more accurate than
most techniques known in literature.

A. Accuracy evaluation on Eigen split

We compare the performance of PyD-Net with respect to
known techniques for monocular depth estimation using the
same protocol of [2]. To do so, we use a test split of 697
images as proposed in [4], covering a total of 29 scenes out
of the 61 available from KITTI raw data. The remaining
32 scenes are used to extract 22600 frames for training as in
[19], [2]. Velodyne 3D points are reprojected on the left input
image to obtain ground-truth labels on which evaluate depth
estimation. As in [2], all methods use the same crop as [4] to
be directly comparable. Table I reports extensive comparison
with both supervised [4], [5] and unsupervised methods [6],
[2]. To compare the performance of the considered methods
we use metrics commonly adopted in this field [4] and we
split our experiments into four main comparisons that we are
going to discuss in detail.

https://github.com/mattpoggi/pydnet
https://github.com/mattpoggi/pydnet


Lower is better Higher is better
Method Training dataset Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253 Params.

Eigen et al. [4] K 0.2035 1.5484 6.3074 0.2825 0.7024 0.8905 0.9585 54.2M
Liu et al. [5] K 0.2014 1.5845 6.4715 0.2734 0.6805 0.8984 0.9671 40.0M

Zhou et al. [6] K 0.2086 1.7686 6.8566 0.2836 0.6786 0.8856 0.9576 34.2M
Godard et al. [2] K 0.1481 1.3441 5.9271 0.2471 0.8031 0.9221 0.9642 31.6M

PyD-Net (50) K 0.1633 1.3993 6.2533 0.2623 0.7593 0.9113 0.9614 1.9M
PyD-Net (200) K 0.1532 1.3632 6.0302 0.2522 0.7892 0.9182 0.9633 1.9M

Garg et al. [19] cap 50m K 0.1694 1.0804 5.1044 0.2734 0.7404 0.9044 0.9624 16.8M
Godard et al. [2] cap 50m K 0.1401 0.9761 4.4711 0.2321 0.8181 0.9312 0.9692

PyD-Net (50) cap 50m K 0.1553 1.0453 4.7763 0.2473 0.7743 0.9213 0.9673

PyD-Net (200) cap 50m K 0.1452 1.0142 4.6082 0.2272 0.8132 0.9341 0.9721

Zhou et al. [6] CS+K 0.1984 1.8364 6.5654 0.2754 0.7184 0.9014 0.9604

Godard et al. [2] CS+K 0.1241 1.0761 5.3111 0.2191 0.8471 0.9421 0.9731

PyD-Net (50) CS+K 0.1483 1.3163 5.9293 0.2442 0.8003 0.9253 0.9672

PyD-Net (200) CS+K 0.1462 1.2912 5.9072 0.2453 0.8012 0.9262 0.9672

TABLE I: Evaluation on KITTI [1] using the split of Eigen et al. [4]. For training, K refers to KITTI dataset, CS+K means
training on CityScapes [27] followed by fine-tuning on KITTI as outlined in [2]. On top and middle of the table evaluation
of all existing methods trained on K, at the bottom evaluation of unsupervised methods trained on CS+K. We report results
for PyD-Net with two training configurations.

In the first part of Table I, we compare PyD-Net trained
on 50 and 200 epochs to supervised works by Eigen et al.
[4] and Liu et al. [5], as well as with other unsupervised
techniques by Zhou et al. [6] and Godard et al. [2]. We report
for each method the amount of parameters and, for each
metric, the rank with respect to all the considered models.
Excluding [2] we can notice how PyD-Net, with a very low
number of parameters and with both training configurations,
significantly outperforms all considered methods on all met-
rics with the exception of δ < 0.1253 on which Liu et al. [5]
is even better than [2]. Compared to [2], our network is less
accurate but training PyD-Net for 200 epochs yields almost
equivalent results.

To compare with the results reported by Garg et al. [19], in
the middle part of Table I we evaluate predicted maps up to
a maximum depth of 50 meters as in [2]. Despite the smaller
amount of parameters, reduced by a factor 8+, our network
outperforms [19] with both training configurations and has
performance very close, and even better with metrics δ <
0.1252 and δ < 0.1253 training for 200 epochs, to Godard
et al. [2] a network counting more than 16× parameters. As
for previous experiment we can notice that training PyD-Net
for 200 epochs always yields better accuracy.

In the third part of Table I, we compare the performance
of PyD-Net with respect to Zhou et al. [6] and Godard et
al. [2] unsupervised frameworks when trained on additional
data. In particular, we first train the network for 50 epochs
on CityScapes dataset and then we perform a fine-tuning
on KITTI raw data according to the learning rate schedule
described before. We can notice how training on additional
data is beneficial for all the networks substantially confirming
the previous trend. Godard et al. method outperforms all
other approaches while training PyD-Net for 200 epochs
yields overall best performance for this method. However,
even training PyD-Net for only 50 epochs always enables
to achieve a better accuracy compared to the much complex
network by Zhou et al. [6].

To summarize, our lightweight PyD-Net architecture out-

Power 250+ [W] 91+ [W] 3.5 [W]
Model Res. Titan X i7-6700K Raspberry Pi 3

Godard et al. [2] F 0.035 s 0.67 s 10.21 s
Godard et al. [2] H 0.030 s 0.59 s 8.14 s

PyD-Net H 0.020 s 0.12 s 1.72 s
Godard et al. [2] Q 0.028 s 0.54 s 6.72 s

PyD-Net Q 0.011 s 0.05 s 0.82 s
Godard et al. [2] E 0.027 s 0.47 s 5.23 s

PyD-Net E 0.008 s 0.03 s 0.45 s

TABLE II: Runtime analysis. We report for PyD-Net and
[2] the average runtime required to process the same KITTI
image with 3 heterogeneous architectures at Full, Half, Quar-
ter and Eight resolution. The measured power consumption
for the Raspberry Pi 3 concerns the whole system plus a
Logitech HD C310 USB camera while for CPU and GPU it
concerns only such devices.

performs more complex state-of-the-art methods [4], [5],
[6], [19] and has results in most cases comparable to top-
performing approach [2]. Therefore, in the next section we
evaluate in detail the impact of our design with respect to
this latter method in terms of accuracy and execution time,
on three heterogeneous hardware architectures, with different
setting of the two networks.

B. Runtime analysis on different architectures

Having assessed the accuracy of PyD-Net with respect to
state-of-the-art, we compare on different hardware platforms
the performance of our network with the top-performing one
by Godard et al. [2] . The reduced amount of parameters
makes our model much less memory demanding and much
faster thus allowing for real-time processing even on CPUs.
This fact is highly desirable since GPU acceleration is not
always feasible in applications scenarios characterized by
low power constraints. Moreover, the pyramidal structure
depicted in Figure 2 infers depth at different levels, getting
more accurate at the higher resolution. This also happens for
other models producing multi-scale outputs [2], [6]. Thus,
given a trained instance of any of these models, we can



Lower is better Higher is better
Method Res. Abs Rel Sq Rel RMSE RMSE log δ < 0.125 δ < 0.1252 δ < 0.1253

Godard et al. [2] F 0.124 1.076 5.311 0.219 0.847 0.942 0.973
Godard et al. [2] H 0.126 1.051 5.347 0.222 0.843 0.940 0.972

PyD-Net (50) H 0.148 1.316 5.929 0.244 0.800 0.925 0.967
PyD-Net (200) H 0.146 1.291 5.907 0.245 0.801 0.926 0.967

Godard et al. [2] Q 0.132 1.091 5.632 0.231 0.830 0.935 0.970
PyD-Net (50) Q 0.152 1.342 6.185 0.252 0.789 0.920 0.964

PyD-Net (200) Q 0.148 1.285 6.146 0.252 0.787 0.919 0.965
Godard et al. [2] E 0.160 1.601 7.121 0.270 0.773 0.909 0.958

PyD-Net (50) E 0.169 1.659 7.161 0.280 0.751 0.901 0.954
PyD-Net (200) E 0.167 1.643 7.222 0.282 0.747 0.898 0.953

TABLE III: Comparison between [2] and PyD-Net at different resolutions. All models were trained on CS+K datasets and
results are not post-processed to achieve maximum speed. As for Table I, we report results for PyD-Net with two training
configurations.

process outputs up to a lower resolution (e.g., half or quarter)
to reduce the amount of computations, memory requirements
and runtime. Therefore, we’ll also investigate the impact of
such strategy in terms of accuracy and execution time for
our method and [2].

Table II reports running time analysis for PyD-Net and
Godard et al. [2] models estimating depth maps at different
resolutions and with different devices. More precisely, the
target systems are a Titan X Maxwell GPU, an i7-6700K
CPU with 4 cores (4.2 Ghz) and a Raspberry Pi 3 board
(ARM v8 processor Cortex-A53 1.2 Ghz). We report single
forward time at full (F), half (H), quarter (Q) and eight (E)
resolution. Full image resolution is set to 256 × 512 as in
[2]. For PyD-Net we report results up to half resolution
for the reason previously outlined. Moreover, results do
not include the post-processing step proposed in [2] since
it would duplicate the execution time and memory with
small improvements in terms of accuracy. First of all, we
can notice how the model by Godard et al. [2] is very
fast on the high-end Titan X GPU while its performance
drops dramatically when running on the Intel i7 CPU falling
below 2 Hz. Moreover, it becomes unsuited for practical
deployment on embedded CPUs such as the ARM processor
of the Raspberry Pi 3. In this latter case it requires more than
10 seconds to process a single depth map at full resolution.
We can also notice how early stopping of the network to infer
depth at reduced resolution leads to a very small decrease of
running time for this method hardly bringing the framerate
above 2 Hz on the Intel i7 and requiring more than 5 seconds
on a Raspberry Pi 3 even stopping at 1

8 resolution. Looking at
PyD-Net, even at the highest resolution H it takes 120 ms on
the Intel i7 and less than 2 s on the ARM processor leading
to 5× speed up with respect to [2] at the same resolution.
Moving to lower resolutions PyD-Net runs at 20 and 40 Hz,
respectively, at Q and E resolutions yielding a speed up of
11× and 18× with respect to [2]. Moreover, PyD-Net breaks
the 1 Hz barrier even on the Raspberry Pi 3, with 1.2 and 2.2
Hz and a speed up w.r.t. [2] of 8× and 11×, respectively, at
Q and E resolutions. On the same platform, equipped with
1 GB of RAM, our model requires 200, 150 and 120 MB,
respectively, at H, Q and E resolution while the Godard et
al. model about 275 MB at any resolution thus leaving a

significantly smaller amount of memory available for other
purposes.

These experiments highlight how PyD-Net enables, at the
cost of small loss in accuracy, real-time performance on a
standard CPU and it is also suited for practical deployment
on devices with embedded CPUs. To better assess the trade-
off between accuracy and execution time we report in Table
III detailed experimental results concerning PyD-Net and [2]
with different configurations/resolution. Results in the table
were obtained from models trained on CS+K and evaluated
on Eigen split [4]. We can observe how at E resolution PyD-
Net performs similarly to the model proposed by Godard et
al. [2] providing output of the same dimensions. However,
the gain in terms of runtime is quite high for PyD-Net
as highlighted in the previous evaluation. In particular our
competitor barely breaks the 1 Hz barrier on the i7 CPU and
it is far behind on the Raspberry Pi, while PyD-Net runs,
respectively, at 40 fps and about 2 fps on the same platforms.
As expected, from Table III, stopping at lower resolution we
can observe a loss in accuracy for both methods. However, it
is worth to note that such reduction is more gradual for our
network. Moreover, at E resolution the accuracy of Godard
et al. network is substantially equivalent to PyD-Net with the
advantages in terms of execution time previously discussed
and reported in Table II. Finally, from the table we can
also notice that even at the lowest resolution E, PyD-Net
outperforms all remaining methods [4], [5], [6], [19] working
at full resolution reported in Table I. Figure 3 reports a
qualitative comparison between PyD-Net and Godard et al.
[2] outputs at different resolutions.

The detailed evaluation reported proves that the proposed
method can be effectively deployed on CPUs and actually
it represents, to the best of our knowledge, the first archi-
tecture suited for CPU-based embedded systems enabling,
for instance, its effective deployment with a Raspberry Pi
3 and a USB camera using a standard power bank for
smartphones. Moreover, despite its reduced complexity it
enables unsupervised training and outperforms almost all
methodologies proposed in literature for monocular depth
estimation including supervised ones.



a) b) c) d)

Fig. 3: Qualitative comparison on a portion of a KITTI
image between PyD-net (top) and Godard et al. [2] (bottom)
respectively at F, H, Q and E resolution. Detailed timing
analysis at each scale is reported in Table II.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we proposed PyD-Net, a novel and efficient
architecture for unsupervised monocular depth estimation. As
state-of-the-art method [2], it can be trained in unsupervised
manner on rectified stereo pairs enabling comparable accu-
racy. However, the peculiar design of our network makes
it suited for real-time applications on standard CPUs and
also enables its effective deployment on embedded systems.
Moreover, simplified configurations of our network allow to
infer depth map at about 2 Hz on a Raspberry Pi 3 with
accuracy higher than most state-of-the-art methods. Future
work is aimed at mapping PyD-Net on embedded devices
specifically tailored for computer vision applications, such
as the Intel Movidius NCS, thus paving the way for real-
time monocular depth estimation in applications with hard
low-power constraints (e.g., UAVs, wearable and assistive
systems, etc).
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