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Abstract— This paper introduces a family of iterative al-
gorithms for unconstrained nonlinear optimal control. We
generalize the well-known iLQR algorithm to different multiple-
shooting variants, combining advantages like straight-forward
initialization and a closed-loop forward integration. All al-
gorithms have similar computational complexity, i.e. linear
complexity in the time horizon, and can be derived in the same
computational framework. We compare the full-step variants
of our algorithms and present several simulation examples,
including a high-dimensional underactuated robot subject to
contact switches. Simulation results show that our multiple-
shooting algorithms can achieve faster convergence, better local
contraction rates and much shorter runtimes than classical
iLQR, which makes them a superior choice for nonlinear model
predictive control applications.

Index Terms— Numerical Optimal Control, Trajectory Opti-
mization, Multiple Shooting, Quadrupedal Robots, Nonlinear
Model Predictive Control, Differential Dynamic Programming

I. INTRODUCTION

A. Overview and Motivation

In this paper, we discuss a family of iterative Gauss-Newton
shooting methods for numerically solving unconstrained
optimal control problems, and illustrate the effectiveness
of our algorithms with various robotics examples. We outline
the connection between a number of ‘direct’ optimal control
methods and Gauss-Newton methods from the class of
Differential Dynamic Programming (DDP) [1] algorithms.
Additionally, we present a natural extension arising from this
connection and introduce a family of hybrid Gauss-Newton
Multiple Shooting methods.

In direct approaches to optimal control, infinite-dimensional
optimal control problems are transcribed into finite dimen-
sional Nonlinear Programs (NLPs). Two prominent ways of
transcription by ‘shooting’ are direct single shooting (SS) and
direct multiple shooting (MS) [2], which differ in the choice of
decision variables. In single shooting, solely the control inputs
are the decision variables. Generally speaking, the control
trajectory is discretized in a piece-wise polynomial fashion
(for simplicity, we focus on piece-wise constant controls
in this paper, c.f. Fig. 1a). A corresponding state trajectory
is obtained by means of numerical forward integration of
the system dynamics, starting at a given initial state. SS is
often called a ‘sequential’ approach. In multiple shooting,
the same discretization scheme is employed for the control
inputs, but additionally, intermediate states are added to the
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decision variables. This provides several advantages [3], but
requires the introduction of additional matching constraints
to ensure continuity of the state trajectory. The technique
of introducing these additional degrees of freedom into the
original problem, combined with adding matching constraints,
is called lifting [4], and results in a ‘simultaneous’ method.

The formulation of both SS and MS as standard NLPs
is straightforward and any state-of-the-art NLP solvers
can be used to solve them. It is important to note that
under the assumption of having a piece-wise polynomial
control parameterization, the intrinsic sparsity structure of
the underlying optimal control problem of both SS and MS
allow them to achieve linear time complexity by performing
a Riccati recursion [5].

Classical single shooting often does not perform well
for unstable systems due to the pure open-loop forward
integration of the system dynamics. In DDP, this is handled by
doing a closed-loop forward integration, using a feedforward
plus a time-varying state-feedback control law. The Riccati
backward sweep designs time-varying feedback gains on
the fly without additional computational cost. DDP is an
exact-Hessian method, requiring the computation of second
derivatives of the dynamics. While this gives the algorithm
quadratic convergence, this can be impractical for use in
systems with complex dynamics. For that reason, Hessian-
approximating variants of DDP have become quite popular
in the robotics community [6]–[10].

An important Hessian-approximating variant of DDP is the
iterative Linear-Quadratic Regulator (iLQR) [11], which
is also known as Sequential Linear Quadratic Optimal
Control [12]. This method can be classified as closed-loop
single shooting using a Gauss-Newton Hessian approximation
and a Riccati backward sweep to solve linear-quadratic (LQ)
subproblems. The Gauss-Newton Hessian approximation is
based on the assumption that the objective function can be
locally approximated as a sum of quadratic terms, and requires
only first-order derivatives of the system dynamics. This
comes at the cost of giving only linear convergence, however.
The Gauss-Newton approach can be lifted, too, which has for
example been shown in [13]. While it initially appears to be
a drawback to increase the number of decision variables, it is
important to emphasize that the lifted problem can be solved
at approximately the same computational cost as the original
non-lifted problem, and can lead to a significant increase of
convergence speed [4]. Therefore, the fundamental motivation
for this paper is to combine the benefits of iLQR with a
multiple-shooting approach.
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Fig. 1. Intuition about different shooting variants. (a) A zero-order
hold control parameterization, with a constant control input at each stage.
(b) Single shooting, where the state trajectory is obtained through a
single forward integration over the whole problem horizon. (c) In GNMS,
intermediate states at every time-index n are introduced as additional decision
variables. (d) In hybrid versions of GNMS, the multiple-shooting intervals
span several control intervals. The intermediate states at the beginning of the
multiple-shooting intervals are decision variables, and the states in between
are obtained by forward integration.

B. Contribution

In this work, we derive a lifted equivalent of iLQR, called
Gauss-Newton Multiple Shooting (GNMS), which introduces
the intermediate states as additional decision variables. Next,
we extend this relationship to form an entire family of
open-loop multiple-shooting algorithms, denoted GNMS(M ),
and closed-loop multiple shooting algorithms, denoted as
iLQR-GNMS(M ). The latter is shown to be a generalization
of iLQR and can be considered multiple-shooting iLQR.
We outline the relationship between these algorithms and
existing methods. We give simulation examples including a
complex underactuated robot and compare the performance
of the full-step algorithms using data gained from hardware
experiments. Furthermore, we show the benefits of iLQR-
GNMS(M ) methods for nonlinear model predictive control.

C. Outline

This paper is structured as follows. In Section II, we
derive GNMS, and present the basic update routine for
state and control trajectories. Using these update equations,
we generalize iLQR and GNMS to a family of algorithms
in Section III. Section IV showcases several simulation
results, based on data gained from hardware experiments.
A discussion and outlook concludes the paper in Section V.

II. GAUSS-NEWTON MULTIPLE SHOOTING

In the following, a brief derivation of the unconstrained
Gauss-Newton Multiple Shooting method is presented. We
show the derivation using an intuitive value-function approach
in the style of [11] in order to highlight the close relationship
between GNMS and iLQR. However, from the beginning,
we lift the optimization problem and introduce intermediate
states as additional decision variables besides the controls. In
that sense, having each control decision variable accompanied
with a state-decision variable, GNMS is closely related to
the original multiple-shooting algorithm [2].

Consider the following discrete-time, finite-horizon, non-
linear optimal control problem

min
un,xn

{
Φ(xN ) +

N−1∑
n=0

Ln(xn,un, n)

}
(1)

s.t. xn+1 − fn(xn,un, n) = 0, x0 = xinit (2)

with state-vector xn ∈ Rm and control input vector un ∈ Rp.
Let Ln be the intermediate cost at time-step n and Φ(xN )
the terminal cost at the time horizon N .

A. Forming LQ subproblems
The optimal control law is computed in an iterative

way. In each iteration k = 0, 1, 2, . . ., we construct a
LQ optimal control problem around the state trajectory
X[k] = {x[k]

0 ,x
[k]
1 , . . . ,x

[k]
N }, with x

[k]
0 = xinit and the

control trajectory U[k] = {u[k]
0 ,u

[k]
1 , . . . ,u

[k]
N−1}. In the first

iteration, k = 0, the LQ problem is hence constructed
around the initial guesses for X[0], U[0]. Possible initialization
strategies are summarized in Section III-D.

At each iteration, we numerically forward integrate all
multiple shooting intervals using the respective control inputs
u
[k]
n , starting at every state x

[k]
n ∀n = 0, 1, . . . , N−1. Fig. 1c

shows a sketch of the multiple-shooting intervals in GNMS,
where the resulting state at the end of each interval is denoted
F[k](x

[k]
n ,u

[k]
n ). Accordingly, we define the ‘defect’ between

the integrated trajectory segment and the next intermediate
state x

[k]
n+1 as

d[k]
n = F[k](x[k]

n ,u
[k]
n )− x

[k]
n+1 . (3)

Defining state and control increments δx[k]
n and δu

[k]
n for

every single time-stage n, we can write the nonlinear system
dynamics constraint (2) in terms of the simulated interval as

x
[k]
n+1 + δx

[k]
n+1 − F[k](x[k]

n + δx[k]
n ,u

[k]
n + δu[k]

n ) = 0 (4)

which can also be considered a matching condition which
ensures the continuity of the state trajectory w.r.t. state and
control increments. Performing a first-order Taylor expansion
of Equation (4) w.r.t. δx[k]

n and δu[k]
n , denoting the sensitivities

w.r.t state and control An and Bn and taking into account the
defects as defined by Equation (3), results in the following
affine system dynamics constraint

δx
[k]
n+1 −A[k]

n δx
[k]
n −B[k]

n δu
[k]
n − d[k]

n = 0 . (5)

Analogously performing a second-order Taylor expansion
of the nonlinear cost function (1) gives rise to the following
LQ optimal control problem

min
δun,δxn

{
qN + δx>NqN + 1

2δx
>
NQNδxN

+

N−1∑
n=0

qn + δx>nqn + δu>n rn + 1
2δx

>
nQnδxn

+ 1
2δu

>
nRnδun + δu>nPnδxn

}
(6)

s.t. δxn+1 = Anδxn + Bnδun + dn (7)
x0 = xinit (8)



where we assume Qn, QN ≥ 0 and Rn > 0. Here, and in
the following subsection, we drop the superscript indices [k]
for better readability.

B. Computing the Optimal Control by Riccati Recursion

Considering the LQ subproblem (6)-(8), the optimal control
and state updates can be computed using a value-function
approach. Assume a quadratic value function of the form

Vn(δxn) = sn + δx>n sn + 1
2δx

>
nSnδxn (9)

with weighting matrices Sn ∈ Rm×m, sn ∈ Rm×1 and
sn ∈ R. The optimal control update can be derived by
minimizing the value function Vn as a function of δxn.

As Equation (9) is quadratic in δxn+1 at time n + 1, it
remains quadratic during back-propagation in time, given
the affine system dynamics and the linear-quadratic cost in
Equations (6)-(8). Due to Bellman’s Principle of Optimality,
the optimal control δu∗n at time n can be computed from

V ∗n (δxn) = min
δun

[
qn + δx>(qn + 1

2Qnδxn) + δu>nPnδxn

+ δu>n (rn + 1
2Rnδun) + V ∗n+1(Anδxn + Bnδun + dn)

]
Inserting Equation (9) and the affine system dynamics (7)
and minimizing the overall expression w.r.t. δun leads to an
optimal control update of the form

δu∗n = −H−1n hn −H−1n Gnδxn (10)

where we have defined

hn = rn + B>n (sn+1 + Sn+1dn)

Gn = Pn + B>nSn+1An

Hn = Rn + B>nSn+1Bn

and B>nSn+1Bn + Rn > 0. After equating coefficients with
a quadratic value function ansatz (9) for δxn, we define
ln = −H−1n hn and Ln = −H−1n Gn and obtain the following
recursive Riccati difference equations for Sn, sn and sn

Sn = Qn + A>nSn+1An − L>nHnLn (11)

sn = qn + A>n (sn+1 + Sn+1dn)

+ G>n ln + L>n (hn + Hnln) (12)

sn = qn + sn+1 + d>n sn+1 + 1
2d
>
nSn+1dn

+ l>n (hn + 1
2Hnln) (13)

for n ∈ 0, . . . , N − 1. For the final time-step N we obtain
the terminal conditions SN = QN , sN = qN and sN = qN ,
and the recursion is subsequently swept backwards. Note that
Equation (13) does not contribute to the control update and
can therefore be omitted in practice.

C. Updating State and Control Trajectories

Finally, using Equations (7) and (10), and readopting the
superscript indices [k] for the iteration count, we obtain

equations for a forward sweep resulting in a full-step update
for the control and state decision variables X[k+1], U[k+1]

u[k+1]
n = u[k]

n + l[k]n + L[k]
n (x[k+1]

n − x[k]
n ) (14)

x
[k+1]
n+1 = x

[k]
n+1 + (A[k]

n + B[k]
n L[k]

n )(x[k+1]
n − x[k]

n )

+ B[k]
n l[k]n + d[k]

n (15)

with initial condition x
[k+1]
0 = xinit. The updated decision

variables are dynamically consistent w.r.t. the LQ subprob-
lem dynamics. The nonlinear optimal control problem is
solved iteratively, starting from Section II-A and solving LQ
subproblems at each iteration, until convergence.

III. A FAMILY OF ILQR-GNMS ALGORITHMS

Equations (14) and (15) present the GNMS update rule
where all states and controls (except for xinit) are decision
variables. For every time-step, both states and controls
are updated using a linear forward sweep. Considering
Equations (14) and (15), we can now draw connections
between GNMS and other existing algorithms and extend
them to a bigger family of ‘hybrid’ variants.

A. Connection to iLQR and Single Shooting

Interestingly, full-step iLQR employs the very same control
update rule as in Equation (14). In fact, GNMS can be
transcribed into iLQR by substituting the state update equa-
tion (15) with a numeric forward integration of the nonlinear
system (2) using the time-varying state-feedback control
law provided by Equation (14). In this case, the forward
integration naturally results in a dynamically consistent state
trajectory, all defects dn become zero and the formulation
from section II-B drops back to the well-known iLQR Riccati
recursion. Moreover, standard unconstrained single shooting
can be recovered by additionally ignoring the state feedback
gains and running the forward-integration purely open-loop.

B. Hybrid Algorithms

Consider a case where the overall time horizon N is
split into an integer number of multiple shooting intervals
M with length l and 1 < M < N , while the control input
discretization is kept at its original resolution. Without loss
of generality, let us assume that the MS integration intervals
start at time indices i ∈ I, with I = {0, l, 2l, . . .}. Fig. 1d
sketches an example of such a hybrid case with l = 3. Every
interval is simulated using the nonlinear system dynamics (2)
and the initial states and controls x

[k]
i and u

[k]
i . All x[k]

j with
j /∈ I are overwritten by the integration. For an open-loop
forward integration, U[k] remains as is, but for a closed-loop
forward integration, we additionally overwrite all u[k]

j with
j /∈ I using the given feedback control law. Note that in this
case, the defect equation (3) remains valid, but is zero along
the multiple-shooting intervals. The only non-zero defects
occur at d[k]

i+l−1, i ∈ I . In this setting, the LQ approximation,
Riccati recursion and state- and control updates (14)-(15)
can be performed as described before. This gives rise to two
‘hybrid’ GNMS variants:



TABLE I
AN OVERVIEW OF DIFFERENT GNMS-TYPE METHODS.

SS iLQR GNMS GNMS(M ) iLQR-GNMS(M )

closed-loop – – –
No. intervals 1 1 N M M
overwrite states
by integration –

need stable initial
policy – depends depends

( = true, – = false)

• GNMS(M), using solely the feedforward control and thus
performing an open-loop forward integration on each
of the M multiple shooting intervals, which themselves
are multiples of the control interval. Herewith, standard
single shooting is the limit case GNMS(1).

• iLQR-GNMS(M), using the full state feedback con-
troller (14) and a closed-loop forward integration of
each multiple-shooting interval. In other words, this is
equivalent to a multiple-shooting variant of iLQR. The
standard iLQR algorithm is the limit case of iLQR-
GNMS(1), with only one multiple-shooting interval.

Note that both GNMS(N ) and iLQR-GNMS(N ), with the
number of multiple shooting-intervals being equal to the
number of stages, revert to the standard GNMS formulation as
introduced in Section II. Table I provides a compact overview
of the algorithmic variants and compares their features.

C. Main Iteration and Implementation

We emphasize that all algorithmic variants feature linear
complexity in the time horizon, O(N). All algorithms execute
almost identical linear algebra operations during one major
iteration and therefore have very similar computational
effort. Since the discussed family of GNMS algorithms
only differs in a few features, it can be summarized in
one framework, given in Algorithm 1. From a software-
engineering perspective, the algorithmic variants are easy
to implement and can all be treated at once, given a proper
design of classes and interfaces. We provide an open-source
C++ implementation of all discussed algorithms in [14].

D. Initialization

The GNMS variants listed in Table I differ in their
requirements for initialization. For iLQR and SS, the nominal
state (and control) input trajectories are first updated through
a forward integration. This implies that for unstable systems,
an initialization with a stabilizing initial control policy, which
keeps the first rollout in the vicinity of the expected optimum,
is essential. For iLQR, the initially provided state trajectory
X[0] serves as state reference trajectory for the feedback
controller. For SS, it is irrelevant, except for the initial state.
Common choices for SS and iLQR initial guesses are policies
that stabilize the given initial state or draw the system towards
the goal state, for example simple LQR or PD controllers.
Generally, the increased efforts for initial guess design for
SS and iLQR can be a significant disadvantage. In the worst

Algorithm 1 Generalized iLQR-GNMS(M ) Algorithm
Given
- Nonlinear dynamics, cost function and initial state xinit as given in (1)-(2)
- Initial state trajectory X[0]

- Initial feedforward trajectory U[0]

- (Initial feedback law, if applicable)
- maximum total constraint violation dmax

- minimum relative cost change Jrel
min

Prepare
- set iteration count k = 0
- split time horizon N into M MS integration intervals of length l,

each starting at an index i ∈ I, I = {0, l, 2l, . . .}
- Initial multiple-shooting rollouts

- simulate M intervals using the nonlinear system dynamics (2) and initial
states and controls x

[0]
i and u

[0]
i , overwrite all x[0]

j and u
[0]
j for j /∈ I

- compute defects d[0]
n according to Equation (3).

Repeat (main iteration)
LQ approximation
- Linearize the dynamics along the trajectories, obtain the affine constraint (5)
- Quadratize cost function along the trajectories to obtain (6)
Riccati backward sweep
- Backwards solve the Riccati-like difference equations (11)-(12) with

boundary conditions SN = QN and sN = qN

Linear forward sweep
- compute state and control solution candidates X[k+1] and U[k+1] by

forward sweeping Equations (14) and (15).
Rollout multiple-shooting intervals
IF(open loop shooting)

- set feedback gain in Equation (14) to zero.
ENDIF
- simulate M shooting intervals using nonlin. dynamics (2), controller (14)

and initial states and controls x
[k+1]
i and u

[k+1]
i ∈ I,

overwrite all x[k+1]
j and u

[k+1]
j for j /∈ I

- compute defects d[k+1]
n according to Equation (3)

- compute cost J [k+1] by evaluating Equation (1)
- increment iteration count k

until |J [k] − J [k−1]|/J [k] < Jrel
min and

∑
|d[k]

n | < dmax

case, a poor initial guess can lead to a local minimum with
a solution far from desired behavior.

Multiple-shooting algorithms, by contrast, offer greater
flexibility and simplicity at initial guess design, and are often
more robust w.r.t. bad initial policies. It is a well known
fact that the convergence of multiple-shooting methods can
be accelerated through an ‘educated’ initial guess, such as
direct interpolation between initial and desired final state. For
the hybrid algorithms iLQR-GNMS(M ) and GNMS(M ) it
often depends on the system characteristics if a stabilizing
control policy is required, or if the multiple-shooting intervals
are short enough to prevent significant divergence during
integration. In the video attachment [15], we show two
simulation examples where initialization with a bad state-
feedback controller significantly extends the runtime of iLQR
compared to GNMS, or even causes iLQR to fail.

Note that, when all possible GNMS variants are initialized
with a dynamically consistent state trajectory and correspond-
ing control trajectory, the defects for the first iteration are
zero and the feedforward control updates are identical.

IV. RESULTS AND COMPARISON

A. An Illustrative, One-Dimensional System

As an illustrative example, we present a simple one-
dimensional system, which is slightly nonlinear, unstable
and constructed to help the reader build an intuition about
the methods. The system dynamics are ẋ = (1 + x)x + u,
x(0) = 1.5 and discretized with ∆t = 0.01 s, N = 300. The
cost function is defined as quadratic cost of form (6) with
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iLQR-GNMS(5)
GNMS(5)

Fig. 2. Results for a one-dimensional illustrative system, main text for
detailed description.

desired terminal state xdesN = 0, QN = 10 and Rn = 0.01.
Fig. 2 shows results for iLQR, GNMS and the hybrid variants
with five multiple-shooting intervals, GNMS(5) and iLQR-
GNMS(5). We plot the state, control and defect trajectories
for the first iteration of the algorithms, along with the initial
guess and the converged solution.

The state and control trajectories illustrate the relationship
between the algorithms: the multiple-shooting intervals of
GNMS(5) and iLQR-GNMS(5) start with states and controls
lying on the respective GNMS trajectories. For GNMS(5),
the system is simulated open-loop, the controls are identical
to GNMS, and the state trajectories on the multiple-shooting
intervals start to diverge. By contrast, for iLQR-GNMS(5),
in every multiple-shooting interval both state and control
trajectories converge asymptotically towards the simulated
iLQR state and control trajectories. For the hybrid variants,
a defect occurs every 0.6s, for GNMS, the defect is evenly
distributed across all time intervals. Due to the long shooting-
intervals, GNMS(5) requires one iteration more to catch up
with the other algorithms in terms of overall cost. Importantly,
the control update plot shows that the asymptotic contraction
rates, which are defined as

C = lim
k→∞

|U[k+1]−U∗|2/|U[k]−U∗|2 (16)

are not the same. In this example, GNMS and GNMS(5)
show better contraction than iLQR. Asymptotic contraction
rates are investigated in more detail in Section IV-C.

B. Quadruped Trot Optimization Example

The quadrupedal robot ‘HyQ’ [16] is an 18 DoF, floating-
base underactuated robot subject to contacts with the en-
vironment, c.f. Fig. 3. In this paper, the contacts are not

Fig. 3. The quadruped HyQ

incorporated as constraints,
but added to the system
dynamics using an explicit
contact model. We employ
a static, plain environment
and a ‘soft’ contact model,
consisting of a nonlinear
spring in surface-normal
direction and a nonlinear
damping term. The contact
model is detailed in [17]. Using this formulation, the contact
force is a function of the current robot state only. It is clear that
such a soft contact model presents only a rough approximation
of the complicated physics of contact, and also introduces a
number of potential disadvantages such as increased stiffness
and nonlinearity of the combined system dynamics. However,
the contact model allows a straight-forward computation of
derivatives [17], which creates an ideal test-bed for comparing
our shooting algorithms. We obtain exact discrete sensitivities
An and Bn through evaluating a sensitivity differential
equation on the multiple-shooting intervals [18].

The example task considered is the optimization of a
periodic trotting gait. To achieve the trotting gait, we impose
a time-varying quadratic penalty on the leg joint positions.
Furthermore, we penalize the intermediate and final position
of the robot’s trunk and the intermediate and final velocities
of the leg joints. For an in-depth description of the cost
modelling to achieve different gait patterns the reader is
referred to [8]. In the following, the trotting gait optimization
is used to compare the algorithms developed in this paper. For
a meaningful comparison, we initialize all algorithms with
identical state trajectories and control policies. The initial
guess corresponds to standing still in a steady state. We
optimize over 36 states, 12 control inputs and a total time
horizon of 2.5 seconds with N = 2500.

Fig. 4 compares iLQR, GNMS, and iLQR-GNMS(M )
with three different numbers of multiple-shooting intervals
in terms of cost descent, control update norms and total
defects. Note that SS and GNMS(M ) are unstable due to
the strong instability of the system. All remaining algorithms
converge to the same minimum within 20 iterations. iLQR and
iLQR-GNMS(25) show short phases of increasing cost, which
we accept in this simulation example. Since the provided
initial guess is dynamically consistent, the initial defects are
zero. GNMS, having the largest number of multiple-shooting
intervals (2500), also shows the largest total defect sum after
the first iteration. The multiple-shooting iLQR methods, all
having significantly fewer continuity constraints to enforce,
feature a lower total defect.

As expected for a Gauss-Newton method, all approaches
show linear convergence. Considering the control update
norms, we see that GNMS and iLQR feature a similar
contraction rate for this example. In fact, the contraction
rate of GNMS is slightly better, which is visually hard to
distinguish here, but is detailed in following example. For
the hybrid multiple-shooting iLQR variants, we observe a
significantly better contraction rate than for both iLQR and
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Fig. 4. Comparing different algorithms from the family of Gauss-Newton
shooting methods w.r.t. cost descent, total defects and control update norm,
illustrated with the example of a quadruped trot optimization problem.

GNMS. When applying an identical termination criterion
based on the relative change of the cost function and a defect
threshold to all algorithms, all lifted methods converge in
fewer iterations than iLQR. Furthermore, all displayed iLQR-
GNMS(M ) variants converge notably faster than GNMS.
Screen recordings of the optimized trotting motions are
provided in the video attachment [15].

C. Local Contraction Rates for Quadruped Trot Tracking

While Section IV-B gives an optimization example for a sin-
gle motion, starting with an initial guess far from the optimal
solution, we now show a comparison based on statistical data
from 1000 runs: the trotting gait from Section IV-B is now
considered in a tracking MPC problem. All algorithms are
initialized with an optimal, dynamically consistent solution,
but the initial state is locally perturbed. The state perturbations
are sampled from the hardware-experiments detailed in [19].
For every perturbation, we let different algorithms iterate until
convergence. Fig. 5 compares average asymptotic contraction
rates for four different algorithms. It shows the normalized
difference between a fully converged optimal feedforward
trajectory and trajectories obtained at previous iterations.
Furthermore it shows first-order regressions approximating
the local contraction rates, in terms of the slopes of the
difference norms in the semi-logarithmic plot. It can be seen
that GNMS outperforms iLQR in terms of local contraction
rate. GNMS(50) shows a contraction rate similar to GNMS.
The example indicates better local convergence for iLQR-
GNMS(50) than for classical iLQR, GNMS and GNMS(50).

Fig. 6 generalizes the result from Fig. 5 for a range of
multiple-shooting intervals M , showing numerically approx-
imated asymptotic contraction rates, Equation (16), as a

iteration
1 2 3 4
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Fig. 5. A statistical comparison of local contraction rates for four different
algorithms. This plot shows the normalized difference between solutions to
perturbed optimal control problems and a fully converged reference solution.
The normalization is w.r.t. the iLQR control trajectory. The data is averaged
from 1000 samples, the corresponding standard deviations are plotted as
error-bars. Estimates for the contraction rates are indicated by straight lines.
GNMS outperforms iLQR in terms of local contraction rate, and gets closer
to the true optimal solution in fewer iterations. In contrast to the example
in Section IV-B, GNMS(50) is stable and shows a contraction rate similar
to GNMS. iLQR-GNMS(50) clearly outperforms all other algorithms with
significantly better local contraction rate. After 4 iterations, it is on average
0.1% away from the fully converged reference solution, while iLQR is on
average 14% away.
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Fig. 6. Comparing asymptotic contraction rates as a function of the number
of multiple-shooting intervals M . For GNMS(M ), the integration on the
multiple-shooting intervals is only stable for M ≥ 20. For this range of
‘stable’ multiple-shooting intervals, the contraction rates are almost constant
and similar to the limiting case GNMS. The iLQR multiple-shooting methods
are stable for all M . Here, the contraction rates for intermediate numbers
of multiple-shooting intervals are distinctively better than for the limit cases
iLQR and GNMS.

function of M . Again, GNMS(M ) is unstable for overly long
multiple-shooting intervals, similar to the limiting case open-
loop single shooting. For closed-loop shooting, the asymptotic
contraction rates for all multiple-shooting variants are better
than for iLQR, and the contraction rates for the hybrid
variants outperform the limiting case GNMS. In this example,
the relative improvement over iLQR is up to a factor two.
Note that the resulting iLQR-GNMS(M ) contraction rates
differ slightly from the ones in Fig. 4 for M = 25, 50, 100,
which is due to the different problem setting. However, both
experiments exhibit the same trend.

D. Nonlinear MPC on HyQ

The suitability of iLQR for nonlinear model-predictive
control (NMPC) in robotics applications has been shown
many times before, in [6], [20], [21]. In this section, we show
that GNMS and its hybrid variants are even more promising
for NMPC applications. First, they converge faster to the
optimal solution, c.f. Section IV-C. A second advantage of the
multiple-shooting variants of the presented algorithms is that
the forward integrations can be parallelized. Therefore, the



Algorithm 2 iLQR-GNMS(M )-NMPC Algorithm
Given
- cost function (1) and system dynamics (2).
- receding MPC time horizon N
- number of multiple-shooting intervals M with length l
- initial state and control trajectories X = {x0,x1, . . . ,xN}
U = {u0,u1, . . . ,uN−1}, state-feedback controller un(x) of form (10)

Repeat Online:
Feedback phase
- get state measurement xmeas.
- forward integrate system dynamics (2) with x0 = xmeas on the first

multiple-shooting interval, compute A0,...,l−1, B0,...,l−1, defect dl−1

- quadratize cost function (1) around X and U for control stages 1, . . . , l− 1.
- solve LQ optimal control problem using a Riccati backward sweep
- retrieve updated control policy u+

n (x) and updated trajectories U+, X+.
- send policy u+

n (x) and X+ to the control system
Preparation phase
- update: un(x)← u+

n (x), X← X+, U← U+

- forward integrate system dynamics (2) for the multiple-shooting
intervals 1 to M , obtain sensitivities Al, . . .AN−1, Bl, . . . ,BN−1

and defects dl,...,N−1

- quadratize cost function (2) around X, U for multiple-shooting intervals l to N .

achievable MPC cycle time decreases approximately linearly
with the number of available CPU cores. By combining faster
update rates with better contraction rate, our multiple-shooting
algorithms outperform classical iLQR-NMPC.

In the following simulation example, we compare the
NMPC performance of our Gauss-Newton shooting algo-
rithms against iLQR-NMPC in a HyQ simulation environment.
In each NMPC cycle, we run an adapted version of the
main iteration in Algorithm 1 and ‘warm-start’ it with
the previous solution. In such a setting, we can separate
an NMPC iteration into a ‘preparation’ and a ‘feedback’
phase [22], thus minimizing the latency between receiving
a state-measurement and sending an updated policy to the
control system. Our NMPC loop is described in Algorithm 2.

In this experiment, we run a trotting gait on HyQ, in closed-
loop MPC in a simulation environment [23]. For the NMPC
optimal control problem, we choose a time-step size of 4 ms
and N = 125. We parallelize the integration of all multiple-
shooting intervals and the sensitivity computation on four
cores, and run both simulator and MPC controller on the same
notebook equipped with an Intel Core i7 (2.8 GHz) processor.
For four different algorithmic combinations, we record the
executed trot under identical conditions for 18 seconds and
compute the resulting accumulated intermediate cost. A
summary of the achieved average cost and NMPC frequencies
is given in Fig. 7. In these experiments, iLQR results in
the highest accumulated cost. The multiple-shooting variants
outperform iLQR, with relative cost differences up to 5%. At
the same time, due to shorter runtimes, the multiple-shooting
variants achieve up to 40% higher MPC frequencies, with a
maximum of 103 Hz.

In our simulation, all four algorithm variants run in a stable
and robust fashion. The relatively small cost difference is
an indicator of better convergence, but the main reason why
the multiple-shooting variants should be preferred over iLQR
in real-world applications, is the superior control bandwidth.
The algorithms in this paper have been validated in hardware
experiments on two different quadruped platforms, where a
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Fig. 7. Comparing four different solvers for HyQ-MPC. The left plot
compares costs accumulated over 18.0 seconds of trotting-MPC execution.
iLQR shows the highest accumulated cost. The multiple-shooting variants
outperform iLQR, but the relative cost difference is small. GNMS runs at
96.3% of the iLQR cost, GNMS(25) at 95.9% and iLQR-GNMS(25) at
95.0%. Regarding the achieved average MPC frequencies, shown on the right,
we find up to 40% higher frequencies for the multiple-shooting variants.
The maximum average MPC frequency, 103 Hz, is achieved using GNMS.

variety of motions and gaits was implemented. However, a
in-depth description of the experimental setups, the optimized
computational framework and practical tuning considerations
are beyond the scope of this paper. The interested reader
is therefore referred to [19], where we apply the GNMS-
algorithm for full-body NMPC on the quadrupeds HyQ and
ANYmal [24], explain the robotic setup in detail and present a
variety of hardware experiments. As outlook, a video sequence
of GNMS-NMPC running on hardware is provided in the
attachment [15].

V. CONCLUSION AND OUTLOOK

In this paper, we have shown how the well-known iLQR
algorithm can be lifted and transformed into Gauss-Newton
Multiple Shooting, GNMS. We have generalized the concept
to form a family of Gauss-Newton shooting algorithms,
which can be distinguished into sequential and simultaneous
algorithms and closed and open-loop algorithms. Some
algorithms partially overwrite decision variables by means of
a numeric forward integration. All presented variants have
approximately the same computational cost and feature linear
time-complexity. Furthermore, all discussed algorithms share
a large number of computational routines, and it is not difficult
to implement all of the presented variants in a single software
framework.

We have compared the performance of the algorithms
in different simulation experiments, which indicate that
the lifted algorithms can outperform classical iLQR. While
not included in this paper for reasons of compactness,
similar results were obtained for other rigid-body dynamic
systems including a 6 DoF fixed-base arm model. A more
fundamental investigation for formalizing the conditions that
result in improved convergence rates for GNMS(M ) and
iLQR-GNMS(M ) is subject to ongoing work.

In the application examples, we limited the comparison to
full-step variants of all considered algorithms. However, for
even more nonlinear dynamics or cost functions, where the
LQ optimal control problem is a bad approximation to the
nonlinear problem, a globalization strategy may be required.



For single-shooting methods, a straight-forward solution is to
employ a line-search scheme. This is simple to implement,
as it is sufficient to search over the cost for different control
update step-sizes. For multiple-shooting approaches, however,
there are additional continuity constraints, and we need to
line-search over a merit-function which trades off the costs
and defects. It is typically required to introduce additional
tuning variables or to implement a complex filter-scheme [25].
Our open-source reference implementation [14] provides a
line-search scheme using a simple merit function.

For complex robot trajectory optimization problems, we
do not recommend to generally prioritize one of the pre-
sented algorithms over another. While the multiple-shooting
algorithms allow for advanced initialization strategies and
are more robust w.r.t. bad initial guesses, they may require
slightly more tuning efforts when the full-step algorithm is
not sufficient. By contrast, in NMPC applications with well-
defined cost functions and using warm-starting, additional
globalization steps are rarely required at all. Here, our
multiple-shooting algorithms offer significant advantages,
better local contraction rates and much shorter runtimes.

The focus of this paper is on unconstrained optimal control
problems without general (in)equality path constraints. It is
obvious that the lifting approach naturally transfers to equality-
constrained variants of iLQR, such as [26]. The inclusion of
general (in)equality path constraints is part of ongoing work.
One option to include them in the existing framework is to
replace the standard Riccati backward sweep with a dedicated
solver for constrained LQ optimal control problems [27]. In
this way, general (in)equality path constraints can be included
while keeping linear time-complexity.

While this work treats algorithms using a Gauss-Newton
Hessian approximation, it similarly transfers to exact-Hessian
approaches, resulting in a multiple-shooting DDP algorithm
combining the advantages of simultaneous methods, quadratic
convergence and closed-loop integration.
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