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Abstract— Man-made environments such as households, of-
fices, or factory floors are typically composed of linear struc-
tures. Accordingly, polylines are a natural way to accurately
represent their geometry. In this paper, we propose a novel
probabilistic method to extract polylines from raw 2-D laser
range scans. The key idea of our approach is to determine a
set of polylines that maximizes the likelihood of a given scan.
In extensive experiments carried out on publicly available real-
world datasets and on simulated laser scans, we demonstrate
that our method substantially outperforms existing state-of-the-
art approaches in terms of accuracy, while showing comparable
computational requirements. Our implementation is available
under https://github.com/acschaefer/ple.

I. INTRODUCTION

In order to navigate planar, structured environments like
offices, households, or factory work floors, mobile robots
often rely on horizontally mounted 2-D laser scanners. These
sensors allow them to create floor plan-like maps, which they
in turn use to localize themselves. Mapping and localization
based on raw laser data, however, demand large amounts of
computation power and memory, both of which tend to be
restricted on a mobile platform.

A popular solution to this problem is feature extraction.
Encoding all the data of a scan in a few polyline features,
for example, can drastically reduce computation time and
memory footprint. This is due to the ability of polylines to
exploit the high redundancy of scans recorded in approxi-
mately line-shaped environments. Consider figure 1, which
depicts a typical laser scan captured in an office. The scan
spends hundreds of rays to describe straight walls, while a
set of polylines with a total of ten vertices is sufficient to
accurately represent these linear structures.

Polyline features like the ones in figure 1 have been shown
to be useful for different tasks in mapping and localization,
for example for feature-based SLAM [1]–[5] or for tracking
line segments in consecutive 2-D scans recorded by a moving
sensor to estimate 3-D planes in the environment [6].
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Fig. 1: Exemplary result of our polyline extraction method
applied to a scan captured in an office. The original scan
consists of 361 rays, of which every second is displayed
as a red line. Gray lines indicate maximum-range readings.
The extracted polyline map, drawn as blue lines, consists
of only ten vertices, reducing memory requirements to less
than 3 %. On average, the distance between the measured
endpoints of the rays and their hypothetical intersections with
the map is as low as 5.4 mm, with a maximum absolute value
of 23.0 mm.

In this paper, we present a novel method to extract
polylines from 2-D laser scans. What sets our approach
apart from most others is its probabilistic motivation. The
derived algorithm does not rely on a geometric heuristic,
but strives to find the set of polylines that maximizes the
measurement likelihood of the scan. Furthermore, while
most other approaches operate on the scan endpoints only
and thereby discard valuable information encoded in the
ray paths, our algorithm leverages this data to yield as
accurate polyline estimates as possible. As demonstrated in
our experimental evaluation, this results in superior accuracy
both on real-world and on simulated data.

II. RELATED WORK

In this section, we provide an overview over existing work
on feature extraction techniques for 2-D lidar scans and
related sensor modalities.

Early approaches to extract line features from 2-D laser
scans produce so-called line maps [7]. As opposed to the
chains of line segments that are polylines, line maps model
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the environment by infinite lines, and thus suffer from two
major drawbacks: They can only represent convex maps,
and they do not store any topology information, i.e. the
connections between the lines. This is why infinite line
representations have largely been replaced by polylines. For
a survey on different methods to build infinite line maps, see
Sack and Burgard [7].

Nguyen et al. [8] present an overview of various tech-
niques to extract line segments from 2-D lidar data and evalu-
ate the performance of six popular algorithms experimentally.
They conclude that split-and-merge [9] and iterative endpoint
fit [10] perform most favorably in terms of accuracy and
speed.

Each of the following approaches tackles the line extrac-
tion problem from planar scans from a different perspective.
Borges and Aldon [11] use a fuzzy clustering algorithm,
which does not require prior knowledge of the number
of lines. Latecki and Lakaemper [12] combine perceptual
grouping techniques with the expectation maximization algo-
rithm to determine polylines. Pfister and Burdick [13] extract
both line and point features from scan endpoints using a
multi-scale Hough transform. Similarly, Berrio et al. [14]
determine line segments via the Hough transform in combi-
nation with a so-called successive edge following algorithm.
Harati and Siegwart [15] build a wavelet framework to
extract initial estimates of line segments. They do not,
however, provide the corresponding line fitting algorithm.

In cartography, the Visvalingam line simplification algo-
rithm [16] is a popular method to reduce the numbers of
vertices of a polyline by iteratively removing the vertex
that incurs the least perceptible change. Although to our
knowledge, the algorithm has not reportedly put to use for
line extraction from laser scans, it is well suited for this task.

All methods discussed thus far have in common that they
are built upon some kind of heuristic and lack a probabilistic
foundation. In contrast to those, Pfister et al. [17] present
a take on line extraction from multiple scans that follows
an elaborate maximum likelihood formalism. First, they
generate a set of infinite line estimates using the Hough
transform. Then, taking into account the pose uncertainty
of the robot and the measurement uncertainty of the sensor,
they numerically maximize the measurement likelihood over
the line parameters. In order to obtain line segments, they
finally project the scan points onto the infinite lines and crop
them accordingly. As opposed to this method, our method
leverages probabilistics not only to optimize a given initial
line estimate, but also to generate the estimate itself.

In another probabilistic approach, Veeck and Burgard [18]
formulate an algorithm to extract polylines from multiple
2-D laser scans captured at known poses. In the first step,
they create an occupancy grid map, which they then use
to estimate the line contours of the environment. Second,
they repeatedly apply a set of eight operations to these
initial lines, including merging, splitting, adding vertices,
removing vertices, moving vertex locations on a raster grid,
and removing the resulting zig-zag patterns. In this way,
they strive to optimize the Euclidean distances between the

laser scan endpoints and the nearest polyline. Our approach
is different from Veeck and Burgard’s in various aspects.
For example, it is less complicated both conceptually and in
terms of implementation. Moreover, their approach does not
incorporate any ray path information in the result.

Polylines are useful features not only in the context of
lidar. For an approach to extract line segments from sonar
data using the Hough transform, see Tardós et al. [19].
Navarro et al. present methods to localize a robot using lines
extracted from a rotating ultrasound sensor [20] and from
infrared distance sensors [21].

For 2-D laser scans, there is only little research investigat-
ing features other than lines. Tipaldi and Arras’ multi-scale
FLIRT descriptors [22] are among these few. Bosse and Zlot
convert a whole laser scan into a single feature [23] and
extract features from quadratic areas formed by a set of scans
[24].

III. APPROACH

In this work, we present a method to extract a set of poly-
line features from a 2-D lidar scan. In contrast to prevalent
line extraction techniques like split-and-merge or iterative
endpoint fit, our approach does not rely on a geometric
heuristic, but maximizes the measurement probability of the
scan to accurately determine polylines.

The method consists of two steps: polyline extraction and
polyline optimization. Polyline extraction starts by connect-
ing all neighboring scan endpoints to form a set of initial
polylines. It then iteratively removes the vertex that incurs
the least error in terms of measurement probability until it
reaches a given threshold. The result is a set of polylines
whose vertex locations coincide with the locations of a subset
of the scan endpoints. To do away with this limitation, we
formulate an optimization problem that moves the vertices
to the positions that maximize the measurement probability
of the scan. We call this latter process polyline optimization.

In the following, we first define the probabilistic sensor
model. Then, we explain the polyline extraction step, before
going into the details of polyline optimization.

A. Probabilistic Sensor Model

Both polyline extraction and polyline optimization strive
to maximize the measurement probability. By measurement
probability, we refer to the probability of a laser scan
conditioned on a specific set of polylines. In order to
describe this quantity mathematically, we need to define all
necessary variables. We denote the scan by Z := {zk}, where
k ∈ {1, 2, . . . ,K} represents the index of the laser ray. A
single laser measurement z := {a, b} is composed of two
two-element column vectors: the starting point of the ray a
and the endpoint b. The set of polylines L consists of a
total of I individual polylines. These polylines are ordered
sets l := {vj}, composed of at least two pairwise distinct
vertices v. The vertices v, just like the ray starting points and
endpoints a and b, are specified with respect to the coordinate
system of the polyline map L. Note that no vertex can be



part of multiple polylines:
I⋂

i=1

li = ∅.

Most lidar sensors exhibit approximately normally dis-
tributed noise in radial direction and relatively small angular
noise. Consequently, we neglect angular noise and model the
distribution of the measured ray radius given the polyline
map as a Gaussian probability density function centered at
the true radius. With the above definitions, we formulate the
sensor model for a single ray as

p(z | L) = N (r(z); r̂(z, L),Σ), (1)

with the measured ray radius r(z) := ‖b− a‖. The function
r̂(z, L) ∈ R+ computes the distance between the starting
point of the ray and the first intersection between its axis
and the polyline map. The variance of the radial noise Σ
is usually a function of multiple parameters such as the
sensor device, the ray radius, the optical properties of the
reflecting surface, and temperature. It can either be read off
the datasheet of the sensor or determined experimentally.

By assuming independence between the individual laser
rays of a scan, we extend equation (1) to compute the
measurement probability of the whole scan as

p(Z | L) =

K∏
k=1

p(zk | L).

This formula represents the measurement probability that
both steps of our algorithm strive to maximize.

B. Polyline Extraction

Line extraction is always a compromise between memory
requirements and accuracy of the produced lines. This com-
promise needs to be quantified. Embedded applications, for
example, might focus on minimal memory footprint, while
offline mapping systems might favor high accuracy at the
expense of polylines that consist of hundreds or thousands
of vertices. For this reason, every line extraction algorithm
requires some kind of parameter. In the following, we choose
this parameter to be the maximum number of vertices Jmax

of the polyline set, because it allows direct control over
the memory footprint of the result. Note, however, that
our approach makes it easy to use arbitrary parameters,
for example the maximum root mean squared error of the
ray radii, the Akaike Information Criterion, the maximum
difference in area between the extracted polylines and the
polygon of the original scan endpoints, etc., as described
further below.

Given a specific maximum number of vertices Jmax, the
goal of the polyline extraction step is to find the set of
polylines L∗ with at most Jmax vertices that, among all other
polyline maps with at most Jmax vertices, yields the highest
measurement probability. Formally, we are confronted with
the optimization problem

L∗ = argmax
L

p(Z | L)
∣∣∣ J(L) = Jmax, (2)

where J(L) denotes the number of vertices in L.
Solving (2) is primarily a combinatorial problem. Even

if we knew the locations of the Jmax vertices, we still do
not know the data associations, i.e. which vertices make
up which polyline. Exhaustively searching the space of
all data associations for the combination that maximizes
the measurement probability quickly leads to combinatorial
explosion even for small Jmax. For that reason, we use a
greedy algorithm to solve the combinatorial part of (2).

In a nutshell, the algorithm first creates a polygon by
connecting all neighboring scan endpoints. Starting from this
initial map, it iteratively removes the vertex that reduces
the measurement probability of the scan given the map by
the least amount, until it reaches the desired number of
vertices, or until another stopping criterion like one of those
mentioned above is fulfilled.

Given the initial or any intermediate polyline map L,
the problem of finding the vertex vj∗ that reduces the
measurement probability the least can be formulated as

j∗ = argmax
j

p(Z | L \ vj)

= argmax
j

log{p(Z | L \ vj)}

= argmin
j

K∑
k=1

d2(zk, L \ vj)
Σk

= argmin
j

{
K∑

k=1

d2(zk, L \ vj)
Σk

−
K∑

k=1

d2(zk, L)

Σk

}

= argmin
j

K∑
k=1

d2(zk, L \ vj)− d2(zk, L)

Σk

= argmin
j

∑
k∈X(L,vj)

d2(zk, L \ vj)− d2(zk, L)

Σk︸ ︷︷ ︸
=:ej

= argmin
j
{ej}, (3)

where we define L \ vj := {li \ vj} | i = 1, 2, . . . , I . Ac-
cordingly, p(Z | L \ vj) represents the probability density
function of the measurements conditioned on the set of poly-
lines with the vertex vj removed. The function d(z, L) ∈ R
determines the distance between the endpoint of a ray and
its intersection with the map

d(z, L) := r(z)− r̂(z, L).

Please note that the transition from the third to the
fourth line of equation (3) is valid because the second
sum

∑K
k=1 d

2(zk, L) Σ−1k is constant with respect to j. The
function X(L, vj) ⊆ {1, 2, . . . ,K} in the sixth line returns
the indices of the rays that intersect any of the line segments
that start or end at vj . The variable ej can be thought of
as a measurement probability error term corresponding to
the removal of the j-th vertex. Consequently, removing the
vertex that decreases the measurement probability the least
is equivalent to removing the vertex whose removal incurs
the smallest error. For an illustration of the quantities that
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Fig. 2: Illustration of the different terms in equation (3). The
black circle represents the lidar sensor. It shoots laser rays
in different directions, drawn as red lines with dots marking
their measured endpoints. The blue polyline is the map L,
its vertices are denoted v1, v2, v3. The green dashed line
depicts L \ v2, the polyline L with its middle vertex v2
removed. When computing the error e2 corresponding to
the removal of v2, we need to determine two quantities for
each ray zk. The first one is the distance d(zk, L) between
the measured endpoint and the intersection between the
ray and the given polyline L, exemplarily shown for one
ray and denoted d1 in the graphic. The second one is the
distance d(zk, L \ v2) between the endpoint and the polyline
with the vertex v2 removed, denoted d2 in the graphic.

need to be determined in order to compute the errors, see
figure 2.

Computing the error terms according to equation (3) is
valid if the vertex in question has two neighbors. If the vertex
marks the start or the end of the polyline, however, removing
it means removing the corresponding line segment. In this
case, it is not possible to compute the term d(zk, L \ vj).
Consequently, we resort to a heuristic: We introduce a
constant parameter drm, which acts as a placeholder for
d(zk, L\vj) in case the latter term is impossible to determine.
The magnitude of drm controls how easily the algorithm crops
lines. If chosen large, the algorithm rather keeps the line
segments and prefers to remove the vertices in the middle
of the polylines. If chosen small, it tends to crop lines and
reluctantly removes two-neighbor vertices.

The pseudocode in listing 1 shows the workings of the
algorithm in detail and delineates an efficient implementa-
tion. In lines 1 to 10, the algorithm forms the initial map.
To that end, it connects all neighboring scan endpoints that
satisfy two conditions. First, neither of the points in the
pair that is to be connected is a maximum range reading
(line 3). Maximum-range readings emerge when there is no
object within the range of the lidar sensor, so removing
the corresponding line segments is consequential. Second,
the length of the connection between the points does not
exceed a given maximum lmax (line 4). This step prevents
the generation of long lines that are not sufficiently backed
up by lidar data, for example connections between a short-
range endpoint and a long-range endpoint, or connections
between neighboring endpoints at large radii, far away from
the sensor. After the resulting set of line segments have been
merged (lines 9 to 10), L is either a polygon, if all endpoint

Algorithm 1: Polyline Extraction
Data: Z, rmax, lmax, Jmax

Result: L
1 L← {}
2 for all zk in Z do
3 if ( max(rk, rk+1) ≤ rmax)

4 ∧ ( ‖bk+1 − bk‖ ≤ lmax) then
5 l← {bk, bk+1}
6 add l to L

7 end
8 end
9 merge all line segments l ∈ L to polylines so that

10
I⋂

i=1

li = ∅

11 E ← {}
12 for all vj in L do
13 compute error ej corresponding to removal of vj
14 add ej to E

15 end
16 while J(L) > Jmax do
17 find index j∗ of smallest element in E

18 remove vj∗ from L

19 remove ej∗ from E

20 recompute errors ej∗−1 and ej∗ in E

21 end

pairs meet both conditions, or a set of polylines otherwise.
To reduce the number of vertices, the map L is then

subjected to the greedy part of the algorithm, represented
by lines 11 to 21. Lines 11 to 15 initially compute the error
values corresponding to the removal of the individual vertices
vj in L. The loop spanning lines 16 to 21 then iteratively
removes the vertex corresponding to the smallest change in
measurement probability and updates the errors, until the
desired number of vertices is reached. Note that in line 20, it
is not necessary to recompute all errors in E. Only the errors
corresponding to the immediate neighbors of vj∗ change.
After the removal of vertex vj∗ , those are indexed by j∗− 1
and j∗.

If a stopping criterion other than the number of vertices is
given, for example a maximum RMSE value, the condition
in line 16 simply needs to be changed accordingly.

Algorithm 1 solves the combinatorial part of the optimiza-
tion problem (2). It tells both which scan endpoints create
which vertices, and which vertices form which polyline.
It does not, however, alter the positions of the vertices in
order to maximize the measurement probability. In polyline



extraction, the vertex locations are limited to the locations
of the scan endpoints. The next step, polyline optimization,
relaxes this restriction.

C. Polyline Optimization

Having solved the combinatorial part of the optimization
problem (2), we now turn to its numerical part: We take the
vertex locations produced by the polyline extraction step and
move them to the positions that maximize the measurement
probability of the scan conditioned on the map p(Z | L).

More formally, we want to solve

L∗ = argmax
L

p(Z | L) = argmin
L

K∑
k=1

d2(zk, L)

Σk
, (4)

which is a nonlinear, discontinuous, multivariate optimization
problem in the coordinates of the polyline vertices. Its
discontinuous nature, which results from the polylines’ kinks
in the vertices, requires appropriate direct search solvers, for
example the Nelder-Mead Simplex Method [25].

Before starting to optimize, it is important to closely
consider the search space of the problem formulated in
equation (4). In the case of a closed polygon, this space
simply becomes R2J , where J is the number of vertices
in L. A corresponding candidate solution consists of the
coordinates of all polygon vertices. In the case of a set
of polylines, however, allowing all vertices to freely move
around might lead to undesired effects: Vertices at the start
or end of a polyline might drift off into unobserved regions.
Consider vertices v1 and v3 in figure 2, for example. As long
as they stay on the axis of the respective line segment, they
can move indefinitely away from the observed region without
affecting the measurement probability of the scan. To avoid
this effect and to keep the search space as small as possible,
we constrain the movement of vertices at the start or end of
a polyline to the axis of the corresponding ray. Given a map
consisting of I polylines, the dimensionality of the search
space hence becomes 2(J − I).

IV. EXPERIMENTS

In order to assess the quality of the polyline maps pro-
duced by the presented method and to compare the results
with those returned by existing approaches, we conduct
two series of experiments. In the first, we evaluate the
performance of every method on real-world 2-D lidar data.
The data is composed of 13 datasets taken from Radish, the
publicly available Robotics Data Set repository [26]. From
each of those datasets, listed in table I, we randomly choose
20 scans, leading to a total of 260 scans to evaluate. On
average, each of the selected scans contains 264 rays. The
second experiment series is based on the same number of
simulated scans with 360 rays each. Simulation allows us
to measure the accuracy of the obtained polyline maps not
only with respect to the scan data, but also with respect to
the underlying ground-truth map. To simulate a scan, we
first create a random polygon with 3, 4, 5, 6, 12, 36, or
180 vertices. We then sample a noisy full-revolution, 360-ray
scan from it by first applying normally distributed noise to

TABLE I: Datasets taken from the Robotics Data Set Repos-
itory [26].

Acapulco Convention Center U Freiburg, 101
U Texas, ACES3 U Freiburg, campus
Belgioioso Castle MIT infinite corridor
MIT, CSAIL Intel Research Lab
Edmonton Convention Center Örebro University
FHW museum U Washington, Seattle
U Freiburg, 079

the ray angles, then computing the true intersection points of
scan and polygon, and by finally adding normally distributed
noise to the corresponding ray radii. The standard deviations
of angular and radial noise are 0.2◦ and 0.03 m, respectively.

In both experiment series, we compare six different takes
on polyline extraction, starting with Visvalingam line simpli-
fication (VVL) [16]. The method requires initial polylines,
so we first connect the endpoints of the scan using the
exact same procedure as described in algorithm 1, line 1
to 10, with lmax set to 1 m. Visvalingam’s algorithm then
simplifies the resulting initial polygon or set of polylines
by iteratively removing the vertex whose removal is linked
to the least perceptible change in the polyline. The popular
iterative endpoint fit algorithm (IEF) [10] comes second in
our comparison. As opposed to the top-down approach of
VVL, which starts with the most detailed line and iteratively
simplifies it, IEF builds polylines from bottom up. In short,
IEF takes a set of range measurements, connects the first
and the last point by a straight line, and then inserts the
scan endpoint with the largest distance from the line as a
vertex into the line. It repeats this process until it reaches
the specified number of vertices. Split-and-merge (SAM) [9]
is an extension of IEF. The only difference between the
two algorithms is that in each iteration, SAM first fits the
line estimate to the scan points by minimizing the squared
distances between the points and the line. Both algorithms
do not account for maximum-range readings, which is why
we removed them from the laser scans before passing the
scans to IEF or SAM. VB, the fourth method in our com-
parison, denotes the polyline learning algorithm proposed by
Veeck and Burgard [18]. We call our approach probabilistic
line extraction (PLE). If the vertices provided by PLE are
optimized using the procedure described in section III-C, we
denote it by PLE+. Throughout all experimental runs, we
set lmax = 1 m and drm = 0.5 m. Furthermore, we assume
that the radial variance Σ of all rays is the same. As a
consequence, we do not have to specify any variance at all,
because if constant, the term Σk vanishes from equations (3)
and (4).

Figure 3 exemplarily illustrates the results obtained by
applying the described methods to the same scan. Although
the desired number of vertices was set to J = 10 for all
methods, the returned polyline maps differ considerably.

Figure 4 summarizes our findings pertaining to the accu-
racy of the investigated methods. It displays the evolution
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Fig. 3: Exemplary results of the various polyline extraction methods applied to the same scan captured in an office. All
methods respect the requirement of at most 10 vertices, except for VB, which produces 17 vertices.

of the results over increasing memory footprint, encoded by
the number of vertices J . For each method and each dataset,
we evaluate the following values of J : 10, 20, 30, 40, 50.
We employ three different metrics to look at the results from
different perspectives. The root mean squared error (RMSE)
of the ray radii assesses how closely the extracted polylines
represent a scan. The E in RMSE is the distance between
the measured endpoint of a lidar ray and its hypothetical
intersection with the polyline, measured along the ray axis.
For each scan, we determine one RMSE value by iterating
over all rays. For every algorithm, we then average the
RMSE over all scans to obtain the values shown in figure 4.
The second metric, denoted by f , quantifies the match
between the polyline map and the original scan in a different
way. For each scan, f is the ratio of the number of rays
hypothetically intersected by the polylines and the number
of rays actually reflected in the measured scan. The f -values
presented in figure 4 are again averaged over all scans.
For the simulated experimental runs, we introduce the third
metric a. It measures how well an extracted polyline map
recovers the ground truth map. To determine the a-value, we
transform the coordinates of the estimated polyline vertices
to polar coordinates with respect to the sensor pose, order
them counterclockwise, and build a polygon out of them.
We then compare how well the resulting polygon matches

the one that represents the ground-truth. More specifically,
we compute the ratio of areas

a :=
(aGT ∪ aE)− (aGT ∩ aE)

aE
,

where aGT denotes the area of the ground-truth polygon,
while aE stands for the area of the estimated polygon.

Figure 4 reveals that although very popular, the split-and-
merge algorithm performs poorly relative to the other line
extraction methods we selected. Even more surprisingly, its
less elaborate predecessor, iterative endpoint fit, outperforms
SAM with respect to every metric we evaluated. We tracked
the reason for this behavior down to the line fitting process:
Especially in the first iterations, when the number of polyline
segments is by far too small to represent the structure of
the environment, fitting often leads to a degradation of
the line estimate. During the later iterations, when refining
the polylines, the algorithm is not able to compensate this
inaccurate prior. The described behavior is not only apparent
in the RMSE, but also in the f -value. While IEF explains
all measurements, SAM does not account for a significant
amount of rays. So in contrast to the conclusion that Nguyen
et al. [8] drew after experimentally comparing SAM and
IEF on a dataset of 100 scans, we find that split-and-merge
performs significantly poorer than iterative endpoint fit.
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Fig. 4: Experimentally determined accuracies of the investi-
gated polyline extraction methods. RMSE denotes the root
mean squared error between the measured laser ray endpoints
and the hypothetical intersection with the extracted set of
polylines, averaged over all scans. The variable f indicates
the fraction of rays explained by the polyline map, whereas
a denotes the relative area error between the polygon ex-
tracted from simulated data and the underlying ground-truth
polygon. The error bars in the plots visualize the standard
errors. The dashed line on the left side of plot (b) marks the
standard deviation of the radial noise for the simulated laser
scans.

The results of the method developed by Veeck and Burgard
are only given for J ≈ 20. This is due to the fact that
their approach does not allow to set the memory limits of
the resulting polyline directly. Instead, one has to provide
a target value for the Bayesian Information Criterion (BIC),
which they use to balance the compromise between mem-
ory requirements and accuracy. Unfortunately, even large
variations in the BIC value lead to similar vertex counts.
For that reason, we are not able to evaluate VB over the
whole range of J . The results demonstrate that VB achieves
good accuracy, but only for the limited set of laser rays it
explains. At 0.71, the f -value turns out comparatively low
both on real data and in simulation. The reason is the grid

map-based initialization of the polylines, which discards grid
cells with low occupancy values. Figure 3d illustrates this
behavior. In contrast to all other methods, VB is not able to
extract the line that runs approximately through coordinate
(10, 13). The occupancy probability along this line is simply
too small to qualify as an initial polyline. As a consequence
of this behavior, VB returns the most inaccurate polygons in
simulation.

Although to our knowledge never evaluated in a robotics
context, Visvalingam’s algorithm returns comparatively low
RMSE values in both experimental settings. The characteris-
tic it suffers from most is its small f -value – a consequence
of the fact that the removal of straight lines comes at no cost.
Hence, the algorithm discards any solitary line segment in
order to decrease the vertex count. The exemplary output
of the Visvalingam method in figure 3a shows exactly this
behavior. The solitary line segments representing the long
walls at the top and on the right side of the image had to
make way for the nine vertices in the blue polyline. Some
of them are hardly recognizable because the corresponding
kinks in the line are so small. In simulation, where the scan
represents a closed polygon, the described effect does not
appear, resulting in an f -value of 1.

The line extractors proposed in this paper, PLE and PLE+,
outperform all other methods on real data and in simulation.
As shown in figure 4, both algorithms result in significantly
smaller RMSE values than the other methods, except for VB,
which exhibits a slightly lower RMSE on simulated data.
However, VB is unable to accurately recover the simulated
polygons, achieving an f -value of only 0.71, while PLE
and PLE+ attain 1. PLE+ always exhibits smaller RMSE
values than PLE, because the optimization minimizes exactly
this metric. The superior a-values in figure 4b demonstrate
that minimizing the RMSE also leads to an improved rep-
resentation of the underlying ground-truth map. Note that in
figure 4a, the f -values of PLE and PLE+ are exactly the
same, because PLE+ does neither change the topology of
the polylines extracted by PLE, nor does the optimization
allow boundary rays to interfere with rays that account for
measurements outside the polyline.

As expected, the RMSEs of all algorithms in figure 4b ap-
proach the standard deviation of the simulated radial sensor
noise for large J . PLE+ even falls below this value, an effect
that is due to the algorithm overfitting highly articulated
polygons to the noise in the scans. Correspondingly, the area
error increases slightly for large J .

Lastly, we report on the computational costs for all meth-
ods in table II. Each algorithm ran in a single thread on
an Intel Xeon CPU with 2.50 GHz. The bottom-up line
simplification algorithms IEF and SAM exhibit slightly de-
creasing computation times for increasing J , because higher
J-values mean less simplification steps. The repeated fitting
steps in SAM turn out to be costly: In the worst case, SAM
is 100 times slower than IEF. The reason for the constant
timing of Visvalingam’s algorithm lies in our implementa-
tion: At first, for every polyline in the map, we compute
the incremental errors until the line has vanished. We then



TABLE II: Mean computation times in seconds.

J VVL IEF SAM VB PLE PLE+

Real 20 0.056 0.27 28 0.28∗ 1.4 2.3
50 0.050 1.12 27 — 1.3 6.9

Sim. 20 0.037 0.38 103 0.48∗∗ 2.3 11
50 0.037 1.59 102 — 2.2 72

∗ J = 18.5 ∗∗ J = 20.7

order the errors globally, i.e. over all polyline segments, and
remove as many vertices as required to meet the specified
vertex count. Despite this simplified implementation, VVL
is at least ten times faster as the popular IEF. Our algorithms
PLE and PLE+ are in the mid-range among the investigated
methods. As a result of the optimization via direct search,
we find that the complexity of PLE+ grows approximately
quadratically in J . At the same time, the advantage gained
by the optimization process decreases for high numbers
of vertices, as can be read off figure 4. Therefore, we
recommend to use PLE+ to extract only few, but highly
accurate vertices. If memory requirements are less strict and
timing becomes an issue, PLE is the right choice.

Both our MATLAB implementation of the presented
line extraction approach and the scripts used to conduct
and evaluate the experiments are publicly available under
https://github.com/acschaefer/ple.

V. CONCLUSION AND FUTURE WORK

In order to extract polylines from a 2-D laser scan, one
has to answer two questions: Which polyline reflects which
scan endpoints? And where are the optimal locations of
the polyline vertices? In the present paper, we answer the
first question using a greedy algorithm that minimizes the
decrease in measurement probability caused by representing
individual scan endpoints by line segments. The answer
to the second question is given by a direct search opti-
mizer that moves the vertices in order to maximize the
measurement probability. Extensive experiments on publicly
available datasets and simulated data demonstrate that our
approach clearly outperforms all four reference approaches.

Due to the promising results, we will build upon the
presented approach in the future and extend the line extractor
to three dimensions, resulting in a maximum likelihood
approach to extract planes from 3-D laser range scans.
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