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Abstract— In this paper we present a framework that allows
the motion control of a robotic arm automatically handling
different kinds of safety-related tasks. The developed controller
is based on a Task-Priority Inverse Kinematics algorithm that
allows the manipulator’s motion while respecting constraints
defined either in the joint or in the operational space in
the form of equality-based or set-based tasks. This gives
the possibility to define, among the others, tasks as joint-
limits, obstacle avoidance or limiting the workspace in the
operational space. Additionally, an algorithm for the real-time
computation of the minimum distance between the manipulator

and other objects in the environment using depth measurements
has been implemented, effectively allowing obstacle avoidance
tasks. Experiments with a Jaco2 manipulator, operating in an
environment where an RGB-D sensor is used for the obstacles
detection, show the effectiveness of the developed system.

I. INTRODUCTION

In the last years we are experiencing the spread of robots in

several fields of the human life. Human-Robot collaboration,

unthinkable until few years ago, now represents a growing

topic of research in many areas such as industrial, medical

and assistive and service robotics. An explanatory example is

the industrial field. During 70’s and 80’s robots were mainly

used for substituting humans in dirty, hard and repetitive jobs

but they were forced to work in safety cages, preventing the

cooperation between human operators and robots for clear

safety issues. During the years robots have gained more and

more capabilities, due to several factors such as the falling of

the sensor prices, the increase in computing power and the

spread of the open-source development. All this resources

allowed the spread of a new paradigm for the manufacturing

industry based on the cooperation between human and robots

[1]. In this perspective acquires a major importance the

problem of the safety of the operations [2], [3].

Robotic manipulators are often required to perform tasks

in the operational space, such as to move the end-effector at a

certain position and/or orientation. However, a number of ad-

ditional tasks have to be taken into account while controlling

the system in order to assure the safety and the effectiveness

of the operation. The arm has to avoid obstacles, respect its

mechanical joint limits, handle the occurrence of kinematic

singularities. In the following, this kind of tasks will be called

set-based, because the control objective is to keep them in a

certain set of values rather that a specific one. One of the first

attempts to handle the obstacle avoidance task for a mobile

robot is conducted in [4] where the it is pushed away from
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the obstacle by defining a virtual force or potential field.

This kind of approach presents drawbacks: it is not possible

to set a minimum distance from the obstacle that the robot

has to maintain, and an undesirable oscillating behavior of

the system in presence of some kind of obstacles can occur

[5]. More recently, a popular way to handle set-based tasks

is to express the inverse kinematics problem in a sequence

of QP (Quadratic Programming) problems [6], [7]. This

method requires the usage of iterative algorithms to solve the

optimization problems, and usually they are computationally

heavy and slow. In [8] set-based tasks are successfully added

to a prioritized hierarchy and the transitions are handled by

proper activation functions that guarantee the smoothness of

the output reference velocity. However, during the transitions,

the strict priority order among the tasks is lost, potentially

leading to undesirable behaviors.

In this paper we present a system that allows the execution

of the operational tasks, such as the control of the end-

effector position and orientation, while all the safety-related

ones such as the obstacle avoidance and the mechanical joint

limits are automatically handled by the system. Regarding

the control algorithm, the key idea is to exploit the system

redundancy. A robotic system is defined as redundant if it

has more DOFs than those strictly needed for the accomplish-

ment of a certain task. In this case, it is possible to perform

multiple tasks simultaneously [9]. The approach has been

further extended to multiple prioritized tasks in [10] and [11],

in which a priority order among the tasks can be fixed and the

velocity contributions of the lower priority tasks that would

conflict with higher priority ones are filtered. The outcomes

of these works have been extended to handle also set-based

tasks [12], [13]. Regarding the obstacle avoidance task, we

used a Kinect 2 sensor for monitoring the environment,

exploiting the algorithm presented in [14] for the detection

of the closest obstacles using depth measurements.

The paper is organized as follows: Section II describes the

Multi-Task Inverse Kinematics Framework and the algorithm

for handling the set-based tasks; Section III shows the algo-

rithm for the obstacles detection using depth measurements;

in Section IV experimental results are shown; Section V

describes the conclusions and the future work.

II. MULTI-TASK PRIORITY FRAMEWORK INCLUDING

SET-BASED TASKS

For a general robotic system with n DOF (Degrees Of

Freedom), the state is described by the joint values q =
[q1, q2, . . . , qn]

T
∈ R

n . Defining a task as a generic m-

dimensional control objective as a function of the system



state σ(q) ∈ R
m , the following differential relationship

between the system velocity and the task-space velocity

holds [15]:

σ̇(q) = J(q)q̇ , (1)

where J(q) = ∂σ(q)
∂q ∈ R

m×n is the task Jacobian matrix,

and q̇ is the joint velocity vector. The reference velocity that

brings the task value σ to a desired σd can be computed

resorting to the Closed-Loop Inverse-Kinematics algorithm

[9]:

q̇ = J†(σ̇d +Kσ̃) , (2)

where K ∈ R
m×m is a positive-definite matrix of gains,

σ̃ = σd − σ is the task error and

J† = JT (JJT )−1 (3)

is the Moore-Penrose psudoinverse of the Jacobian matrix

J .

If the system is redundant (n > m) it is possible to

perform multiple tasks simultaneously, setting a priority level

among them and then projecting the velocity components

coming from a lower priority task into the null space of the

higher priority ones. In this way the fulfilment of the primary

task is guaranteed. Thus for a prioritized hierarchy composed

by h tasks, the reference system velocity can be computed

resorting to the Null-Space Based Inverse Kinematics control

[10] [16]:

q̇ = q̇1 +N 1q̇2 + · · ·+N1,h−1q̇h , (4)

where q̇i is the reference velocity that fulfills the i-th task

and N1,i is the null space of the augmented Jacobian:

J1,i =
[

JT
1 JT

2 . . . JT
i

]T
(5)

computed as:

N1,i = I − (J†J)−1 , (6)

where I is the n by n identity matrix.

The aforementioned framework has been developed to

handle control objectives in which the goal is to bring the

task value to a specific one, e.g. moving the arm end-effector

to a target position. This kind of tasks are usually referred

as equality-based. However, several control objectives may

require their value to lie in an interval, i.e. above a lower

threshold and below an upper threshold. These are usually

called set-based tasks. Classic examples of set-based tasks

for a robotic manipulator are the mechanical joint limits, the

obstacle avoidance and arm manipulability tasks. In the last

years, a great effort has been made in order to extend task-

priority frameworks to handle set-based tasks, as for example

done in [8]. In particular, the singularity-robust multi-task

priority inverse kinematic framework has been extended to

handle set-based tasks in [12].

The key idea is that a set-based task can be seen as an

equality-based one which gets active or inactive depending

on its current value. In particular, it is necessary to set differ-

ent reference values for each set-based task: physical thresh-

olds σM (σm), safety thresholds σs,u < σM (σs,l > σm),

and activation thresholds σa,u = σs,u − ε (σa,l = σs,l + ε).

Figure 1 shows all the mentioned thresholds. When the task

value exceeds an activation threshold, it has to be added to

the task hierarchy as a new equality-based task with desired

value:

σd =

{

σs,u if σ ≥ σa,u

σs,l if σ ≤ σa,l
(7)
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Fig. 1. Activation and physical thresholds of a set-based task
Then it can be deactivated when the solution of the

hierarchy that contains only the other tasks would push its

value toward the valid set. More specifically, it is possible

to check whether a generic solution q̇ makes a set-based

task σA go beyond the desired limit or not by evaluating

its projection in the task space. Defining JA as the Jacobian

matrix of σA, if JAq̇ > 0 the solution would increase the set-

based task value, otherwise if JAq̇ < 0 the solution would

decrease it. In this way, σA can be deactivated if

σA ≥ σa,u ∧ JAq̇ < 0 (8)

or

σA ≤ σa,l ∧ JAq̇ > 0 (9)

A. Kinematic singularity handling

A configuration is defined as kinematically singular when

the corresponding jacobian matrix J(q) loses rank, and it is

associated with a loss of mobility of the manipulator’s end-

effector. The reference velocity in output from the inverse

kinematics algorithm diverges, leading the system to insta-

bility [17]. This kind of situations are undesirable and need

to be properly handled or avoided in order to guarantee the

safety of the operations. The most popular way is to exploit

the Damped Least-Square pseudoinverse, defined as:

J
†
DLS = JT (JJT + λ2Im)−1

in which a proper choice of the damping factor λ can

avoid the undesirable effects of the kinematic singularity. In

literature there are many different algorithm for determining

λ in function of the minimum singular value of the Jacobian

matrix and the task error norm. In [18] a comparison among

different algorithms is carried out. For this work, the dynamic

threshold for the damping factor presented in [19] has been

chosen:

λ =











0 if σmin ≥ σ⋆

√

σmin(σ⋆ − σmin) if σ⋆/2 ≤ σmin < σ⋆

σ⋆/2 if σmin < σ⋆/2

with:

σ⋆ =
||σ̃||

||q̇||max

where ||σ̃|| is the task error norm and ||q̇||max is the maxi-

mum joint velocity norm.



B. Implemented tasks

For the presented system several set-based and equality-

based tasks have been implemented.

• End-effector configuration (equality-based): assign a

combination of end-effector position and orientation;

• Mechanical joints limits (set-based): set thresholds on

joints positions;

• Obstacle avoidance (set-based): make the end-effector

of the manipulator keep a minimum distance from a

target obstacle;

• Virtual walls (set-based): keep the end-effector at a

minimum distance from a virtual plane;

In order to effectively and safely operate the manipulator, it

is useful to divide all these tasks in three groups and assign

them a priority level [20].

1) Safety related tasks: this group contains all the safety-

related tasks, such as mechanical joint limits, obstacle

avoidance and virtual walls. Since they assure the

integrity of the system and of the environment in

which it operates, the highest priority level needs to

be assigned to them.

2) Operational tasks: this group contains all the tasks

aimed at the accomplishment of the mission, such as

the end-effector position, orientation or configuration.

3) Optimization tasks: this group contains all those

tasks that are not strictly necessary for the effective

accomplishment of the operation, but they might help

in making it in a more efficient way. In this category

lie tasks such as the arm manipulability and the field

of view.

III. MINIMUM DISTANCE EVALUATION USING DEPTH

MEASUREMENTS

We consider a depth sensor used for monitoring the

environment in which the robot operates and our goal is

to evaluate the distance between a Control Point P and an

obstacle point O using their depth space representation. The

Depth space is a 2.5-dimensional space in which the first two

coordinates represent the projection of a point in the camera

plane and the third coordinate is the distance between the

point and the camera. The depth sensor is usually modelled

as a pin-hole camera, which is composed by two matrices

expressing the intrinsic parameters that model the projection

of a point in the image plane, and the extrinsic parameters

that represent the transformation between the reference and

the sensor:

K =





fsx 0 cx
0 fsy cy
0 0 1



 , ε =

(

R t

0 1

)

where f is the focal length of the camera, sx and sy are the

pixel dimensions, cx and cy are the coordinates of the center

of the image plane. Given a control point P d = [px py dp]
T

in the depth space, its projection in the cartesian sensor space

is given by:

Ps,x =
(px − cx)dp

fsx
, Ps,y =

(py − cy)dp
fsy

, Ps,z = dp

and its distance vector V s = [vs,x vs,y vs,z]
T

, expressed

in cartesian sensor space, from an obstacle point Od =
[ox oy do]

T
can be computed as:

vs,x =
(ox − cx)do − (px − cx)dp

fsx

vs,y =
(oy − cy)do − (py − cy)dp

fsy

vs,z = do − dp

For further details about this formulation see [14].

We are interested in monitoring the environment and in

detecting all the obstacle points close to three different

control points placed on the manipulator. In particular the

control points are placed on the fourth, the sixth and the

seventh joint, namely on the elbow, on the wrist and on

the hand of the manipulator. For each one of these control

points P i it is useful to define a region of surveillance Si

composed by a cube of side 2ρ centered at P i. It is necessary

to compute the distances among all the points in the depth

image contained in these three regions of surveillance and

all the control points and select the closest ones.

It is important to notice that the manipulator needs to be

removed from the depth image, otherwise the obstacle points

closest to the chosen control points would always belong to

the manipulator itself, and the computed minimum distance

would be equal to zero. For this purpose, the Real-Time

URDF filter ROS package [21] has been used. It receives

as input the URDF model of the arm, the joint positions

and the transformation between the robot frame and the

camera frame and computes the depth image without the

manipulator.

Figure 2 shows the output of the minimum distance

evaluation algorithm. The three control points are placed on

the manipulator (light grey circles) and the corresponding

minimum distance points (white circles) are computed in real

time. Notice that the original meshes of the manipulator have

been replaced by larger boxes, in order to avoid irregularities

in the manipulator removal procedure.

control points

obstacle points

Fig. 2. Minimum distance computation: control points (light grey circles)
and corresponding closest points (white circles) )

In the controller three set-based obstacle avoidance tasks

are defined, one for each control point. The distance compu-

tation algorithm outputs the coordinates of the three points



closest to the selected control points, and they are sent to

the control algorithm that activates the corresponding task

if the computed distance is lower than the chosen activation

threshold. The vectors V i = Oi − P i, being the distance

vectors expressed in the arm base frame, are additionally

used for the task jacobians computation. The i-th obstacle

avoidance task value is:

σi =
√

(Oi,min − P i)T (Oi,min − P i) i = 1, 2, 3

where P 1, P 2 and P 3 are the position of the fourth, the

sixth and the seventh joint expressed in the arm base frame

and Oi,min is the corresponding closest point expressed in

the arm base frame. The associated Jacobian is computed as:

J i = −
(Oi,min − P i)

T

√

(Oi,min − P i)(Oi,min − P i)
J1..j

pos

where J1..j
pos ∈ R

3×n is the matrix composed by the first j−1
columns of the position Jacobian, with j equal to the index

of the joint taken as control point, filled with zeros from the

column j to n.

J1..j
pos =

[

J1
pos J2

pos . . . J j−1
pos 0

]

IV. EXPERIMENTS

A. Experimental setup

In order to validate the proposed system a number of

experiments have been carried out on the Kinova Jaco2 7

DOF manipulator. The arm base frame is labelled with a

marker which is detected in real-time using the Aruco library

[22]. The transformation between the arm base frame and

the camera frame is given as input to the real-time URDF

filter for removing the arm from the depth image and it is

used for the transformation of the closest obstacle points

in the arm base frame. The sensor used for the depth image

acquisition is a Microsoft Kinect 2 [23], and the library used

for the minimum distance computation is the PCL (Point

Cloud Library) [24]. The arm is controlled at 100 Hz, while

the distance computation algorithm run at 30 Hz, which is

the maximum acquisition frequency of the Kinect sensor.

In the following, the results of two case studies are shown,

demonstrating the effectiveness of the developed system.

B. First case study

In the first case study the following prioritized task hier-

archy has been chosen:

1) Second, fourth and sixth joints limits

2) Obstacle avoidance for the three control points

3) End effector position

The joint limits have been chosen matching their actual

mechanical limits, in order to avoid that the manipulator

hits its own structure. The minimum distance from the

obstacles for the three control points placed on the manip-

ulator has been set at 35 cm. The end-effector is asked

to sequentially reach two different predefined waypoints

p1
d = [−0.5 0.4 0.7]

T
and p2

d = [0.5 0.4 0.7]
T

expressed

in the arm base frame. Figure 3 shows the position error

over time during the experiment, while Fig. 4 shows the

distance between the closest obstacle points and the three

control points, together with their minimum thresholds.
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Fig. 3. First case study: position error. From t = 0s to t = 35s the arm is
free to reach sequentially the two predefined waypoints. From t = 35s to
t = 55s a person steps into the scene and the obstacle avoidance tasks get
activated, stopping the motion of the manipulator. From t = 55s the person
steps away from the manipulator, which is free to continue its movement
toward the desired waypoints.
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Fig. 4. First case study: distance between the control points and the
respective closest obstacle points. The desired minimum thresholds are
highlighted (red lines). At t = 35s a person steps into the scene and the
obstacle avoidance tasks for the second and third control points get active,
keeping the distance above the chosen thresholds. At t = 55s the person
exits from the scene and the tasks deactivates.

At the beginning of the experiment a person stands near

the arm, keeping the distance above the activation thresholds

of the obstacle avoidance tasks. The arm is free to move

reaching sequentially the two predefined waypoints. At t =
35s the person steps into the scene, getting closer to the

manipulator. Two obstacle avoidance tasks get activated (the

ones corresponding to the hand and the wrist), and the control

algorithm stops the motion of the manipulator, preventing

the collision. Figure 4 shows that the minimum threshold

for the obstacle avoidance tasks is respected, while in Fig.

3 it is clear that the position error is high while the obstacle

avoidance tasks are active. At t = 55s the person steps

back, triggering the deactivation of the obstacle avoidance

tasks and allowing the manipulator to continue its movement

toward the desired waypoints. Figure 5 shows the joint

values and their upper and lower thresholds during all the

experiments. It is worth noticing that the fourth joint task
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Fig. 5. First case study: second, fourth and sixth joint value (blue line)
and minimum/maximum thresholds (red line). The fourth joint limit task
gets active during the trajectory and the control algorithm stops its motion
respecting the desired threshold.

gets active during the trajectory, and the control algorithm

stops its motion in order to respect the given threshold.

C. Second case study

For the second case study a more complex task hierarchy

has been chosen:

• Second, fourth and sixth joints limits

• Virtual walls: the end-effector is forced to stay within

six virtual walls, creating a virtual box around the

manipulator

• Obstacle avoidance for the three control points

• End effector position

The end-effector is asked to keep a constant position, while

a person tries to touch the control points on the manipulator.

When the distances reach the chosen thresholds the obstacle

avoidance tasks get active and the arm starts moving in order

to avoid the collision with the person. Figure 6 and Fig. 7

show a sequence of screenshots of the experiment.

The six virtual walls impose the following limits on the x,y
and z coordinates in the arm base frame of the end-effector:

• Wz,1 and Wz,2 make the end-effector stay between 0.2

m and 0.9 m on the z axis

• Wy,1 and Wy,2 make the end-effector stay between -0.5

m and 0.5 m on the y axis

• Wx,1 and Wx,2 make the end-effector stay between -0.5

m and 0.5 m on the x axis

These thresholds have been chosen in order to avoid that

the arm reaches the boundary of its workspace, thus the

corresponding singular configuration. Additionally the limit

on the z coordinate prevents the end-effector to hit the table

it is attached on. Figure 8 shows the end-effector position

over time, together with the limits imposed by the virtual

walls. The person tries to push the end-effector beyond the

walls but the associated tasks get active, stopping the motion

in that direction at the chosen thresholds.

During all the experiment the minimum distance between

the person and the three control points on the manipulator

is kept above the chosen thresholds, as shown in Fig. 9.

Notice that the chattering phenomenon is due to the fact that

the person is moving and the points at minimum distance

change over time. Finally, Fig. 10 shows the joint values

with their corresponding limits. It is clear the their positions

never exceeds the imposed limits during all the experiment.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented a system that allows safety

operations with a robotic manipulator. The control algorithm

that handles a task hierarchy has been explained, focusing

the attention on the obstacle avoidance, the joint limits

and the virtual walls tasks. The algorithm for the real-time

evaluation of the closest obstacles to the manipulator from

depth measurements has been described, together with its

integration in the motion controller. Finally experimental

results on a 7 DOF Kinova Jaco2 using a Kinect sensor

for the obstacles detection have been shown, proving the

effectiveness of the developed system.

Further efforts will be used in two main directions. First of

all we want to improve the obstacles detection phase by using

multiple Kinect sensors, increasing the field of view of the

overall system and minimizing occlusions issues. The second

direction will be making the system robust with respect to

the occurring in local minima problems, that are very likely

in gradient-based methods. The idea would be to integrate in

the framework a motion planner, capable of detecting such

situations and of replanning the motion of the system.
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M. Marı́n-Jiménez, “Automatic generation and detection of highly re-
liable fiducial markers under occlusion,” Pattern Recognition, vol. 47,
no. 6, pp. 2280 – 2292, 2014.

[23] T. Wiedemeyer, “IAI Kinect2,” https://github.com/code-iai/iai kinect2,
Institute for Artificial Intelligence, University Bremen, 2014 – 2015,
accessed February 27, 2018.

[24] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in IEEE International Conference on Robotics and Automation, 2011.

https://github.com/blodow/realtime_urdf_filter
https://github.com/code-iai/iai_kinect2

	I Introduction
	II Multi-Task Priority Framework including set-based tasks
	II-A Kinematic singularity handling
	II-B Implemented tasks

	III Minimum distance evaluation using depth measurements
	IV Experiments
	IV-A Experimental setup
	IV-B First case study
	IV-C Second case study

	V Conclusions and future work
	References

