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Fast Trajectory Planning for Automated Vehicles using
Gradient-based Nonlinear Model Predictive Control

Franz Gritschneder, Knut Graichen and Klaus Dietmayer

Abstract— Motion trajectory planning is one crucial aspect
for automated vehicles, as it governs the own future behavior
in a dynamically changing environment. A good utilization of
a vehicle’s characteristics requires the consideration of the
nonlinear system dynamics within the optimization problem
to be solved. In particular, real-time feasibility is essential for
automated driving, in order to account for the fast changing
surrounding, e.g. for moving objects. The key contributions of
this paper are the presentation of a fast optimization algorithm
for trajectory planning including the nonlinear system model.
Further, a new concurrent operation scheme for two opti-
mization algorithms is derived and investigated. The proposed
algorithm operates in the submillisecond range on a standard
PC. As an exemplary scenario, the task of driving along a
challenging reference course is demonstrated.

I. INTRODUCTION

Fully automated driving is still an unsolved problem. Tra-
jectory planning is one key enabling module for automated
vehicles, as its outcome describes the vehicle’s future motion.
The physical behavior of the motion in time is subject to
constraints originating from the vehicle’s environment as
well as comfort and safety goals. The first aspect ensures
a comfortable motion profile for the passengers, whereas
rapid changes in acceleration have to be avoided. Second,
the motion has to be collision free anyway, regarding other
static as well as dynamic objects.

In general, the task of automated driving is even more
complicated. While static objects can be considered easily,
the future behavior of dynamic objects is hard to predict as
their behavior can change abruptly. For example, a pedestrian
can alter his direction or speed in an unprecedented manner.
Consistently, this illuminates the need for a motion planning
module with a fast computation performance as well as
scalability for the planning horizon.

Trajectory planning for automated vehicles is an active
field of research for more than a decade. First approaches
[1],[2] already used a model predictive control formulation
for vehicle applications. A first approach [3] exploited the
decomposition of the planning task into a lateral and lon-
gitudinal motion profile search. Recent work [4], [5], [6]
successfully implemented model predictive control (MPC)
algorithms by a combined consideration of a vehicle’s non-
linear dynamics. The nonholonomic character makes the
task of trajectory planning even more complicated. However,
this approach characterizes the real system behavior best
but raises difficulties in computing a real-time solution for
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the optimal control problem. The approaches from above
concern the solution of an optimal control problem by first
discretize and then optimize.

II. CONTRIBUTIONS

In this paper, a first optimize and then discretize solution
strategy is presented. The continuous formulation of the non-
linear optimal control problem covers the real dynamics best.
Further, two instances of the solution approach are run in a
hierarchical fashion, where one computes a reference course
for the second instance, which calculates the actual motion
profile for a vehicle. The main contribution of our work
addresses the above mentioned challenges and is twofold.
The solution of the optimization problem uses a nonlinear
model predictive controller. (i) Our approach employs a
fast real-time capable solution method. (ii) A hierarchical
operation scheme using two MPC instances, which are run
in parallel, is introduced. The latter is beneficial if different
domains for the prediction horizon are present.

The remainder of the paper is structured as follows.
First, the vehicle model together with the nonlinear MPC
formulation and solution strategy is introduced (III). Next
(TV), a thorough discussion for the course model follows. In
the final part (V)), the concurrent operation scheme algorithm
is established and experimental results are presented.

III. MPC FOR VEHICLE DYNAMICS

The desired task of automated driving relies on an ap-
propriate choice of model especially for a model predictive
control (MPC) approach. This section introduces the nonlin-
ear vehicle model, and formulates the cost function for the
MPC scheme. Thereafter, the solution strategy of the MPC
formulation is derived.

A. Vehicle model

Figure [I] sketches the kinematic model of a vehicle. The
model originates from the bicycle model and was introduced
by [7], having the state vector defined as

Ty = [$7yaw76av7dl7¢’rasr}1" (1)

The system’s state vector x, constitutes the position (z,y)
of the vehicle’s center of gravity (CoG) in a cartesian
coordinate system, the yaw angle 1, the steer angle § of
the front wheels and the velocity v. The remaining three
state variables (d , v, s;) cover the relation of the vehicle’s
center of gravity with respect to the reference course. Figure
represents the reference course as dashed line, where d
is the signed lateral displacement of the vehicle from the



Fig. 1: Sketch of the vehicle model with its system states
together with the reference curve (dashed line).

reference course, v,- is the reference orientation, or in other
words the tangent vector of the reference course, and s; traces
the driven arc length along the reference course. The system’s
input u, reads two entities, namely the steer rate § and the
acceleration v. The first-order differential equations

& = v-cos(v) (2)
¥ = v-sin(y) 3)
v

b= s @)
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5 = Uy, (5)

v o= Uy 2 (6)

d, = v- sin(y) — ) @)
S cos— 1)

Yr = 1—d; - k(s) R(Sr) ®)
L cos(d— )

5 = v T—dr (s’ 9)

describe the nonlinear vehicle dynamics @, = f(xy,uy).

Particularly, the vehicle’s dynamics is dependent on two
parameters, the length ¢ and the so called characteristic
velocity ven ([7]). The first describes the overall length of the
vehicle, while the second merges the length from the center
of gravity to the front respectively to the rear, the tire stiffness
from the front and rear tires together with the vehicle’s mass.

The formula is given by vy, = m(fliif_cp'flf) Instead of
computing a geometrical projection onto a reference line,
equations (7)-(9) express the projection of the vehicle’s
center of gravity onto the reference course by means of
differential equations already. The functional (s,) describes
the curvature of the reference course along the arc length
sr. Up to now, we assume k(s;) for the vehicle dynamical

model is given and fixed.

B. MPC formulation

A general MPC formulation is presented, together with
an efficient online solver approach using gradient based
optimization. Afterwards the application of the previously
introduced nonlinear vehicle model is discussed.

The employed MPC scheme relies on a continuous optimal

control problem (OCP) formulated as

Thor
IlILl(lr)l J(u) :/0 Iy(z(t), u(t), t)dt (10)
s.t. Zy(t) = f(z,u,t), x(t;) =xo (11)
h(z(t),u(t),t) <0 Vi€ [t;, 1] (12)

with T}, as the prediction horizon, &, describing the system
dynamics (IT) having the initial state ao. State constraints
are handled by the inequality equation (I2).

C. Cost function and constraints for the vehicle model

Applying the vehicle model to the MPC optimization
scheme, the cost function and state as well as input con-
straints need to be defined. First, the state £ as R® — RS,
x(t) — &(t) is defined. This mapping describes a transfor-
mation from system states to representative states as

52[1& ap Y Ky di W}T
:[QM/J V2 Y Ky dL vr

13)

(14)
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2
with K, =0 - (£ |1+ (v%h) . Using this state rep-

resentation, the desired behavior of vehicle motion is then
expressed within the cost function. The first two states of
& describe the lateral velocity respectively the lateral accel-
eration. The third and fourth state give the orientation and
curvature value. Other than [7], where a collision avoidance
scenario was presented and the lateral absolute deviation
from the reference line as well as the velocity have not
been taken into account in the cost terms ultimately, our
task of trajectory planning must incorporate these two entities
necessarily. Thus, the function I, (@y, uy) terms the integral
costs according to (I0) and is defined as

lo(z,u) = (€ - €)7Q(€ — €) + ul Ru,

15
+ v xp(8,6,07), ()

penalizing deviations from their respective desired values £
The cost for the input states w, are computed based on
the absolute state values. In order to account for the state
constraints

hl(.’I}) = 575[“&,( S 0
hQ(m) =0+ Omin =0

(16)
a7)

a soft-penalty function is introduced, ensuring valid steer
angles &. The penalty function p(z,z~,z™) is given by:

(x —2t)? ifx >af,
pleam,at) = @—a)? ifa<a, (8)
0 otherwise.
Finally, the inequality constraint
ha(®) = v - [|s]] <0, (19)

expresses an absolute maximum lateral acceleration. Clearly,
the desired behavior features an anticipated reduction of
velocity right ahead of a curve, which is encoded within the



target value of the velocity ¥y, Given the curvature value x
and an upper absolute lateral acceleration value a | max, the
maximum velocity calculates as

Umax = M~ (20)
[l

Accounting for speed limit values that are typically below the
maximum velocity due to the lateral acceleration constraint
on straight roads, the minimum function combines the speed
limit value vy with the value from (20) using the minimum
operator O, = min(vg|, Umax ). Finally, the detailed definition
of the target state é is given by

E=[oL aL v & do 9]
= [ﬁtarwr

with r indices denoting the reference course values. The
remaining constraints for the control states, that is

h4(uv) :S_Smin ZO A h5(uv) :5+5max SO (23)
he(uy) =a — amin >0 A hr(uy) =a+amx <0 (24)

2L

T (22)
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are considered in the optimization algorithm, presented now.

D. Gradient based optimization strategy

Accounting for the real-time requirements in automated
driving, we use a computationally efficient solver, based on
a gradient method. The gradient method exploits the first
order optimality conditions. The solution strategy uses the
Hamiltonian function

H(r,2(7), (1), A(7)) =l((7), w(T),T) + 25)

A7) f (), u(r), T+ tr)
where A describes the vector of costates. The first order op-

timality conditions then follow from Pontryagins Maximum
Principle [8], [9],

‘TZ( ) f(7—+tk7xk:( )7ult(7—))7 (26)

MNo(7) = = Ho(7, 2(7), up (7)), E= (27)
up(7) = argmin H (7,25 (7),u, \5(7)), 7€[0,T] (28)

u€u— ,ut]

Ty = Tk

where H, shortcuts the partial derivative 0H/Oxz. The
optimality conditions (26) - (28) are iteratively solved using
a gradient method for the minimization problem in (10),
outlined in algorithm |1} The actual minimization of the cost
function happens by a gradient descent step. Since the step
size is not computable in an analytic fashion, the step size
is calculated through an approximate solution for equation
(32) using the formula from [10]

Ty, j i—D\T
N I <g](€J) —g,(f 1)) (ul(g) u](fJ 1)) dr
Qp’ = T - S NT — .
f() h (gl(cj) _ g’(CJ) 1) <gl(€3) _ gl(cj) 1) dr

This formula reduces the computational burden for the line
search problem in (32) significantly preserving good results
at the same time. Further, the input constraints are handled
by equation (33), based on a projection function.

(34)

Algorithm 1 Gradient Algorithm

m Initialization of input trajectory w(® (1) € [u™,ut]
v 1 e[0,T].
m Gradient iterations for 7 =0, ..., M:
1) Forward integration of the system dynamics with
initial state :B,(c]) = 1z}, that is

20) = (@, ul)

& JUg (29)

2) Backward integration of the adjoint dynamics with
the terminal state Al = 0

3) Evaluation of the gradient g,(g) with
g =V, H=zD o A 36

4) (Approximate) step size computation as a line
search problem by

ag) = arg m>ir(} J (\If(u;cj) - aggcj)),a:k) , (32)

()

with search direction g;”’ projection function

u- ifu<u”
U(u) =< ut ifu>ut

u otherwise

(33)

5) Control update wul’(7) =V (u,(cj) — a"ggcj)) ,
T€10,T].

IV. MPC FOR CURVATURE APPROXIMATION

So far, it was assumed that the curvature value x was
given. In the next lines, the retrieval of the functional x(s;),
used in equation (§) and (9) is discussed. Analogous to the
MPC formulation for the vehicle dynamics, we formulate
a second MPC problem for the task of reference course
approximation.

A. Reference course model

The uniquely describing property for curves is the cur-
vature value x [11]. Let R — R2, ¢ € [0,1],t — p(t)
with p(t) = [z(t) y(t)]" describe a parameterized 2D
curve, with points p(t) and argument ¢. The formula for
computing the curvature[11], where the dot notation refers
to the derivation along the function argument ¢, is

Ty — 2y
(@2 +9?)
However, the required functional x(s;) according to equation
(8) and (9), is a parameterized functional along the arc length
value s. Now, a possible strategy for the transformation
of the parameterizing argument is outlined. The curvature
k(s) at point p(t) is defined as the rate of change of

the tangent vector (. Using the chain rule, one can write

k(s) = a“git) 9s Thus, the course length function s(t),

K(t) = (35)




parameterized by ¢ is necessary for the transformation proce-
dure. In general, a closed form solution for the line integral
s(t) for the functional p(t) does not exist. Practically, in
order to circumvent this problem, numerical formulas for the
equation (35) facilitate the approximate computation for « as
R, using sampled points from p(t). Performing a numerical
integration using the computed curvature values < results in
a significant error.

Figure |2] illustrates the error propagation result by the
dashed line, after numerical integration of the curvature
values k. Clearly, the curve is observable distinct from
the desired course. This undesirable phenomenon becomes
especially critical in real-world traffic scenarios, where errors
in lateral direction of the reference line have dramatic
consequences. Starting from sampled points as input data
representation, that is p; € R?, i € [0, N — 1] with N € N
denoting the number of sampled points, an optimization
based approach for the computation of the curvature values
r(s) is proposed. In consequence, the aforementioned errors
are alleviated considerably.

B. MPC formulation
Similar to (I0), the MPC problem formulates as

Shor
min  J(u) = /O le(@e(s), ue(s)) ds (36)

u(:)
’

S.t. €T C(S) = fc(wc,uc), mc(si) = ZL¢,0, (37)

with x, denoting the course state vector and u,. the control
input. A distinct property compared to (I0) is, that the
prediction horizon domain now becomes the course length
value s. Accordingly, the dash-notation (-)" = % for the
system dynamic

! cos(¢)
x'. = .fc(wm uc) = |y | = |sin(p) (38)
¢ K

is used. Moreover, constraints for state and inputs are not
necessary. The system dynamic for the reference course
model describes, how the curvature ~ governs the reference
course. The [z, y]T coordinates describe the 2D position of
a curve point at the arc length s, while the angle ¢ is the
tangent vector. The control input for this dynamical system
description is a scalar value, the curvature value x. Next, the
cost function for the reference course model is outlined in
the following lines.

C. Cost function

The cost function I.(x.(s), u.(s)) concerns the error for
the curve point positions with respect to the given sampled
points by a squared euclidean distance measure. Also, the
input control is penalized, prohibiting overfitting effects.
However, since an MPC scheme based on a continuous
formulation is applied, the sampled discrete points need to
be integrated to the continuous cost function appropriately.
Therefore, we compute a linear interpolation in the fashion
of divided differences [12] for the evaluation of #(s) and
9(s) using the discretized points. The sampled points p;
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Fig. 2: Lying eight reference curve, given by the 2D-sample
points in x- and y- coordinates. The dashed line arises
after integration of the computed curvature values x using
formula (35) for each sampled point. Applying the global
optimization approach via the MPC formulation from
returns the black solid line.

are augmented by their course length value s;, that is p; =
[xi, i, s:]T. For s € [0, Sh] and s; and the N sampled points
p;i =[x, yi]T, © € [0, N —1], the numerically robust formula
is then given by

J (39)
Sj — Sj—1 Sj —

where s;_1 < s < s; holds, and analogous computes §(s).
Finally, the cost function is defined as

(o) = [ 50 g [ =il

UCT R.ou,,
with Q. and R, being positive definite diagonal matrices.

V. IMPLEMENTATION AND RESULTS

This section first describes a concurrent operation scheme
using two MPC instances. One MPC instance holds a vehicle
dynamics model, as described in Section @[) while the
second MPC addresses the course approximation problem.
Demonstrating the performance of the proposed MPC solu-
tion scheme, experimental results are discussed in the second
part of this section.

A. Concurrent MPC instances

The concurrent solution strategy as illustrated in Figure [4]
is devised. Given the sampled 2D-points p; and an initial
state xy for the vehicle system, the solution scheme uses
two MPC instances simultaneously in a concurrent operation
mode. The first MPC instance, which we name C-MPC (C
for Course), uses the 2D-points and computes a curvature
trajectory u* = k(s) for an initial horizon Sy (see Fig. [).
Carrying out a numerical integration for the optimal con-
trol trajectory of the C-MPC, that is w}, Figure |2 draws
the resulting curve exemplarily. The C-MPC forwards its
solution, that is u} to the V-MPC (V for Vehicle), that
computes the actual motion trajectory for the vehicle. The
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(c) Lateral offset to the reference track. This entity is especially important
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(d) Orientation trajectory of the reference curve and the vehicle.

Fig. 3: State and control trajectory graphs over time for the entire drive along the lying eight of Figure

optimization horizon of the C-MPC is dependent on the
prediction horizon of the V-MPC. Thus, the V-MPC hands
the prediction horizon variable s,*(7) back to the C-MPC
instance. The block diagram in Figure [ visualizes the data
flow, while algorithm [2] gives the algorithmic steps. [ht]

s (Th)

{pOa"'apN—l} ! U*(Sr) u’j(t)
c

Fig. 4: The block diagram illustrates the interconnection of
the two concurrent running MPC instances.

The simulation environment was set up within MATLAB. A
vanilla version of the GRAMPC toolbox [13] provides the
solver routines in plain C code. We conducted experiments
for driving along straight lines, constant curvature tracks,
that is circles, as well as left and right turns. The most
challenging scenario observed was the lying eight which
we present now. Figure [2] visualizes the chosen reference
course. The asymmetric curvature course ranges from zero to
=+ 0.075 1/m, that is an approximated circle with 13 meters
of radius. Together with a straight part at the center of the
curve, this altogether covers a representative variety of state
combinations.

Algorithm 2 Concurrent MPC operation algorithm
m Initialize C-MPC and V-MPC with S, = Sy and xy
B Run both MPC instances in parallel as follows:
1) Execute gradient algorithm [I] for each MPC in-
stance, that is C-MPC and V-MPC in parallel.
2) Mutual update:
a) Update the C-MPC integration horizon S using
the V-MPC state s,*(T},) from equation (29).
b) Update the k(s;) with the control trajectory
from the C-MPC, that is w’(s;).

B. Parameter design

The state and input constraints for the V-MPC,
are 0 € [—20.0°,20.0°],  wiy €[-5.0,5.0]°/s  and
Uy € [-2.5,2.0lm/s>.  Defining the desired target

state &€, Uy = 10m/s and dl = Om. The C-MPC
instance is initialized with the estimated curvature values
from equation (35). The initial state for the V-MPC is
zo,vmpc = [0 0 7/4 0 10 0 7/4 0]7. Figure [3| depicts the
resulting trajectories for the V-MPC states and controls.
The most crucial entity is the lateral displacement, that is
d,, which we note remains below one centimeter signed
throughout the simulation sequence (see Fig. [3c). The
velocity profile reflects the consideration of maximum
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(a) Acceleration after a sharp right turn.

Fig. 5: Snapshots of the driven course in birds-eye
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(b) Deceleration and right turn maneuver.

view with two predicted states of the vehicle. The cross illustrates the

center of gravity. For localizing the current state on the reference curve, inspect the coordinates with respect to Figure

TABLE I: Design parameters for both MPC instances.

Parameter Value
C-MPC V-MPC
Q diag(1.0,1.0) diag(0.1,0.1,0.2,0.2,0.5,0.5)
R 0.01 diag(1.0,0.1)
As/At 0.5m 0.05s
M 3 3
Shor/Thor sr:/,MpC (T) 2.0s
Nhor every 0.5 meters 20

lateral acceleration (see Fig. [3a). The captions of Figure
give detailed information. Figure [5 illustrates two snapshots
of the driven route in birds-eye-view.

C. Optimization runtime

The experiments were conducted on an Intel 17-3520M
with 2.9GHz. Table [I] depicts the optimization runtime,
that is the MPC optimization time for one time step for
each MPC instances. Clearly, each MPC step of both MPC
instances is computed in the submillisecond range, precisely
in less than 100us, with a mean of 68us (C-MPC) and
59us (V-MPC) for all situations along the reference track.
Comparison with a state-of-the-art method, we injected only
the vehicle model with equivalent parameters (Table[l) to the
ACADO toolkit [14]. ACADO is a free software package
for control and dynamic optimization. The solution method
within the ACADO toolbox relies on a SQP-solver and has
a mean computation time for the vehicle model of 209us.

VI. CONCLUSIONS

We introduced a fast trajectory planning scheme using two
MPC instances in a concurrent operation mode, considering
nonlinear systems. This design solves the task both, on a low
computational complexity as well as a sufficient precision.
On a theoretical basis, future work will concentrate on
stability and convergence statements regarding the concurrent
operation scheme approach. Practically, we will perform

TABLE II: Optimization runtime for single MPC step

C-MPC  V-MPC
68 s S9us

ACADO
209us

tcpu

experiments on a real test track with an experimental vehicle

for
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[11]
[12]
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automated driving functionality at Ulm University.
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