
  

 

Abstract— In this paper, an Expert-Guided Kinodynamic 

RRT algorithm (EGK-RRT) is presented. It aims to consider 

how a human pilot would navigate a kinodynamic robot. One of 

the characteristics of this algorithm is the fact that, unlike the 

original RRT for kinodynamic systems, it generates 

deterministic control sequences which can be reproduced as 

long as the sequence of references (sampled states) are known. 

Here, the performance of the proposed algorithm is tested 

against the basic RRT, showing that the EGK-RRT greatly 

improves in terms of execution speed. In addition to this, the 

influence of using a visibility check and an inertia estimation in 

order to select the nearest neighbor is also analyzed, 

demonstrating that a combination of both factors leads to a 

better overall performance, both in execution speed and in 

quality of the generated path. 

I. INTRODUCTION 

In the past years, the field of path planning has 
dramatically improved, partly thanks to the introduction of 
the sampling-based planners. These kind of planners, such as 
Rapidly-Exploring Random Trees (RRT) [1] and 
Probabilistic Roadmaps (PRM) [2], are able to solve 
problems in environments with high-dimensional state spaces 
by avoiding the explicit construction of the obstacle region 
𝒞𝑜𝑏𝑠. 

Moreover, the RRT algorithm is of particular interest 
since it can be easily tuned to introduce new ideas, such as 
bidirectionality or rewiring. Considering this, a wide array of 
RRT versions have been created in the recent years. One of 
the most successful versions is RRT*, which introduced the 
idea of rewiring in order to ensure a minimum-cost path and 
is provably asymptotically optimal [3]. The RRT-RT 
algorithm described in [4] was designed with rough terrain 
navigation in mind, and proposes the use of a roughness-
based metric, further proving the flexibility of RRT to adapt 
to different situations. 

This paper is focused on the path planning of an 
Autonomous Underwater Vehicle (AUV). In this kind of 
system, dynamics play an important role, requiring both 
velocity and acceleration bounds to be satisfied. Therefore, 
specific kinodynamic planners have to be used, such as the 
kinodynamic RRT algorithm, which samples control actions 
in order to find the best one [5]. Extensions for other popular 
planners have been designed to account for kinodynamic 
problems, such as RRT* [6], which also includes the idea of 
using a fixed-final-state-free-final-time controller. However, 
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these planners behave in a similar way when dealing with 
complex problems or with simple ones, such as planning in 
an open space. Considering this, we pose the following 
question: does it not make sense to try to directly reach the 
goal if it lies within sight? 

In this paper, we propose the use of a human-like local 
controller in order to connect a randomly sampled state with 
the closest state from the motion tree. This idea gives the 
controller greater flexibility and the ability to perform better 
than a generic kinodynamic-RRT in specific situations, such 
as open spaces. The control sequence generated by the 
controller relies on the fixed-final-state-free-final-time 
concept, which allows the reach of the sampled state in all 
cases. This differs from the standard kinodynamic RRT 
algorithm in that no control sampling is required. Instead, the 
control action selection is deterministic, thus generating the 
same path as long as the environment remains unaltered. 
However, the main strategy of state sampling from RRT 
remains unchanged so as to keep the RRT exploration 
feature. 

In addition to the core idea, two modifications are 
proposed and evaluated. A visibility check punishes the 
nodes from which there is no visibility to the sampled state, 
with the objective of generating the straightest path to the 
sampled state. The concept of visibility has been applied 
multiple times in other planning algorithms, such as [7] and 
[8], and here it is analyzed as a part of the proposed 
implementation. On the other hand, a custom metric aims to 
reward the closest nodes taking into account the dynamics of 
the robot. The proposed metric is computed by propagating 
each node considering a control action of value zero until the 
robot stops. The metric is computed as the Euclidean distance 
between the stop position and the sampled state. These 
modifications are related to the proposed concept of a 
human-like controller, but independent of it. Therefore, they 
can be of use, and have been considered as such, in other 
planning algorithms. 

II. SYSTEM 

The proposed algorithm is to be tested on an AUV 
(Autonomous Underwater Vehicle). The robot, named 
Wasabi (Fig. 1), is being designed by Robdos Team 
Underwater Robotics, from the Universidad Politécnica de 
Madrid. The robot has three degrees of action: two horizontal 
propellers for the surge movement (along the longitudinal X 
axis) and one vertical propeller for the heave movement 
(along the Z axis). 

The state vector of the robot is 12-dimensional, with 
position, orientation and linear and angular velocities. 
However, the Wasabi AUV is built in such a way that it is 
always in a horizontal position. Therefore, the roll and pitch 
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degrees of freedom are not controllable and constant. This 
reduces the state space to an 8-dimensional space. In 
addition, environmental disturbances and the Coriolis effect 
are disregarded due to not having a great impact while 
making the model more complex. The following equations, 
in [13] and [14], describe the dynamic behavior of the robot. 

 

 
(1) 

 

 
(2) 

 

 
(3) 

 

 
(4) 

Where Xu and Xu|u| represent the linear and quadratic 

damping parameters for each motion (surge, sway, heave and 

yaw), Xu̇  represents the added mass, τi represents the force 

commanded to each motor, W is the weight of the robot and 

B the weight of the water displaced by the robot. 

Consequently, the state space of the Wasabi robot studied 
is an 8-dimensional vector including the following variables. 

  (5) 

III. KINODYNAMIC RRT 

One of the main features of the RRT algorithm is that it 
takes into account the possibility of working with non-
holonomic and dynamic restrictions in environments with a 
high number of degrees of freedom. This feature 
differentiates the aforementioned RRT algorithm from other 
path planning algorithms, like PRM or potential fields. Due 
to their structure, these algorithms do not seem ideal for 
kinodynamic planning, though they have been adapted in [9] 
and [10] under specific assumptions. The RRT algorithm for 
kinodynamic systems is presented in Fig. 2. 

The idea of the kinodynamic RRT that sets it apart from 
the generic RRT is that the control action u cannot be 
computed. It is instead sampled in the NEW_STATE 
function, randomly choosing the value of the control action 
as well as its duration. From all the sampled actions, the one 
that pushes 𝑥𝑛𝑒𝑎𝑟  the closest to 𝑥𝑟𝑎𝑛𝑑  is the selected motion. 

IV. EXPERT-GUIDED KINODYNAMIC RRT 

The proposed algorithm is presented in Fig. 3 and is given 
the initial state 𝑥𝑖𝑛𝑖𝑡 , the goal state 𝑥𝑔𝑜𝑎𝑙  and the number of 

iterations 𝐾𝑖𝑡𝑒𝑟𝑎𝑡𝑟𝑖𝑜𝑛𝑠  after which the sampled state is 

substituted with 𝑥𝑔𝑜𝑎𝑙 . The main difference from the basic 

kinodynamic RRT lies in the fact that no sampling of the 
action space is performed, whereas the RRT algorithm 
samples the action control in order to choose the best one. 
Instead, the control action is deterministically computed by 
means of an expert system which encompasses the behavior 
that a human pilot would exhibit. 

Regarding the proposed path planning algorithm, the 
considered states have the following structure: 

  (6) 

Each state represents where the motion starts 
(initialState), which state is used as a reference to generate 
the control sequence (refState) and for how long (time) the 
reference is used. 

The key pieces composing the algorithm are described in 
the following sections. 

A.  Navigation function 

The LOCAL_PLANNER function acts as a navigation 
task used to compute the control actions needed to reach the 
sampled state from the nearest one in the tree. This function 
is conceived as an expert system trying to emulate the 
behavior of a human pilot through a set of rules which can be 
modified depending on the system the algorithm is being 
applied to. The main objective is to avoid the creation of a 
whole motion tree in cases where the goal can be reached in a 

Fig. 2: Kinodynamic RRT algorithm 

Fig. 3: Expert-Guided Kinodynamic RRT algorithm 

Fig. 1: Robot Wasabi, made by Robdos Team 



  

single step. The navigation function can be any as long as it 
does not include non-deterministic components. Therefore, 
for given initial and target states, the generated actions would 
always be the same. 

Instead of creating one single control action, the proposed 
navigation function creates a whole control sequence 
composed of several control actions which have different 
durations. The consequence is that the space is rapidly 
explored, since the branches of the motion tree are long 
enough to reach the sampled state. 

The AUV considered in this paper has three degrees of 
freedom in the action space (left, right and heave propellers), 
but a simplified state space of 8 dimensions. The proposed 
strategy considers two major areas regarding the position of 
the target space relative to the position of the robot. Any 
other implementation of the navigation function could have 
been used, as long as it can be used to reach any state in an 
open space. The proposed navigation function is shown in 
Fig. 4. 

 If the target is within a visibility angle α of the surge 
direction of the robot (usually, the longitudinal axis), 
the robot moves straight to the target (purple-colored 
area in the figure). 

 If the target is within a wider visibility angle β, the 
robot slightly turns left or right while moving 
forwards in order to correct its trajectory (blue-
colored area). 

 If the target is out of the visibility angle, the robot 
turns left or right making sharper turns the closer the 
target is to the robot (green, yellow, orange and red 
areas).The word “data” is plural, not singular. 

In case that the navigation function encounters a situation 
in which, due to the workspace configuration, the heuristic 
fails, the state sampler in RANDOM_STATE allows the 
algorithm to continue the exploration and avoid getting stuck. 

The navigation function validation is performed by 
running multiple planning tests in different configurations, as 
shown in Fig. 5, in which different configurations of initial 
speed angle and distance to the goal have been considered. In 
order for a navigation function to be considered as valid, all 
the tests in the validation process have to be completed with a 
successful path planning, between the initial state and the 
goal state. 

B. Propagator 

The PROPAGATE function propagates the state of the 
robot considering the generated control sequence and 
computes its final position and speed. The method used for 
the integration of the acceleration equations (1-4) is the 
fourth-order Runge-Kutta method. 

C. Visibility check 

The selection of the nearest state in the tree is remarkably 
important in order to generate the best possible trajectory. 
Keeping on with the idea of making the navigation as human-
like as possible, a visibility component has been introduced 
in the metric used to compute the distance between two 
states, punishing the states of the tree which do not hold a 

direct line-of-sight with the target state. The implemented 
method is just a simplistic option seeking to encourage 
choosing visible states which, at first glance, have higher 
probabilities of resulting in collision-free trajectories. 

D. Inertial effect estimation 

When working with kinodynamic systems, the inertial 
effect has to be considered during the propagation. However, 
the inertial effect can also be determinant when choosing the 
nearest neighbor of the tree, since a state that is geometrically 
closer to the target can result in a longer trajectory than a 
farther state if the inertia moves it in a different direction. 

In order to take this effect into account, the Euclidean 
metric has been modified by estimating the position where 
the speed of the system is minimal after applying a null 
control action. The exact value is not needed, since the idea is 

Fig. 4: Detail of the proposed navigation function 

Fig. 5: Validation of the navigation function. Initial position in green and 
goal position in red. 



  

to simply know where the inertia would lead the robot. For 
the AUV, the equation system is described in (7). 

 

 

(7) 

Solving the system and imposing the condition of the 
speed (v) being minimal, the resulting propagation time (t) is 
described by (8). 

 

 

(8) 

V. EXPERIMENTAL RESULTS 

Several tests have been carried out using different 
configurations of the RRT and EGK-RRT. The objective of 
this section is to present those results and analyze the 
performance of the EGK-RRT and compare it to the generic 
RRT. The influence of the visibility check and the estimation 
of the inertial effect are studied independently to determine 
their influence in the effectiveness of the algorithm. 

For ease of evaluation, the algorithms have been 
implemented in MATLAB. However, an implementation in 
OMPL [11] has been done as well in order to represent three-
dimensional trajectories and benchmark [12] the EGK-RRT 
against other kinodynamic planners. For the MATLAB tests, 
the model has been simplified, considering only the two-
dimensional situation, but including the dynamic model and 
restrictions. 

Besides, the robot has been modeled as a dot, since its 
shape is not relevant in order to make the comparison 
between algorithms. However, in order for the algorithm to 
be implemented in the real robot, the elongated shape would 
have to be taken into account. 

A.  Environment considerations 

For the tests results analyzed in this section, three 
different environments have been designed, all of which can 
be seen in Fig. 6. 

The first environment represents a typical path planning 
problem, with sparse obstacles that the robot has to avoid in 
order to reach the goal. The second environment is devoid of 
obstacles, meaning that the optimal trajectory in order to 
reach the goal is a straight line. Lastly, the third environment 
poses the difficulty of including a narrow passage that the 
robot has to overcome. 

For all the tests performed, the robot starts with zero 
speed and it is initially facing right. Besides, the executions 
are limited to a maximum number of iterations before the 
planning is considered to have failed. 

B. Algorithm comparison 

First, the proposed Expert-Guided Kinodynamic RRT is 
compared to the generic RRT in order to check whether the 

basic approach (not including either visibility or inertial 
effect estimation) improves the results of the generic RRT. 

The results for the three environments are shown in Fig. 7 
and Fig. 8. It can be noticed that the proposed algorithm 

Fig. 6: Test environments. Initial position in green and goal position in red. 

Fig. 7: Comparison of calls to the collision detector 

Fig. 8: Comparison of path length 



  

significantly improves the results obtained when it comes to 
the time spent performing the calculations (the elapsed time 
heavily depends on the number of calls to the collision 
detector). However, the generated path is slightly longer than 
the one generated by the RRT, since the EGK-RRT does not 
provide optimal trajectories. The exception is the second 
environment, in which the path generated by the EGK-RRT 
is always the shortest possible, a straight line. 

C. Influence of other factors  

In this second part of the experiments, the influence of the 
visibility check and the inertia estimation are studied. These 
factors reinforce the idea of an expert-based algorithm, since 
they include ideas that are intuitive for a human pilot, such as 
heading straight towards a visible goal and taking into 

account the current inertia and speed of the robot. The results 
for the first environment are shown in Fig. 9 and Fig. 10. 

Fig. 12: Trajectory in environment 2. Left: RRT. Right: EGK-RRT 

Fig. 13: Trajectory in environment 3. Left: RRT. Right: EGK-RRT 

Fig. 11: Trajectory in environment 1. Left: RRT. Right: EGK-RRT Fig. 9: Comparison of calls to the collision detector and quartile data. 

Algorithms: (1) basic RRT, (2) RRT with visibility, (3) RRT with inertia 
estimation, (4) RRT with both modifications, (5) basic EGK-RRT, (6) 

EGK-RRT with visibility, (7) EGK-RRT with inertia estimation, (8) EGK-

RRT with both modifications. 

Fig. 10: Comparison of elapsed time and quartile data. Algorithms: (1) 

basic RRT, (2) RRT with visibility, (3) RRT with inertia estimation, (4) 

RRT with both modifications, (5) basic EGK-RRT, (6) EGK-RRT with 
visibility, (7) EGK-RRT with inertia estimation, (8) EGK-RRT with both 

modifications. 



  

These factors are not exclusive of the Expert-Guided 
Kinodynamic RRT algorithm, but they can be applied to any 
algorithm, and have already been, in the case of the visibility 
check. Therefore, the two concepts have been applied to both 
the generic RRT and the proposed algorithm.  

It can be seen that the elapsed time decreases when using 
the visibility check or the inertial effect estimation compared 
to when neither is used. However, when both are used at the 
same time, the deviation of the results is lesser than when 
using each factor on its own. 

D. Generated trajectories 

In this section, examples of the trajectories generated by 
the Expert-Guided Kinodynamic RRT algorithm are shown 
in Fig. 11, Fig. 12 and Fig. 13. It can be clearly seen that the 
generated trajectory is not optimal, but the space that has 
been explored is minimal, thus greatly reducing the planning 
time. 

In Fig. 14, a test made in OMPL is shown. Using this 
framework, it is easier to represent three-dimensional 
trajectories and benchmark against other planners. 

VI. DISCUSSION, CONCLUSION AND FUTURE WORK 

In this paper, an Expert-Guided Kinodynamic RRT 

(EGK-RRT) algorithm has been proposed with kinodynamic 

systems in mind. It generates control sequences to reach the 

target state based on a human-like behavior which can be 

adapted to different applications. Besides, the influence of 

the visibility check and inertia estimation for nearest 

neighbor selection are also studied and analyzed. 

The experiments performed show that the proposed 

algorithm significantly improves the execution time, though 

this comes at a cost of a less explored state space, in turn 

causing the resulting path to not being optimal. In particular, 

the results show that the algorithm performs at its best when 

the goal is within sight, since it can be reached directly with 

the navigation function, not having to rely on the sampling 

of the state space. Even when complicated obstacles, such as 

narrow passages, appear in the environment, the EGK-RRT 

still surpasses the original RRT. 

Regarding the implementation of the algorithms, it was 

not fully optimized. Particularly, the visibility check is 

taking longer than it should. Therefore, the optimization of 

the algorithm could lead to even faster times. In addition to 

this, the implementation in OMPL has to be optimized as 

well in order to run a benchmark to check the whole 

implementation against other algorithms such as KPIECE or 

PDST-EXPLORE, though first implementations indicate 

that EGK-RRT has better results than the aforementioned 

algorithms. 

Lastly, the algorithm has to be tested in the Wasabi robot 

by Robdos Team in order to check its performance in a real-

world environment. The results presented in this paper have 

been obtained using this robot as a reference, but the 

algorithm is applicable to any other type of kinodynamic 

robot. 
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Fig. 14: Three-dimensional planning using EGK-RRT in OMPL 
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