

Abstract— In this paper, an Expert-Guided Kinodynamic

RRT algorithm (EGK-RRT) is presented. It aims to consider

how a human pilot would navigate a kinodynamic robot. One of

the characteristics of this algorithm is the fact that, unlike the

original RRT for kinodynamic systems, it generates

deterministic control sequences which can be reproduced as

long as the sequence of references (sampled states) are known.

Here, the performance of the proposed algorithm is tested

against the basic RRT, showing that the EGK-RRT greatly

improves in terms of execution speed. In addition to this, the

influence of using a visibility check and an inertia estimation in

order to select the nearest neighbor is also analyzed,

demonstrating that a combination of both factors leads to a

better overall performance, both in execution speed and in

quality of the generated path.

I. INTRODUCTION

In the past years, the field of path planning has
dramatically improved, partly thanks to the introduction of
the sampling-based planners. These kind of planners, such as
Rapidly-Exploring Random Trees (RRT) [1] and
Probabilistic Roadmaps (PRM) [2], are able to solve
problems in environments with high-dimensional state spaces
by avoiding the explicit construction of the obstacle region
𝒞𝑜𝑏𝑠.

Moreover, the RRT algorithm is of particular interest
since it can be easily tuned to introduce new ideas, such as
bidirectionality or rewiring. Considering this, a wide array of
RRT versions have been created in the recent years. One of
the most successful versions is RRT*, which introduced the
idea of rewiring in order to ensure a minimum-cost path and
is provably asymptotically optimal [3]. The RRT-RT
algorithm described in [4] was designed with rough terrain
navigation in mind, and proposes the use of a roughness-
based metric, further proving the flexibility of RRT to adapt
to different situations.

This paper is focused on the path planning of an
Autonomous Underwater Vehicle (AUV). In this kind of
system, dynamics play an important role, requiring both
velocity and acceleration bounds to be satisfied. Therefore,
specific kinodynamic planners have to be used, such as the
kinodynamic RRT algorithm, which samples control actions
in order to find the best one [5]. Extensions for other popular
planners have been designed to account for kinodynamic
problems, such as RRT* [6], which also includes the idea of
using a fixed-final-state-free-final-time controller. However,

José María Sanz is with GMV Innovating Solutions, Tres Cantos,

Madrid 28760 Spain (e-mail: jmsanz@gmv.com).
Guillermo Zaragoza, Miguel Hernando, IEEE Member, and Alberto

Brunete are with the Centre for Automation and Robotics (CAR UPM-

CSIC), Universidad Politécnica de Madrid, Spain (e-mail:
g.zaragoza@alumnos.upm.es, {miguel.hernando, alberto.brunete}@upm.es).

these planners behave in a similar way when dealing with
complex problems or with simple ones, such as planning in
an open space. Considering this, we pose the following
question: does it not make sense to try to directly reach the
goal if it lies within sight?

In this paper, we propose the use of a human-like local
controller in order to connect a randomly sampled state with
the closest state from the motion tree. This idea gives the
controller greater flexibility and the ability to perform better
than a generic kinodynamic-RRT in specific situations, such
as open spaces. The control sequence generated by the
controller relies on the fixed-final-state-free-final-time
concept, which allows the reach of the sampled state in all
cases. This differs from the standard kinodynamic RRT
algorithm in that no control sampling is required. Instead, the
control action selection is deterministic, thus generating the
same path as long as the environment remains unaltered.
However, the main strategy of state sampling from RRT
remains unchanged so as to keep the RRT exploration
feature.

In addition to the core idea, two modifications are
proposed and evaluated. A visibility check punishes the
nodes from which there is no visibility to the sampled state,
with the objective of generating the straightest path to the
sampled state. The concept of visibility has been applied
multiple times in other planning algorithms, such as [7] and
[8], and here it is analyzed as a part of the proposed
implementation. On the other hand, a custom metric aims to
reward the closest nodes taking into account the dynamics of
the robot. The proposed metric is computed by propagating
each node considering a control action of value zero until the
robot stops. The metric is computed as the Euclidean distance
between the stop position and the sampled state. These
modifications are related to the proposed concept of a
human-like controller, but independent of it. Therefore, they
can be of use, and have been considered as such, in other
planning algorithms.

II. SYSTEM

The proposed algorithm is to be tested on an AUV
(Autonomous Underwater Vehicle). The robot, named
Wasabi (Fig. 1), is being designed by Robdos Team
Underwater Robotics, from the Universidad Politécnica de
Madrid. The robot has three degrees of action: two horizontal
propellers for the surge movement (along the longitudinal X
axis) and one vertical propeller for the heave movement
(along the Z axis).

The state vector of the robot is 12-dimensional, with
position, orientation and linear and angular velocities.
However, the Wasabi AUV is built in such a way that it is
always in a horizontal position. Therefore, the roll and pitch

Expert-Guided Kinodynamic RRT Path Planner for Non-Holonomic

Robots

José María Sanz, Miguel Hernando, Guillermo Zaragoza and Alberto Brunete

degrees of freedom are not controllable and constant. This
reduces the state space to an 8-dimensional space. In
addition, environmental disturbances and the Coriolis effect
are disregarded due to not having a great impact while
making the model more complex. The following equations,
in [13] and [14], describe the dynamic behavior of the robot.

(1)

(2)

(3)

(4)

Where Xu and Xu|u| represent the linear and quadratic

damping parameters for each motion (surge, sway, heave and

yaw), Xu̇ represents the added mass, τi represents the force

commanded to each motor, W is the weight of the robot and

B the weight of the water displaced by the robot.

Consequently, the state space of the Wasabi robot studied
is an 8-dimensional vector including the following variables.

 (5)

III. KINODYNAMIC RRT

One of the main features of the RRT algorithm is that it
takes into account the possibility of working with non-
holonomic and dynamic restrictions in environments with a
high number of degrees of freedom. This feature
differentiates the aforementioned RRT algorithm from other
path planning algorithms, like PRM or potential fields. Due
to their structure, these algorithms do not seem ideal for
kinodynamic planning, though they have been adapted in [9]
and [10] under specific assumptions. The RRT algorithm for
kinodynamic systems is presented in Fig. 2.

The idea of the kinodynamic RRT that sets it apart from
the generic RRT is that the control action u cannot be
computed. It is instead sampled in the NEW_STATE
function, randomly choosing the value of the control action
as well as its duration. From all the sampled actions, the one
that pushes 𝑥𝑛𝑒𝑎𝑟 the closest to 𝑥𝑟𝑎𝑛𝑑 is the selected motion.

IV. EXPERT-GUIDED KINODYNAMIC RRT

The proposed algorithm is presented in Fig. 3 and is given
the initial state 𝑥𝑖𝑛𝑖𝑡 , the goal state 𝑥𝑔𝑜𝑎𝑙 and the number of

iterations 𝐾𝑖𝑡𝑒𝑟𝑎𝑡𝑟𝑖𝑜𝑛𝑠 after which the sampled state is

substituted with 𝑥𝑔𝑜𝑎𝑙 . The main difference from the basic

kinodynamic RRT lies in the fact that no sampling of the
action space is performed, whereas the RRT algorithm
samples the action control in order to choose the best one.
Instead, the control action is deterministically computed by
means of an expert system which encompasses the behavior
that a human pilot would exhibit.

Regarding the proposed path planning algorithm, the
considered states have the following structure:

 (6)

Each state represents where the motion starts
(initialState), which state is used as a reference to generate
the control sequence (refState) and for how long (time) the
reference is used.

The key pieces composing the algorithm are described in
the following sections.

A. Navigation function

The LOCAL_PLANNER function acts as a navigation
task used to compute the control actions needed to reach the
sampled state from the nearest one in the tree. This function
is conceived as an expert system trying to emulate the
behavior of a human pilot through a set of rules which can be
modified depending on the system the algorithm is being
applied to. The main objective is to avoid the creation of a
whole motion tree in cases where the goal can be reached in a

Fig. 2: Kinodynamic RRT algorithm

Fig. 3: Expert-Guided Kinodynamic RRT algorithm

Fig. 1: Robot Wasabi, made by Robdos Team

single step. The navigation function can be any as long as it
does not include non-deterministic components. Therefore,
for given initial and target states, the generated actions would
always be the same.

Instead of creating one single control action, the proposed
navigation function creates a whole control sequence
composed of several control actions which have different
durations. The consequence is that the space is rapidly
explored, since the branches of the motion tree are long
enough to reach the sampled state.

The AUV considered in this paper has three degrees of
freedom in the action space (left, right and heave propellers),
but a simplified state space of 8 dimensions. The proposed
strategy considers two major areas regarding the position of
the target space relative to the position of the robot. Any
other implementation of the navigation function could have
been used, as long as it can be used to reach any state in an
open space. The proposed navigation function is shown in
Fig. 4.

 If the target is within a visibility angle α of the surge
direction of the robot (usually, the longitudinal axis),
the robot moves straight to the target (purple-colored
area in the figure).

 If the target is within a wider visibility angle β, the
robot slightly turns left or right while moving
forwards in order to correct its trajectory (blue-
colored area).

 If the target is out of the visibility angle, the robot
turns left or right making sharper turns the closer the
target is to the robot (green, yellow, orange and red
areas).The word “data” is plural, not singular.

In case that the navigation function encounters a situation
in which, due to the workspace configuration, the heuristic
fails, the state sampler in RANDOM_STATE allows the
algorithm to continue the exploration and avoid getting stuck.

The navigation function validation is performed by
running multiple planning tests in different configurations, as
shown in Fig. 5, in which different configurations of initial
speed angle and distance to the goal have been considered. In
order for a navigation function to be considered as valid, all
the tests in the validation process have to be completed with a
successful path planning, between the initial state and the
goal state.

B. Propagator

The PROPAGATE function propagates the state of the
robot considering the generated control sequence and
computes its final position and speed. The method used for
the integration of the acceleration equations (1-4) is the
fourth-order Runge-Kutta method.

C. Visibility check

The selection of the nearest state in the tree is remarkably
important in order to generate the best possible trajectory.
Keeping on with the idea of making the navigation as human-
like as possible, a visibility component has been introduced
in the metric used to compute the distance between two
states, punishing the states of the tree which do not hold a

direct line-of-sight with the target state. The implemented
method is just a simplistic option seeking to encourage
choosing visible states which, at first glance, have higher
probabilities of resulting in collision-free trajectories.

D. Inertial effect estimation

When working with kinodynamic systems, the inertial
effect has to be considered during the propagation. However,
the inertial effect can also be determinant when choosing the
nearest neighbor of the tree, since a state that is geometrically
closer to the target can result in a longer trajectory than a
farther state if the inertia moves it in a different direction.

In order to take this effect into account, the Euclidean
metric has been modified by estimating the position where
the speed of the system is minimal after applying a null
control action. The exact value is not needed, since the idea is

Fig. 4: Detail of the proposed navigation function

Fig. 5: Validation of the navigation function. Initial position in green and
goal position in red.

to simply know where the inertia would lead the robot. For
the AUV, the equation system is described in (7).

(7)

Solving the system and imposing the condition of the
speed (v) being minimal, the resulting propagation time (t) is
described by (8).

(8)

V. EXPERIMENTAL RESULTS

Several tests have been carried out using different
configurations of the RRT and EGK-RRT. The objective of
this section is to present those results and analyze the
performance of the EGK-RRT and compare it to the generic
RRT. The influence of the visibility check and the estimation
of the inertial effect are studied independently to determine
their influence in the effectiveness of the algorithm.

For ease of evaluation, the algorithms have been
implemented in MATLAB. However, an implementation in
OMPL [11] has been done as well in order to represent three-
dimensional trajectories and benchmark [12] the EGK-RRT
against other kinodynamic planners. For the MATLAB tests,
the model has been simplified, considering only the two-
dimensional situation, but including the dynamic model and
restrictions.

Besides, the robot has been modeled as a dot, since its
shape is not relevant in order to make the comparison
between algorithms. However, in order for the algorithm to
be implemented in the real robot, the elongated shape would
have to be taken into account.

A. Environment considerations

For the tests results analyzed in this section, three
different environments have been designed, all of which can
be seen in Fig. 6.

The first environment represents a typical path planning
problem, with sparse obstacles that the robot has to avoid in
order to reach the goal. The second environment is devoid of
obstacles, meaning that the optimal trajectory in order to
reach the goal is a straight line. Lastly, the third environment
poses the difficulty of including a narrow passage that the
robot has to overcome.

For all the tests performed, the robot starts with zero
speed and it is initially facing right. Besides, the executions
are limited to a maximum number of iterations before the
planning is considered to have failed.

B. Algorithm comparison

First, the proposed Expert-Guided Kinodynamic RRT is
compared to the generic RRT in order to check whether the

basic approach (not including either visibility or inertial
effect estimation) improves the results of the generic RRT.

The results for the three environments are shown in Fig. 7
and Fig. 8. It can be noticed that the proposed algorithm

Fig. 6: Test environments. Initial position in green and goal position in red.

Fig. 7: Comparison of calls to the collision detector

Fig. 8: Comparison of path length

significantly improves the results obtained when it comes to
the time spent performing the calculations (the elapsed time
heavily depends on the number of calls to the collision
detector). However, the generated path is slightly longer than
the one generated by the RRT, since the EGK-RRT does not
provide optimal trajectories. The exception is the second
environment, in which the path generated by the EGK-RRT
is always the shortest possible, a straight line.

C. Influence of other factors

In this second part of the experiments, the influence of the
visibility check and the inertia estimation are studied. These
factors reinforce the idea of an expert-based algorithm, since
they include ideas that are intuitive for a human pilot, such as
heading straight towards a visible goal and taking into

account the current inertia and speed of the robot. The results
for the first environment are shown in Fig. 9 and Fig. 10.

Fig. 12: Trajectory in environment 2. Left: RRT. Right: EGK-RRT

Fig. 13: Trajectory in environment 3. Left: RRT. Right: EGK-RRT

Fig. 11: Trajectory in environment 1. Left: RRT. Right: EGK-RRT Fig. 9: Comparison of calls to the collision detector and quartile data.

Algorithms: (1) basic RRT, (2) RRT with visibility, (3) RRT with inertia
estimation, (4) RRT with both modifications, (5) basic EGK-RRT, (6)

EGK-RRT with visibility, (7) EGK-RRT with inertia estimation, (8) EGK-

RRT with both modifications.

Fig. 10: Comparison of elapsed time and quartile data. Algorithms: (1)

basic RRT, (2) RRT with visibility, (3) RRT with inertia estimation, (4)

RRT with both modifications, (5) basic EGK-RRT, (6) EGK-RRT with
visibility, (7) EGK-RRT with inertia estimation, (8) EGK-RRT with both

modifications.

These factors are not exclusive of the Expert-Guided
Kinodynamic RRT algorithm, but they can be applied to any
algorithm, and have already been, in the case of the visibility
check. Therefore, the two concepts have been applied to both
the generic RRT and the proposed algorithm.

It can be seen that the elapsed time decreases when using
the visibility check or the inertial effect estimation compared
to when neither is used. However, when both are used at the
same time, the deviation of the results is lesser than when
using each factor on its own.

D. Generated trajectories

In this section, examples of the trajectories generated by
the Expert-Guided Kinodynamic RRT algorithm are shown
in Fig. 11, Fig. 12 and Fig. 13. It can be clearly seen that the
generated trajectory is not optimal, but the space that has
been explored is minimal, thus greatly reducing the planning
time.

In Fig. 14, a test made in OMPL is shown. Using this
framework, it is easier to represent three-dimensional
trajectories and benchmark against other planners.

VI. DISCUSSION, CONCLUSION AND FUTURE WORK

In this paper, an Expert-Guided Kinodynamic RRT

(EGK-RRT) algorithm has been proposed with kinodynamic

systems in mind. It generates control sequences to reach the

target state based on a human-like behavior which can be

adapted to different applications. Besides, the influence of

the visibility check and inertia estimation for nearest

neighbor selection are also studied and analyzed.

The experiments performed show that the proposed

algorithm significantly improves the execution time, though

this comes at a cost of a less explored state space, in turn

causing the resulting path to not being optimal. In particular,

the results show that the algorithm performs at its best when

the goal is within sight, since it can be reached directly with

the navigation function, not having to rely on the sampling

of the state space. Even when complicated obstacles, such as

narrow passages, appear in the environment, the EGK-RRT

still surpasses the original RRT.

Regarding the implementation of the algorithms, it was

not fully optimized. Particularly, the visibility check is

taking longer than it should. Therefore, the optimization of

the algorithm could lead to even faster times. In addition to

this, the implementation in OMPL has to be optimized as

well in order to run a benchmark to check the whole

implementation against other algorithms such as KPIECE or

PDST-EXPLORE, though first implementations indicate

that EGK-RRT has better results than the aforementioned

algorithms.

Lastly, the algorithm has to be tested in the Wasabi robot

by Robdos Team in order to check its performance in a real-

world environment. The results presented in this paper have

been obtained using this robot as a reference, but the

algorithm is applicable to any other type of kinodynamic

robot.

REFERENCES

[1] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Comput. Sci. Dept., Iowa State Univ., Ames, IA, USA,

Tech. Rep. TR 98-11, 1998.

[2] L. E. Kavraki, P. Svestka, J. C. Latombe and M. H. Overmars,
"Probabilistic roadmaps for path planning in high-dimensional

configuration spaces," in IEEE Transactions on Robotics and
Automation, vol. 12, no. 4, pp. 566-580, Aug 1996.

[3] S. Karaman, E. Frazzoli, "Sampling-based algorithms for optimal
motion planning", Int. J. Robot. Res., vol. 30, no. 7, pp. 846-894, Jun.

2011.

[4] A. Tahirovic, G. Magnani, "A roughness-based rrt for mobile robot
navigation planning", IFAC World Congress, vol. 18, pp. 5944-5949,

2001.

[5] S.M. LaValle and J.J. Kuffner, Randomized kinodynamic planning,
Intl. J. of Robotics Research, vol. 20, pp. 378–400, May 2001.

[6] D. J. Webb and J. van den Berg, "Kinodynamic RRT*:

Asymptotically optimal motion planning for robots with linear

dynamics," 2013 IEEE International Conference on Robotics and
Automation, Karlsruhe, 2013, pp. 5054-5061.

[7] T. Siméon, J.P. Laumond, C. Nissoux. "Visibility based Probabilistic
Roadmaps for Motion Planning". In Advanced Robotics Journal,

14(6), 2000.

[8] F. Shkurti and G. Dudek, "Maximizing visibility in collaborative
trajectory planning," 2014 IEEE International Conference on Robotics

and Automation (ICRA), Hong Kong, 2014, pp. 3771-3776.

[9] A. Ladd and L. E. Kavraki, "Generalizing the analysis of PRM,"
Proceedings 2002 IEEE International Conference on Robotics and

Automation (Cat. No.02CH37292), Washington, DC, USA, 2002, pp.
2120-2125 vol.2.

[10] A. Sánchez, R. Cuautle, R. Zapata, M. Osorio, "A reactive lazy PRM
approach for nonholonomic motion planning", Advances in Artificial

Intelligence-IBERAMIA-SBIA 2006, pp. 542-551, 2006.

[11] I. A. Sucan, M. Moll and L. E. Kavraki, "The Open Motion Planning
Library," in IEEE Robotics & Automation Magazine, vol. 19, no. 4,

pp. 72-82, Dec. 2012.

[12] M. Moll, I. A. Sucan and L. E. Kavraki, "Benchmarking Motion
Planning Algorithms: An Extensible Infrastructure for Analysis and

Visualization," in IEEE Robotics & Automation Magazine, vol. 22, no.
3, pp. 96-102, Sept. 2015.

[13] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion
Control, Jhon Wiley & Sons Ltd, 2011.

[14] J. Vervoort, Modeling and Control of an Unmanned Underwater
Vehicle, Canterbury: University of Canterbury, 2008.

Fig. 14: Three-dimensional planning using EGK-RRT in OMPL

	I. INTRODUCTION
	II. System
	III. Kinodynamic RRT
	IV. Expert-Guided Kinodynamic RRT
	A. Navigation function
	B. Propagator
	C. Visibility check
	D. Inertial effect estimation

	V. Experimental Results
	A. Environment considerations
	B. Algorithm comparison
	C. Influence of other factors
	D. Generated trajectories

	VI. Discussion, Conclusion and Future Work
	References

