Finding safe 3D robot grasps through efficient haptic exploration
with unscented Bayesian optimization and collision penalty
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Abstract— Robust grasping is a major, and still unsolved,
problem in robotics. Information about the 3D shape of an
object can be obtained either from prior knowledge (e.g.,
accurate models of known objects or approximate models of
familiar objects) or real-time sensing (e.g., partial point clouds
of unknown objects) and can be used to identify good potential
grasps. However, due to modeling and sensing inaccuracies,
local exploration is often needed to refine such grasps and
successfully apply them in the real world. The recently proposed
unscented Bayesian optimization technique can make such ex-
ploration safer by selecting grasps that are robust to uncertainty
in the input space (e.g., inaccuracies in the grasp execution).
Extending our previous work on 2D optimization, in this paper
we propose a 3D haptic exploration strategy that combines
unscented Bayesian optimization with a novel collision penalty
heuristic to find safe grasps in a very efficient way: while by
augmenting the search-space to 3D we are able to find better
grasps, the collision penalty heuristic allows us to do so without
increasing the number of exploration steps.

I. INTRODUCTION

Robotic grasping and manipulation has been a major
research area for many years now [1], [2], [3], [4]. However,
the robust grasping of arbitrary objects is still an open prob-
lem. According to Bohg et al [4], an object can be (i) known,
(ii) familiar or (iii) unknown. In the first category, accurate
models of the object are available and can be exploited for
transforming a grasping problem into a pose estimation one
[5], [6], [7], since the optimum grasp could be learned a
priori and retrieved from a database of possible grasp poses.
In the second case, the object shares some features (e.g.,
visual 3D geometric features) with previous known objects
and can fall back on the previous case by adjusting the
final target pose with online learning methods [8]. Finally,
when grasping unknown objects we should resort to real-
time sensing (e.g., partial point clouds) using exploration for
retrieving the optimum grasp pose.

Even with known objects, it is hard to achieve a robust
grasp since small errors in object sensing or motor execution
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Fig. 1: Examples of objects to perform grasp optimization
on simulation. Initial pose for each test object.

may turn optimal grasps into bad grasps. Indeed, many
object grasping controllers rely on a complete open-loop
approach to achieve the pre-computed optimal grasp [9],
[10], [11], [12], [13], where the robot looks once to the
scene, computes the pose of the object, and then drives the
arm to the grasping pose without sensory feedback. Due to
modeling inaccuracies and sensing limitations, such open-
loop approach does not permit robust grasping performance.
As a matter of fact, very few grasping pipelines exploit tactile
or visual feedback to achieve a robust grasp execution [4].
In general, some form of local adjustment is needed to
adapt the desired grasps the objects in the real world. For
instance, positioning errors can be reduced by means of
visual servoing [14], or by closing the control-loop with force
and torque sensors [15], or by learning the optimum grasping
position with a trial-and-error approach [16].

In this work, we follow the trial-and-error approach based
on tactile feedback to reduce the effect of uncertainty in
the input space (i.e., the hand positioning in 3D) and even-
tually obtain robust and safe grasps. We apply Bayesian
optimization methods to find such grasps. This approach will
minimize the number of required exploration actions needed
to achieve the optimum grasp.

In our previous work [17] we have introduced the un-
scented Bayesian optimization (UBO) algorithm to search
for safe grasps in a 2D space. In this paper, we scale to 3D
and prove that better grasps can be found by UBO against
Bayesian optimization (BO). Notably, the superior outcome
of the 3D UBO method was possible due to a new Collision
Penalty (CP) strategy proposed to increases the convergence
speed.

The rest of the paper is organized as follows: we present
the BO framework (Sec. II), followed by the recently pro-
posed UBO (Sec. III) and we introduce the CP heuristic in
Sec. IV. Then, we present experimental results on grasping
simulations in Sec. VI, using the objects presented in Fig. 1,
and conclude our paper in Sec. VIL



II. BAYESIAN OPTIMIZATION

In this article, we follow the BO notation presented in
[17], [18]. Formally, the problem is based on finding the
optimum (maximum) of an unknown real valued function
f: X — R, where X is a compact space, ¥ C R%, and d >
1 its dimension, with a maximum budget of N evaluations
of the target function f. In our problem f is a grasp quality
criterion described in Sec. IV, and X is the space of relative
hand—object poses. For each query point x; € X a grasp trial
has an outcome y;= f(x;) + 1, where 7 is zero-mean noise
with variance Jf].

The BO consists of two stages. First, given a query point
x; and outcome y; we update a probabilistic surrogate model
of f, a distribution over the family of functions P(f), where
the target function f belongs. A very popular choice is a
Gaussian process (GP), built incrementally by sampling over
the input-space. Second, a Bayesian decision process, where
an acquisition function uses the information gathered in the
GP, is used to decide on the best point x to query (i.e., to
sample) next. The goal is to guide the search to the optimum,
while balancing the exploration vs exploitation trade-off.

A. Surrogate model estimations

The Gaussian process GP(x|u, 02, 6) has inputs x € X,
scalar outputs y € R and an associated kernel function &(, -)
with hyperparameters 8. The hyperparameters are optimized
during the process using the slice sampling method [19],
[20], resulting in m samples © = [0;]7" ;.

From the GP we can get an estimate, ¢, of f by condition-
ing the distribution over functions to what is already known.
At a step n we have a dataset of observations D,, = (X,y),
represented by all the queries until that step, X = (X1.5,),
and their respective outcomes, y = (y1.,). The prediction,
Yn+1 = U(Xpt1), at an arbitrary new query point X, i1,
with kernel k; conditioned on the i-th hyperparameter sample

ki = k(-,+|0;), is normally distributed and given by:
§(Xnt1) ZN (i (Xn+1), 07 (Xn41))
e 1)
pi(Xns1) = ki Ky
07 (Xn+1) = ki(Xnt1:Xn41) — ki Ki 'k,

The vector k; is a kernel ¢ evaluated at the arbitrary
query point X,1 with respect to the dataset X, and K; =
E(X,X)+1- 03] is the Gram matrix corresponding to
kernel k; for dataset X, with noise variance 0727. Note that,
because we use a sampling distribution of ®, the predictive
distribution at any point x is a mixture of Gaussians.

B. Decision using acquisition function

To select the next query point at each iteration, we use
the expected improvement criterion (EI) as the acquisition
function. This function takes into consideration the predictive
distribution for each point in X', whose mean and variance
are as in Eq. (1), to decide the next query point. The EI
is the expectation of the improvement function I(x) =

max (0, §(x) — y°'), where the incumbent is the best out-
come found until now (iteration n):
Yo = max(yin). )

Then, the optimum value corresponds to its associated query
in the dataset and is denoted as x?%”". Taking the expectation
over the mixture of Gaussians of the predictive distribution,
the EI can be computed as

El(x) = Eg/p,,,0.% [max(0, §(x) — yo""]
= D l(pil) - () + (ol
i=1
where z; = (ui(x) — y°")/o;(x), ¢ corresponds to the

Gaussian probability density function (PDF) and ® to the
cumulative density function (CDF). Also, the pair (;,02)
are the predictions computed in Eq. (1). Then, the new query
point is selected by maximizing the EI:

Xpt1 = argmax ET(x). 4)

xeX

Lastly, to reduce initialization bias and improve global op-
timality, we rely on an initial design of p points based on
Latin Hypercube Sampling (LHS), as suggested in [21].

III. UNSCENTED BAYESIAN OPTIMIZATION

When selecting the most interesting point to query next,
acquisition functions like the EI assume that the query is
deterministic. However, with input noise, our query is in
fact a probability distribution. Indeed, if we take the query’s
vicinity into consideration, a better notion and estimation
of the expected outcome can be achieved. The size of the
vicinity to be considered depends on the input noise power.

Thus, instead of analyzing the outcome of the EI to select
the next query, we are going to analyze the posterior distri-
bution that results from propagating the query distribution
through the acquisition function. This can be done using
the unscented transformation, a method used to propagate
probability distributions through nonlinear functions with re-
duced computational cost and good accuracy. The unscented
transform uses selected samples from the prior distribution
designated sigma points, x(*), and calculates the value of the
nonlinear function g at each of these points. Then, the output
distribution is computed based on the weighted combination
of the transformed sigma points.

For a d-dimensional input space, the unscented transfor-
mation only requires a set of 2d+1 sigma points. If the input
distribution is a Gaussian, then the transformed distribution
is simply x’ ~ NV (322 w® ( (D), 57 ), where w(® is the
weight corresponding to the i sigma point.

The unscented transformation provides mean and covari-
ance estimates of the new distribution that are accurate to the
third order of the Taylor series expansions of g, provided
that the original distribution is a Gaussian prior. Another
advantage of the unscented transformation is its computa-
tional cost. The 2d 4 1 sigma points make the computational
cost almost negligible compared to other alternatives to
distribution approximation.



A. Unscented expected improvement

Considering that our prior distribution is Gaussian X ~
N (x,I0,), then the set of 2d + 1 sigma points of the
unscented transform are computed as

x0 =% x{) =x+ ( d+ k) az)., Vi=1l.d (5

where (m ); is the i-th row or column of the corresponding
matrix square root. In this case, k is a free parameter that
can be used to tune the scale of the sigma points. For more
information on choosing the optimal values for k, refer to
[22]. For these sigma points, the corresponding weights are

o_ kL wo_ 1 -

w —m,wi —W,W—l...d (6)
Considering the EI as the nonlinear function g, then we are
making a decision on the next query considering that there
is input noise. This new decision can be interpreted as a new
acquisition function, the unscented expected improvement
(UEI). It corresponds to the expected value of the EI with

respect to the input noise distribution:

2d
UEI(x) =Y wWEIxY), xeX. (7)
=0

This strategy, reduces the chance that the next query point
is located in an unsafe region, i.e., where a small change on
the input (induced by noise) implies a bad outcome.

B. Unscented optimal incumbent

In BO, the final decision for what we consider the opti-
mum is independent of the acquisition function. We defined
the incumbent for BO in Eq. (2), as the best observation
outcome until the current iteration. However, with UEI,
each query point is evaluated considering its vicinity, so
as we incrementally obtain more observations and get a
better GP fit, we might observe that our optimum is actually
located in an unsafe region. Thus, instead of considering
the best observation outcome as the incumbent, we also
apply the unscented transformation to select the incumbent
at each iteration, based on the outcome at the sigma points
of each query that belongs to the dataset of observations
(D,,). Obviously, we do not want to perform any additional
evaluations of f because that would defeat the purpose of
BO. Alternatively, we evaluate the sigma points with our
estimation ¢, which is the GP surrogate average prediction
w. Therefore, we define the unscented outcome as:

m

2d
u(x) = Z w® Z ,uj(x(i)),
1=0 J

—1

xeX (8)

where >0 1 (x() is the prediction of the GP according
to Eq. (1), integrated over the kernel hyperparameters and
at the sigma points of Eq. (5). Under these conditions, the
incumbent for the UBO is defined as y'b" = v (xio"),
where X" = argmax, c,, u(X;) is the optimal query
until that iteration according to the unscented outcome. For
further information on the performance of the UBO on
synthetic functions, refer to [17].

IV. GRASP QUALITY METRIC AND COLLISION PENALTY

In our problem the target function f is the quality of
a given relative hand—-object pose. Different grasp quality
metrics have been defined in the literature [23], usually
based on the contact points, torques and forces applied to
the object. In our work, we use the Grasp Wrench Volume
metric, introduced in [24] and defined as f = Volume(P),
where P is the convex hull of the Grasp Wrench Space [25],
[26]. In our context, starting the hand with an initial pose x
(as in Fig. 1), the fingers are closed until touching the object,
and the grasp quality metric is then computed.

We assume that approximate information about the object
size and location is available, and is used to limit the
exploration space. However, there are configurations that
result in unfeasible grasps where the robot’s hand collides
with the object, even before attempting to close the hand.
This indicates that the problem has constraints. Although
there has been some recent work on BO with constraints [27],
[28], we opted for the simpler approach of adding a penalty
as described in [29]. This approach means that the input
space remains unconstrained, improving the performance of
the acquisition function’s optimization. Additionally, due to
kernel smoothing, we also get a safety area around the
collision query where the function is only partly penalized.

Other research works on robotic grasping optimization
had different approaches to deal with collisions. Some skip
the collision query (e.g., [30]) and others give it a grasp
quality of zero (e.g., [17]). In the first case, by ignoring the
query we are losing information about the target function,
hence not reducing uncertainty. In the second case, although
uncertainty is reduced, the zero value is usually associated
to a pose where the hand does not touch the object at all.
Therefore, by modeling a collision with a zero value, one
cannot distinguish a collision from a non-contact. Instead, we
propose a penalization factor that will drive the search away
from collision locations, ensuing a reduction of explored area
and consequently leading to faster convergence.

We propose a Collision Penalty (CP) that accounts for
the level of penetration of the hand in the object. The CP
is calculated by finding the number of joints in the robot’s
hand that collide with the object, n; € N, which indicates a
measure of penetration in the object:

CP(n;) =1—e ", )

where A is a tuning parameter used to smooth the penalty.
The CP is an heuristic used only to improve the convergence
speed. Therefore, during the optimization we redefine the
target function as f’ = f + CP. Note that, in the evaluation
process, we still resort to the original f.

V. IMPLEMENTATION

All the results were obtained from simulations using the
Simox toolbox [31]. This toolbox simulates the iCub’s hand
grasping task arbitrary objects. At the beginning of each
experiment, we define an initial pose for the hand and a
motion trajectory for the finger joints. The hand is placed
parallel to one of the object’s facets with the thumb aligned
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(c) Mug: CP vs CP (UBO 3D).

Fig. 2: CP vs CP (UBO 3D). Left: expected outcome
of current optimum Yy, (x""), Right: Variability of the
outcome std ymc(x;‘lbopt)>. Best seen in color.

with one of the neighbor facets. This defines the canonical
pose of the hand with respect to the object. Then, at each trial
(optimization step) a new hand pose is defined with respect
to the canonical pose by incremental translations: (d,, 6y, ).
All other parameters (e.g., hand orientation, finger joints
trajectories) are identical for all trials. In 2D optimization, we
optimize (d,, 6,), while §, is kept fixed. In 3D, we optimize
(0, 0y, d.). For dimensions « and y, the bounds are set to the
object’s dimensions, as for z, which is the approach direction,
the bounds extend from the surface of the object’s facet to the
plane where the hand is no longer able to touch the object.

At each trial, after the hand is placed in a new pose,
the fingers joints move according to predefined motion
trajectories until they touch the object. The trajectories are
set so that the hand performs a power grasp on the object,
in which all fingers are closed at the same time, following a
movement synergy defined in previous work [32]. When the
fingers motion is finished, the grasp quality metric defined in
Sec. IV is computed. If a collision between the hand (either
palm or fingers) and the object is detected when positioning
the hand in the new pose, the CP is applied, and the grasping
motion will not be executed. For the computation of the CP,
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n

the tuning parameter is set to A = 0.1.

The BayesOpt library [20] is used to perform both BO
and UBO. In the GP we use the Matérn kernel with v =
5/2. The input noise at each query point is assumed to be
white Gaussian, N(0, [oy), with o, = 0.03 (note that the
input space was normalized in advance to the unit hypercube
[0, 1]%). We assume the grasp quality metric to be stochastic,
due to small simulation errors and inconsistencies, thus we
set o, = 1074,

VI. EXPERIMENTAL RESULTS

In this section, we start by describing the experiments
performed to evaluate the benefits of CP (Sec. VI-A); then
we compare UBO in 2D and 3D search problems (Sec. VI-
B); and lastly we compare UBO with BO in the 3D case
(Sec. VI-O).

To reproduce the effect of the input noise, we obtain Monte
Carlo samples at the optimum in each iteration, Y. (x%"), ac-
cording to the input noise distribution A/(0, Ioy ). Remember
that x%" corresponds to x%”’ when performing BO, and to
xUbort for UBO. By analyzing the outcome of the samples we
can estimate the expected outcome from the current optimum



Vme (X2P'), and the variability of the outcome std (ymc(x‘,’{”))
These metrics allow us to assess if the optimum belongs to a
safe region. Indeed, if y, . (x%") decreases over time (which
cannot occur in classical BO) it should be correlated to the
fact that the optimum (x',’{””) is inside an unsafe area and is
not a robust grasp.

For each experiment, we performed 20 runs of the robotic
grasp simulation for all test objects. The robot hand posture
for each object is initialized as shown in Fig. 1. Every time a
new optimum is found, we collect 10 Monte Carlo samples
at its location to get ymc(x%'). Each run starts with 20
initial iterations using LHS, followed by 140 iterations of
optimization. The shaded region in each plot represents a
95% confidence interval. All the quantitative results from

each experiment, at its last iteration, are presented in Table I.

A. Benefits of CP

To assess the benefits of CP, we performed two types of
experiments for each object, a 3D UBO with and without
CP. As we can see in Fig. 2a and 2b, the addition of CP
to the optimization process provides a boost in convergence
speed for both the glass and the bottle. Also, by penalizing
collisions we are reducing the regions that are worth explor-
ing, meaning that the robot is actually able to find a better
grasp at the end, both in terms of mean and variance.

The mug is the most challenging object to learn, since the
optimization is performed on the mug’s facet that includes
the handle. In 3D, the handle is inside the search-space,
leading to a large number of configurations that result in
collisions, consequently undermining the convergence to the
optimum. This is a situation where the CP really thrives.
By penalizing these collisions, we are driving our search
away from the inside of the handle and finding a safer grasp
outside the handle. The results in Fig. 2c show how dramatic
the improvement is, achieving higher mean values with great
confidence level (i.e., a smaller shaded region).

B. Generalization to 3D

We performed UBO with CP in both 2D and 3D to provide
evidence that UBO generalizes well into a higher dimension
space, i.e., in 3D we only need a few extra evaluations to
reach the same results obtained in 2D.

In Fig. 3a, we observe that for the glass, even though
2D reaches better mean values right after the learning starts
(iteration 20), 3D is able to reach the same level around
iteration 40 and proceeds to surpass it achieving better
results. As for the bottle, in Fig. 3b, the mean value of the
3D case trails almost the whole process, only edging out the
2D results close to the end of the budget.

In the mug, Fig. 3c, the 3D optimization only manages
to reach similar mean values at around iteration 65. As
explained in Sec. VI-A, this is due to the high amount of
queries that result in collisions when we are optimizing in a
3D search-space.

We must point out that the z coordinate in the 2D
optimization was chosen to ensure a fair comparison with
the 3D, setting it to the parallel plane where the optimal
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Glass Bottle Mug
$e () S ()) () (e () e () 51 (e ()
2D UBOCP 0.4396 0.0536 0.5026 0.0887 0.1205 0.0256
3DUBOCP 0.4462 0.0761 0.4810 0.0754 0.0979 0.0378
3D UBOCP 0.4867 0.0260 0.5011 0.0725 0.1567 0.0361
3D BO CP 0.4489 0.0805 0.4767 0.1097 0.1551 0.0415

TABLE I. Results at the last iteration (n = 160) of the
optimization process (means over all runs).

grasp should be. However, the better results obtained for
both glass and mug in 3D indicate that the optimum z was
somewhere else. As we can observe in Fig. 5a and Fig. Sc,
the visual difference between the best grasps in 2D and
3D is not noticeable, even though 3D still achieves better
results. Therefore, the generalization to the 3D search-space
is arguably needed since a better grasp point was found
during the 3D optimization. On the bottle object, the initial
z coordinate was set closer to the optimum.

C. Advantages of UBO over BO

Here we compare UBO against BO in 3D using CP, to
conclude if the advantages of UBO described in [17] in 2D,
generalize to 3D.



(b) BO 3D CP

(a) UBO 2D CP

Fig. 5: Best grasps in one of the runs. The best grasp of
UBO 2D CP (a) is similar to the UBO 3D CP (c). The best
grasp achieved by BO is in an unsafe zone (b). The UBO’s
best grasp is more robust to input noise (c). Check Table II
for the grasp metrics in these configurations.

UBO 2D CP BO 3D CP UBO 3D CP

Yoo and yibor! 0.467 0.649 0.497
Fime (X7 0.4424 0.383 0.472
std (ymc (x?{”)) 0.0471 0.207 0.0203

TABLE II: The grasp metric corresponding to the Monte
Carlo sampled hand configurations shown in Fig. 5.

The results collected from both methods show that we
are still able to learn safer grasps using UBO in 3D. The
advantage is clear for both the glass, Fig. 4a, and bottle,
Fig. 4b, where the UBO achieves higher mean values and
lower variance. In the mug, Fig. 4c, we get competitive
mean values using BO, but UBO finds an optimum with
lower variance. The visual comparison between the two
optimization strategies (BO and UBO) is displayed in Fig. 5b
and Sc, where we can observe the best grasps achieved in
one of the 20 runs.

VII. CONCLUSIONS

This work has validated the application of Unscented
Bayesian Optimization to 3D grasp optimization. We show
that it outperforms the classical Bayesian Optimization in
this problem and generalizes well from the existing results
in 2D search to a more challenging 3D search, without
compromising the optimization budget. We propose a col-
lision penalty function to force the search algorithm away
from potential collision configurations, thus speeding up the
convergence of the method. In future work we will study how
to extend the method to the full 6D (translation+rotation)
optimization and the application of the method in a real
robotic anthropomorphic hand with 3D force sensors in the
finger’s phalanges [33].
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