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Abstract— We present AVOD, an Aggregate View Object
Detection network for autonomous driving scenarios. The
proposed neural network architecture uses LIDAR point clouds
and RGB images to generate features that are shared by
two subnetworks: a region proposal network (RPN) and a
second stage detector network. The proposed RPN uses a
novel architecture capable of performing multimodal feature
fusion on high resolution feature maps to generate reliable
3D object proposals for multiple object classes in road scenes.
Using these proposals, the second stage detection network
performs accurate oriented 3D bounding box regression and
category classification to predict the extents, orientation, and
classification of objects in 3D space. Our proposed architecture
is shown to produce state of the art results on the KITTI 3D
object detection benchmark [1] while running in real time with
a low memory footprint, making it a suitable candidate for
deployment on autonomous vehicles. Code is at:
https://github.com/kujason/avod

I. INTRODUCTION

The remarkable progress made by deep neural networks
on the task of 2D object detection in recent years has not
transferred well to the detection of objects in 3D. The gap
between the two remains large on standard benchmarks such
as the KITTI Object Detection Benchmark [1] where 2D car
detectors have achieved over 90% Average Precision (AP),
whereas the top scoring 3D car detector on the same scenes
only achieves 70% AP. The reason for such a gap stems
from the difficulty induced by adding a third dimension
to the estimation problem, the low resolution of 3D input
data, and the deterioration of its quality as a function of
distance. Furthermore, unlike 2D object detection, the 3D
object detection task requires estimating oriented bounding
boxes (Fig. 1).

Similar to 2D object detectors, most state-of-the-art deep
models for 3D object detection rely on a 3D region proposal
generation step for 3D search space reduction. Using region
proposals allows the generation of high quality detections
via more complex and computationally expensive processing
at later detection stages. However, any missed instances at
the proposal generation stage cannot be recovered during the
following stages. Therefore, achieving a high recall during
the region proposal generation stage is crucial for good
performance.
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Fig. 1: A visual representation of the 3D detection problem
from Bird’s Eye View (BEV). The bounding box in Green
is used to determine the IoU overlap in the computation of
the average precision. The importance of explicit orientation
estimation can be seen as an object’s bounding box does
not change when the orientation (purple) is shifted by ±π
radians.

Region proposal networks (RPNs) were proposed in
Faster-RCNN [2], and have become the prevailing proposal
generators in 2D object detectors. RPNs can be considered a
weak amodal detector, providing proposals with high recall
and low precision. These deep architectures are attractive
as they are able to share computationally expensive con-
volutional feature extractors with other detection stages.
However, extending these RPNs to 3D is a non-trivial task.
The Faster R-CNN RPN architecture is tailored for dense,
high resolution image input, where objects usually occupy
more than a couple of pixels in the feature map. When
considering sparse and low resolution input such as the
Front View [3] or Bird’s Eye View (BEV) [4] point cloud
projections, this method is not guaranteed to have enough
information to generate region proposals, especially for small
object classes.

In this paper, we aim to resolve these difficulties by
proposing AVOD, an Aggregate View Object Detection
architecture for autonomous driving (Fig. 2). The proposed
architecture delivers the following contributions:

• Inspired by feature pyramid networks (FPNs) [5] for 2D
object detection, we propose a novel feature extractor
that produces high resolution feature maps from LIDAR
point clouds and RGB images, allowing for the local-
ization of small classes in the scene.

• We propose a feature fusion Region Proposal Network
(RPN) that utilizes multiple modalities to produce high-
recall region proposals for small classes.

• We propose a novel 3D bounding box encoding that
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Fig. 2: The proposed method’s architectural diagram. The feature extractors are shown in blue, the region proposal network
in pink, and the second stage detection network in green.

conforms to box geometric constraints, allowing for
higher 3D localization accuracy.

• The proposed neural network architecture exploits 1 ×
1 convolutions at the RPN stage, along with a fixed
look-up table of 3D anchor projections, allowing high
computational speed and a low memory footprint while
maintaining detection performance.

The above contributions result in an architecture that
delivers state-of-the-art detection performance at a low com-
putational cost and memory footprint. Finally, we integrate
the network into our autonomous driving stack, and show
generalization to new scenes and detection under more
extreme weather and lighting conditions, making it a suitable
candidate for deployment on autonomous vehicles.

II. RELATED WORK

Hand Crafted Features For Proposal Generation: Before
the emergence of 3D Region Proposal Networks (RPNs)
[2], 3D proposal generation algorithms typically used hand-
crafted features to generate a small set of candidate boxes
that retrieve most of the objects in 3D space. 3DOP [6]
and Mono3D [7] uses a variety of hand-crafted geometric
features from stereo point clouds and monocular images
to score 3D sliding windows in an energy minimization
framework. The top K scoring windows are selected as
region proposals, which are then consumed by a modified
Fast-RCNN [?] to generate the final 3D detections. We use
a region proposal network that learns features from both
BEV and image spaces to generate higher quality proposals
in an efficient manner.

Proposal Free Single Shot Detectors: Single shot object
detectors have also been proposed as RPN free architectures
for the 3D object detection task. VeloFCN [3] projects a
LIDAR point cloud to the front view, which is used as an
input to a fully convolutional neural network to directly
generate dense 3D bounding boxes. 3D-FCN [8] extends
this concept by applying 3D convolutions on 3D voxel grids
constructed from LIDAR point clouds to generate better 3D
bounding boxes. Our two-stage architecture uses an RPN to
retrieve most object instances in the road scene, providing

better results when compared to both of these single shot
methods. VoxelNet [9] extends 3D-FCN further by encoding
voxels with point-wise features instead of occupancy values.
However, even with sparse 3D convolution operations,
VoxelNet’s computational speed is still 3× slower than our
proposed architecture, which provides better results on the
car and pedestrian classes.

Monocular-Based Proposal Generation: Another direction
in the state-of-the-art is using mature 2D object detectors for
proposal generation in 2D, which are then extruded to 3D
through amodal extent regression. This trend started with
[10] for indoor object detection, which inspired Frustum-
based PointNets (F-PointNet) [11] to use point-wise features
of PointNet [12] instead of point histograms for extent
regression. While these methods work well for indoor
scenes and brightly lit outdoor scenes, they are expected
to perform poorly in more extreme outdoor scenarios. Any
missed 2D detections will lead to missed 3D detections
and therefore, the generalization capability of such methods
under such extreme conditions has yet to be demonstrated.
LIDAR data is much less variable than image data and we
show in Section IV that AVOD is robust to noisy LIDAR
data and lighting changes, as it was tested in snowy scenes
and in low light conditions.

Monocular-Based 3D Object Detectors: Another way
to utilize mature 2D object detectors is to use prior
knowledge to perform 3D object detection from monocular
images only. Deep MANTA [13] proposes a many-task
vehicle analysis approach from monocular images that
optimizes region proposal, detection, 2D box regression,
part localization, part visibility, and 3D template prediction
simultaneously. The architecture requires a database of 3D
models corresponding to several types of vehicles, making
the proposed approach hard to generalize to classes where
such models do not exist. Deep3DBox [14] proposes to
extend 2D object detectors to 3D by exploiting the fact that
the perspective projection of a 3D bounding box should fit
tightly within its 2D detection window. However, in Section



IV, these methods are shown to perform poorly on the 3D
detection task compared to methods that use point cloud data.

3D Region Proposal Networks: 3D RPNs have previously
been proposed in [15] for 3D object detection from RGBD
images. However, up to our knowledge, MV3D [4] is the
only architecture that proposed a 3D RPN targeted at au-
tonomous driving scenarios. MV3D extends the image based
RPN of Faster R-CNN [2] to 3D by corresponding every
pixel in the BEV feature map to multiple prior 3D anchors.
These anchors are then fed to the RPN to generate 3D
proposals that are used to create view-specific feature crops
from the BEV, front view of [3], and image view feature
maps. A deep fusion scheme is used to combine information
from these feature crops to produce the final detection
output. However, this RPN architecture does not work well
for small object instances in BEV. When downsampled by
convolutional feature extractors, small instances will occupy
a fraction of a pixel in the final feature map, resulting in
insufficient data to extract informative features. Our RPN
architecture aims to fuse full resolution feature crops from
the image and the BEV feature maps as inputs to the
RPN, allowing the generation of high recall proposals for
smaller classes. Furthermore, our feature extractor provides
full resolution feature maps, which are shown to greatly help
in localization accuracy for small objects during the second
stage of the detection framework.

III. THE AVOD ARCHITECTURE

The proposed method, depicted in Fig. 2, uses feature
extractors to generate feature maps from both the BEV map
and the RGB image. Both feature maps are then used by the
RPN to generate non-oriented region proposals, which are
passed to the detection network for dimension refinement,
orientation estimation, and category classification.

A. Generating Feature Maps from Point Clouds and Images

We follow the procedure described in [4] to generate a
six-channel BEV map from a voxel grid representation of
the point cloud at 0.1 meter resolution. The point cloud
is cropped at [−40, 40] × [0, 70] meters to contain points
within the field of view of the camera. The first 5 channels
of the BEV map are encoded with the maximum height
of points in each grid cell, generated from 5 equal slices
between [0, 2.5] meters along the Z axis. The sixth BEV
channel contains point density information computed per cell
as min(1.0, log(N+1)

log 16 ), where N is the number of points in
the cell.

B. The Feature Extractor

The proposed architecture uses two identical feature ex-
tractor architectures, one for each input view. The full-
resolution feature extractor is shown in Fig. 3 and is com-
prised of two segments: an encoder and a decoder. The
encoder is modeled after VGG-16 [16] with some modifica-
tions, mainly a reduction of the number of channels by half,
and cutting the network at the conv-4 layer. The encoder

therefore takes as an input an M × N ×D image or BEV
map, and produces an M

8 ×
N
8 ×D

∗ feature map F . F has
high representational power, but is 8× lower in resolution
compared to the input. An average pedestrian in the KITTI
dataset occupies 0.8×0.6 meters in the BEV. This translates
to an 8×6 pixel area in a BEV map with 0.1 meter resolution.
Downsampling by 8× results in these small classes to occupy
less than one pixel in the output feature map, that is without
taking into account the increase in receptive field caused
by convolutions. Inspired by the Feature Pyramid Network
(FPN) [5], we create a bottom-up decoder that learns to
upsample the feature map back to the original input size,
while maintaining run time speed. The decoder takes as an
input the output of the encoder, F , and produces a new
M × N × D̃ feature map. Fig. 3 shows the operations
performed by the decoder, which include upsampling of
the input via a conv-transpose operation, concatenation of
a corresponding feature map from the encoder, and finally
fusing the two via a 3 × 3 convolution operation. The final
feature map is of high resolution and representational power,
and is shared by both the RPN and the second stage detection
network.

C. Multimodal Fusion Region Proposal Network

Similar to 2D two-stage detectors, the proposed RPN
regresses the difference between a set of prior 3D boxes
and the ground truth. These prior boxes are referred
to as anchors, and are encoded using the axis aligned
bounding box encoding shown in Fig. 4. Anchor boxes are
parameterized by the centroid (tx, ty, tz) and axis aligned
dimensions (dx, dy, dz). To generate the 3D anchor grid,
(tx, ty) pairs are sampled at an interval of 0.5 meters in
BEV, while tz is determined based on the sensor’s height
above the ground plane. The dimensions of the anchors are
determined by clustering the training samples for each class.
Anchors without 3D points in BEV are removed efficiently
via integral images resulting in 80 − 100K non-empty
anchors per frame.

Extracting Feature Crops Via Multiview Crop And
Resize Operations: To extract feature crops for every
anchor from the view specific feature maps, we use the
crop and resize operation [17]. Given an anchor in 3D, two
regions of interest are obtained by projecting the anchor
onto the BEV and image feature maps. The corresponding
regions are then used to extract feature map crops from
each view, which are then bilinearly resized to 3 × 3 to
obtain equal-length feature vectors. This extraction method
results in feature crops that abide by the aspect ratio of the
projected anchor in both views, providing a more reliable
feature crop than the 3 × 3 convolution used originally by
Faster-RCNN.

Dimensionality Reduction Via 1 × 1 Convolutional
Layers: In some scenarios, the region proposal network is
required to save feature crops for 100K anchors in GPU
memory. Attempting to extract feature crops directly from



high dimensional feature maps imposes a large memory
overhead per input view. As an example, extracting 7 × 7
feature crops for 100K anchors from a 256-dimensional
feature map requires around 5 gigabytes1 of memory
assuming 32-bit floating point representation. Furthermore,
processing such high-dimensional feature crops with the
RPN greatly increases its computational requirements.

Inspired by their use in [18], we propose to apply a 1× 1
convolutional kernel on the output feature maps from each
view, as an efficient dimensionality reduction mechanism
that learns to select features that contribute greatly to the
performance of the region proposal generation. This reduces
the memory overhead for computing anchor specific feature
crops by D̃×, allowing the RPN to process fused features
of tens of thousands of anchors using only a few megabytes
of additional memory.

3D Proposal Generation: The outputs of the crop
and resize operation are equal-sized feature crops from both
views, which are fused via an element-wise mean operation.
Two task specific branches [2] of fully connected layers of
size 256 use the fused feature crops to regress axis aligned
object proposal boxes and output an object/background
“objectness” score. 3D box regression is performed by
computing (∆tx,∆ty,∆tz,∆dx,∆dy,∆dz), the difference
in centroid and dimensions between anchors and ground
truth bounding boxes. Smooth L1 loss is used for 3D box
regression, and cross-entropy loss for “objectness”. Similar
to [2], background anchors are ignored when computing
the regression loss. Background anchors are determined
by calculating the 2D IoU in BEV between the anchors
and the ground truth bounding boxes. For the car class,
anchors with IoU less than 0.3 are considered background
anchors, while ones with IoU greater than 0.5 are considered
object anchors. For the pedestrian and cyclist classes, the
object anchor IoU threshold is reduced to 0.45. To remove
redundant proposals, 2D non-maximum suppression (NMS)
at an IoU threshold of 0.8 in BEV is used to keep the
top 1024 proposals during training. At inference time, 300
proposals are used for the car class, whereas 1024 proposals
are kept for pedestrians and cyclists.

D. Second Stage Detection Network

3D Bounding Box Encoding: In [4], Chen et al. claim
that 8 corner box encoding provides better results than the
traditional axis aligned encoding previously proposed in
[15]. However, an 8 corner encoding does not take into
account the physical constraints of a 3D bounding box, as
the top corners of the bounding box are forced to align with
those at the bottom. To reduce redundancy and keep these
physical constraints, we propose to encode the bounding
box with four corners and two height values representing
the top and bottom corner offsets from the ground plane,
determined from the sensor height. Our regression targets
are therefore (∆x1...∆x4,∆y1...∆y4,∆h1,∆h2), the

1100, 000× 7× 7× 256× 4 bytes.

Fig. 3: The architecture of our proposed high resolution
feature extractor shown here for the image branch. Feature
maps are propagated from the encoder to the decoder section
via red arrows. Fusion is then performed at every stage of
the decoder by a learned upsampling layer, followed by
concatenation, and then mixing via a convolutional layer,
resulting in a full resolution feature map at the last layer of
the decoder.

corner and height offsets from the ground plane between
the proposals and the ground truth boxes. To determine
corner offsets, we correspond the closest corner of the
proposals to the closest corner of the ground truth box in
BEV. The proposed encoding reduces the box representation
from an overparameterized 24 dimensional vector to a 10
dimensional one.

Explicit Orientation Vector Regression: To determine
orientation from a 3D bounding box, MV3D [4] relies on the
extents of the estimated bounding box where the orientation
vector is assumed to be in the direction of the longer side of
the box. This approach suffers from two problems. First, this
method fails for detected objects that do not always obey
the rule proposed above, such as pedestrians. Secondly, the
resulting orientation is only known up to an additive constant
of ±π radians. Orientation information is lost as the corner
order is not preserved in closest corner to corner matching.
Fig. 1 presents an example of how the same rectangular
bounding box can contain two instances of an object with
opposite orientation vectors. Our architecture remedies
this problem by computing (xθ, yθ) = (cos(θ), sin(θ)).
This orientation vector representation implicitly handles
angle wrapping as every θ ∈ [−π, π] can be represented
by a unique unit vector in the BEV space. We use the
regressed orientation vector to resolve the ambiguity in the
bounding box orientation estimate from the adopted four
corner representation, as this experimentally found to be
more accurate than using the regressed orientation directly.
Specifically, we extract the four possible orientations of
the bounding box, and then choose the one closest to the
explicitly regressed orientation vector.

Generating Final Detections: Similar to the RPN,



Fig. 4: A visual comparison between the 8 corner box
encoding proposed in [4], the axis aligned box encoding
proposed in [15], and our 4 corner encoding.

the inputs to the multiview detection network are feature
crops generated from projecting the proposals into the two
input views. As the number of proposals is an order of
magnitude lower than the number of anchors, the original
feature map with a depth of D̃ = 32 is used for generating
these feature crops. Crops from both input views are resized
to 7×7 and then fused with an element-wise mean operation.
A single set of three fully connected layers of size 2048
process the fused feature crops to output box regression,
orientation estimation, and category classification for each
proposal. Similar to the RPN, we employ a multi-task loss
combining two Smooth L1 losses for the bounding box and
orientation vector regression tasks, and a cross-entropy loss
for the classification task. Proposals are only considered in
the evaluation of the regression loss if they have at least a
0.65 or 0.55 2D IoU in BEV with the ground truth boxes
for the car and pedestrian/cyclist classes, respectively. To
remove overlapping detections, NMS is used at a threshold
of 0.01.

E. Training

We train two networks, one for the car class and one
for both the pedestrian and cyclist classes. The RPN and
the detection networks are trained jointly in an end-to-end
fashion using mini-batches containing one image with 512
and 1024 ROIs, respectively. The network is trained for
120K iterations using an ADAM optimizer with an initial
learning rate of 0.0001 that is decayed exponentially every
30K iterations with a decay factor of 0.8.

IV. EXPERIMENTS AND RESULTS

We test AVOD’s performance on the proposal generation
and object detection tasks on the three classes of the KITTI
Object Detection Benchmark [1]. We follow [4] to split
the provided 7481 training frames into a training and a
validation set at approximately a 1 : 1 ratio. For evaluation,
we follow the easy, medium, hard difficulty classification
proposed by KITTI. We evaluate and compare two versions
of our implementation, Ours with a VGG-like feature
extractor similar to [4], and Ours (Feature Pyramid) with
the proposed high resolution feature extractor described in
Section III-B.

3D Proposal Recall: 3D proposal generation is evaluated
using 3D bounding box recall at a 0.5 3D IoU threshold.

We compare three variants of our RPN against the proposal
generation algorithms 3DOP [6] and Mono3D [7]. Fig. 5
shows the recall vs number of proposals curves for our
RPN variants, 3DOP and Mono3D. It can be seen that
our RPN variants outperform both 3DOP and Mono3D by
a wide margin on all three classes. As an example, our
Feature Pyramid based fusion RPN achieves an 86% 3D
recall on the car class with just 10 proposals per frame.
The maximum recall achieved by 3DOP and Mono3D on
the car class is 73.87% and 65.74% respectively. This
gap is also present for the pedestrian and cyclist classes,
where our RPN achieves more than 20% increase in recall
at 1024 proposals. This large gap in performance suggests
the superiority of learning based approaches over methods
based on hand crafted features. For the car class, our RPN
variants achieve a 91% recall at just 50 proposals, whereas
MV3D [4] reported requiring 300 proposals to achieve the
same recall. It should be noted that MV3D does not publicly
provide proposal results for cars, and was not tested on
pedestrians or cyclists.

3D Object Detection 3D detection results are evaluated
using the 3D and BEV AP and Average Heading Similarity
(AHS) at 0.7 IoU threshold for the car class, and 0.5
IoU threshold for the pedestrian and cyclist classes. The
AHS is the Average Orientation Similarity (AOS) [1],
but evaluated using 3D IOU and global orientation angle
instead of 2D IOU and observation angle, removing the
metric’s dependence on localization accuracy. We compare
against publicly provided detections from MV3D [4] and
Deep3DBox [14] on the validation set. It has to be noted
that no currently published method publicly provides
results on the pedestrian and cyclist classes for the 3D
object detection task, and hence comparison is done for
the car class only. On the validation set (Table I), our
architecture is shown to outperform MV3D by 2.09% AP
on the moderate setting and 4.09% on the hard setting.
However, AVOD achieves a 30.36% and 28.42% increase
in AHS over MV3D at the moderate and hard setting
respectively. This can be attributed to the loss of orientation
vector direction discussed in Section III-D resulting in
orientation estimation up to an additive error of ±π radians.
To verify this assertion, Fig. 7 shows a visualization of
the results of AVOD and MV3D in comparison to KITTI’s
ground truth. It can be seen that MV3D assigns erroneous
orientations for almost half of the cars shown. On the
other hand, our proposed architecture assigns the correct

Easy Moderate Hard

AP AHS AP AHS AP AHS

Deep3DBox 5.84 5.84 4.09 4.09 3.83 3.83
MV3D 83.87 52.74 72.35 43.75 64.56 39.86

Ours (Feature Pyramid) 84.41 84.19 74.44 74.11 68.65 68.28

TABLE I: A comparison of the performance of Deep3DBox
[14], MV3D [4], and our method evaluated on the car class
in the validation set. For evaluation, we show the AP and
AHS (in %) at 0.7 3D IoU.
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Fig. 5: Recall vs. number of proposals at a 3D IoU threshold of 0.5 for the three classes evaluated on the validation set at
moderate difficulty.

AP3D (%) APBEV (%)

Method Runtime (s) Class Easy Moderate Hard Easy Moderate Hard

MV3D [4] 0.36

Car

71.09 62.35 55.12 86.02 76.90 68.49
VoxelNet [9] 0.23 77.47 65.11 57.73 89.35 79.26 77.39

F-PointNet [11] 0.17 81.20 70.39 62.19 88.70 84.00 75.33
Ours 0.08 73.59 65.78 58.38 86.80 85.44 77.73

Ours (Feature Pyramid) 0.1 81.94 71.88 66.38 88.53 83.79 77.90

VoxelNet [9] 0.23

Ped.

39.48 33.69 31.51 46.13 40.74 38.11
F-PointNet [11] 0.17 51.21 44.89 40.23 58.09 50.22 47.20

Ours 0.08 38.28 31.51 26.98 42.51 35.24 33.97
Ours (Feature Pyramid) 0.1 50.80 42.81 40.88 58.75 51.05 47.54

VoxelNet [9] 0.23

Cyc.

61.22 48.36 44.37 66.70 54.76 50.55
F-PointNet [11] 0.17 71.96 56.77 50.39 75.38 61.96 54.68

Ours 0.08 60.11 44.90 38.80 63.66 47.74 46.55
Ours (Feature Pyramid) 0.1 64.00 52.18 46.61 68.06 57.48 50.77

TABLE II: A comparison of the performance of AVOD with the state of the art 3D object detectors evaluated on KITTI’s
test set. Results are generated by KITTI’s evaluation server [19].

orientation for all cars in the scene. As expected, the gap
in 3D localization performance between Deep3DBox and
our proposed architecture is very large. It can be seen in
Fig. 7 that Deep3DBox fails at accurately localizing most of
the vehicles in 3D. This further enforces the superiority of
fusion based methods over monocular based ones. We also
compare the performance of our architecture on the KITTI
test set with MV3D, VoxelNet[9], and F-PointNet[11]. Test
set results are provided directly by the evaluation server,
which does not compute the AHS metric. Table II shows
the results of AVOD on KITTI’s test set. It can be seen
that even with only the encoder for feature extraction, our
architecture performs quite well on all three classes, while
being twice as fast as the next fastest method, F-PointNet.
However, once we add our high-resolution feature extractor
(Feature Pyramid), our architecture outperforms all other
methods on the car class in 3D object detection, with a
noticeable margin of 4.19% on hard (highly occluded or
far) instances in comparison to the second best performing
method, F-PointNet. On the pedestrian class, our Feature
Pyramid architecture ranks first in BEV AP, while scoring

slightly above F-PointNet on hard instances using 3D AP.
On the cyclist class, our method falls short to F-PointNet.
We believe that this is due to the low number of cyclist
instances in the KITTI dataset, which induces a bias towards
pedestrian detection in our joint pedestrian/cyclist network.

Runtime and Memory Requirements: We use FLOP count
and number of parameters to assess the computational effi-
ciency and the memory requirements of the proposed net-
work. Our final Feature Pyramid fusion architecture employs
roughly 38.073 million parameters, approximately 16% that
of MV3D. The deep fusion scheme employed by MV3D
triples the number of fully connected layers required for
the second stage detection network, which explains the
significant reduction in the number of parameters by our
proposed architecture. Furthermore, our Feature Pyramid
fusion architecture requires 231.263 billion FLOPs per frame
allowing it to process frames in 0.1 seconds on a TITAN Xp
GPU, taking 20ms for pre-processing and 80ms for inference.
This makes it 1.7× faster than F-PointNet, while maintaining
state-of-the-art results. Finally, our proposed architecture



Fig. 6: Qualitative results of AVOD for cars (top) and pedestrians/cyclists (bottom). Left: 3D region proposal network output,
Middle: 3D detection output, and Right: the projection of the detection output onto image space for all three classes. The
3D LIDAR point cloud has been colorized and interpolated for better visualization.

requires only 2 gigabytes of GPU memory at inference time,
making it suitable to be used for deployment on autonomous
vehicles.

A. Ablation Studies:

Table III shows the effect of varying different hyperpa-
rameters on the performance measured by the AP and AHS,
number of model parameters, and FLOP count of the pro-
posed architecture. The base network uses hyperparameter
values described throughout the paper up to this point, along
with the feature extractor of MV3D. We study the effect
of the RPN’s input feature vector origin and size on both
the proposal recall and final detection AP by training two
networks, one using BEV only features and the other using
feature crops of size 1×1 as input to the RPN stage. We also
study the effect of different bounding box encoding schemes
shown in Fig. 4, and the effects of adding an orientation
regression output layer on the final detection performance in
terms of AP and AHS. Finally, we study the effect of our
high-resolution feature extractor, compared to the original
one proposed by MV3D.

RPN Input Variations: Fig. 5 shows the recall vs number
of proposals curves for both the original RPN and BEV
only RPN without the feature pyramid extractor on the three
classes on the validation set. For the pedestrian and cyclist
classes, fusing features from both views at the RPN stage
is shown to provide a 10.1% and 8.6% increase in recall
over the BEV only version at 1024 proposals. Adding our
high-resolution feature extractor increases this difference to
around 10.5% and 10.8% for the respective classes. For the
car class, adding image features as an input to the RPN, or
using the high resolution feature extractor does not seem to
provide a higher recall value over the BEV only version.
We attribute this to the fact that instances from the car
class usually occupy a large space in the input BEV map,
providing sufficient features in the corresponding output low
resolution feature map to reliably generate object proposals.
The effect of the increase in proposal recall on the final
detection performance can be observed in Table III. Using

Fig. 7: A qualitative comparison between MV3D [4],
Deep3DBox [14], and our architecture relative to KITTI’s
ground truth on a sample in the validation set.

both image and BEV features at the RPN stage results in a
6.9% and 9.4% increase in AP over the BEV only version
for the pedestrian and cyclist classes respectively.

Bounding Box Encoding: We study the effect of different
bounding box encodings shown in Fig. 4 by training two
additional networks. The first network estimates axis aligned
bounding boxes, using the regressed orientation vector as
the final box orientation. The second and the third networks
use our 4 corner and MV3D’s 8 corner encodings without
additional orientation estimation as described in Section
III-D. As expected, without orientation regression to provide
orientation angle correction, the two networks employing
the 4 corner and the 8 corner encodings provide a much
lower AHS than the base network for all three classes. This
phenomenon can be attributed to the loss of orientation
information as described in Section III-D.



Car Pedestrian Cyclist

Architecture AP AHS AP AHS AP AHS Number Of Parameters FLOPs

Base Network 74.1 73.9 39.5 29.8 41.6 33.2 38,073,528 186,284,945,569
RPN BEV Only 74.1 73.9 32.6 26.7 32.2 30.2 0 -266,641,569

Axis-Aligned Boxes 67.6 67.5 36.2 27.8 36.6 35.7 -8196 0
Non-Ordered 4 Corners, No Orientation 67.8 43.1 37.8 17.9 41.1 18.6 -4,098 -20,418
Non-Ordered 8 Corners, No Orientation 66.9 34.1 37.8 18.1 40.4 21.0 +24,638 +122,879

Feature Pyramid Extractor 74.4 74.1 58.8 43.3 49.7 48.7 -21,391,104 +44,978,386,776

TABLE III: A comparison of the performance of different variations of hyperparameters, evaluated on the validation set at
moderate difficulty. We use a 3D IoU threshold of 0.7 for the Car class, and 0.5 for the pedestrian and cyclist classes. The
effect of variation of hyperparameters on the FLOPs and number of parameters are measured relative to the base network.

Feature Extractor: We compare the detection results of
our feature extractor to that of the base VGG-based feature
extractor proposed by MV3D. For the car class, our pyramid
feature extractor only achieves a gain of 0.3% in AP and
AHS. However, the performance gains on smaller classes is
much more substantial. Specifically, we achieve a gain of
19.3% and 8.1% AP on the pedestrian and cyclist classes
respectively. This shows that our high-resolution feature
extractor is essential to achieve state-of-the-art results on
these two classes with a minor increase in computational
requirements.

Qualitative Results: Fig. 6 shows the output of the
RPN and the final detections in both 3D and im-
age space. More qualitative results including those of
AVOD running in snow and night scenes are provided at
https://youtu.be/mDaqKICiHyA.

V. CONCLUSION

In this work we proposed AVOD, a 3D object detector for
autonomous driving scenarios. The proposed architecture is
differentiated from the state of the art by using a high resolu-
tion feature extractor coupled with a multimodal fusion RPN
architecture, and is therefore able to produce accurate region
proposals for small classes in road scenes. Furthermore,
the proposed architecture employs explicit orientation vector
regression to resolve the ambiguous orientation estimate
inferred from a bounding box. Experiments on the KITTI
dataset show the superiority of our proposed architecture
over the state of the art on the 3D localization, orientation
estimation, and category classification tasks. Finally, the
proposed architecture is shown to run in real time and with
a low memory overhead.
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