
  

  

Fig. 1. A 3D model of an adaptive, compliant and underactuated robot hand 

equipped with hyper-adaptive finger-pads, tactile sensors and the Google 

Soli radar sensor. The robot hand was developed by the New Dexterity 
research group (www.newdexterity.org). 

 

 

 

 

Abstract — Robots need to use their end-effectors not only to 

grasp and manipulate objects but also to understand the 

environment surrounding them. Object identification is of 

paramount importance in robotics applications, as it facilitates 

autonomous object handling, sorting and quality inspection. In 

this paper, we present a new hyper-adaptive robot hand that is 

capable of discriminating between different everyday objects 

with a single grasp. This work leverages all the benefits of 

simple, adaptive grasping mechanisms (robustness, simplicity, 

low weight, adaptability), a Random Forests classifier, tactile 

modules based on barometric sensors, and radar technology 

offered by the Google Soli sensor. Unlike prior work, the 

method does not rely on object exploration, object release or re-

grasping and works for a wide variety of everyday life objects. 

The feature space used consists of the Google Soli readings, the 

motor positions and the contact forces measured at different 

time instances of the grasping process. The whole approach is 

model-free and the hand is controlled in an open-loop fashion, 

achieving stable grasps with minimal complexity. The efficiency 

of the designs, sensors, and methods has been experimentally 

validated with experimental paradigms involving model and 

everyday objects. 

I. INTRODUCTION 

Object identification and the extraction of object 

properties using vision or force / tactile sensors has become 

extremely important for a variety of human robot interaction 

applications. Nowadays, robots have started operating in 

human-centric, dynamic and unstructured environments and 

they are used to execute increasingly dexterous tasks. For 

robots to be able to effectively interact with their 

surroundings they need first to identify the objects or the 

tools that they will use. This is one of the most challenging 

problems in robotics and although several vision-based 

classification approaches have been proposed, in everyday 

environments, poor lighting conditions, occlusions, or camera 

limitations may restrict their application. A feasible 

alternative that can overcome these limitations is to perform 

object classification using force or tactile sensing. 

Methodologies using such sensors can even derive specific 

object properties including size, texture, stiffness, shape, and 

weight  [1]–[4] or to distinguish between different objects 

using various classifiers [5]–[7].  
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Furthermore, both manipulation and grasp stability can be 

optimized when object properties are taken into consideration 

during the planning process (e.g., through minimization of 

the contact forces necessary to achieve stable grasps). 

Identification of object class also enables the execution of 

object-specific strategies or plans [8]. Specific object 

properties such as shape and size can influence grasp 

configuration, while weight, friction, and stiffness can affect 

the external contact forces that are acting on the object and 

which are required to ensure grasp stability.  

In this paper, we present a new hyper-adaptive, 

underactuated, compliant robot hand (please see Fig. 1) 

equipped with force sensors and a Google Project Soli sensor, 

that can discriminate between different everyday objects with 

a single grasp. The work done in this paper improves upon 

and extends the work done in [9] and [10] and has two key 

objectives. The first objective is to present a new hyper-

adaptive, underactuated, compliant robot hand that provides 

improved grasp stability over the underactuated hands 

employed in [9] and [10]. Please note that the term “hyper-

adaptive” is used here to denote a highly adaptive mechanism 

that efficiently conforms to different object geometries. Each 

hyper-adaptive finger has one pin and one flexure joint and is 
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equipped with hyper-adaptive finger-pads and 6 pressure 

sensors (please see Fig. 2). These design features allow for 

simple open-loop control of the robot hand, meaning the 

classification process and results are not affected by the 

controller parameters. Accurate grasp planning is thus not 

required, and the system is model-free.  

The second objective is to extend the methods used in [9] 

and [10] to classify common objects, by adding a Google 

Soli sensor to differentiate between ‘model’ objects having 

identical external geometries but differing in material, 

density or volume. This objective has been achieved by 

applying the Random Forests (RF) classification algorithm 

to features extracted from the raw tactile sensors data and 

the Google Soli sensor data, recorded during grasping. Using 

the RF inherent feature variables importance calculation 

procedure, the most important features are also derived. 

Such information can lead to optimized robot hand designs 

as well as to improved object classification algorithms. The 

efficiency of the proposed methods is experimentally 

validated using both everyday life and ‘model’ objects. As 

the object classification system presented in this paper is 

both rapid and reliable, we propose that the system is well 

suited for use in demanding robotics applications, such as 

object sorting and quality inspection.  

The rest of the paper is organized as follows: Section II 

discusses the related work, Section III presents the designs, 

the sensors, and the methods used in this work, Section IV 

presents the experiments conducted, Section V reports and 

discusses the results, while Section VI concludes the paper 

and discusses future directions. 

II. RELATED WORK 

In recent years, the field of tactile based object 

classification has benefited from advances in sensor 

technology. Due to the complexity of analyzing tactile sensor 

data, the methods presented in the literature mainly employ 

data driven approaches. Sophisticated control methods and 

exploratory procedures are also necessitated by some of these 

methods. Object properties such as rigidity, material and 

texture of the object are used for deciding the object class. 

In [11], three rigidity levels of the objects were 

determined using piezo-resistive pressure sensors. A 

Decision Tree classifier was employed, with the mean, the 

variance and the maximum force values used as features. The 

material of the objects was identified by sliding the finger on 

the object surface in [12] while using a 6-axis force/torque 

sensor attached to the fingertip.  

 

Fig. 2. Close-up view of the structure of a finger of the hyper-adaptive robot hand. The hand design is symmetric. Each robot finger has two phalanges 

with hyper-adaptive finger-pads, one spring loaded pin joint and one flexure joint based on elastomer material (Smooth-On PMC 780 urethane rubber). 

 



  

Data from a multimodal sensor that provides force, 

vibration and temperature data was used in [13] for texture 

recognition. Data from this sensor was collected by sliding 

the finger on the object surface with a predefined trajectory. 

In [14], the authors used  robotic exploratory procedures and 

34 adjectives to describe the objects, as absorbent, compact, 

cool, metallic, unpleasant etc. Additionally, pressure, 

temperature, and deformation information of the contact 

surfaces were provided by the biomimetic sensor.  

The popular vision-based object recognition technique 

‘bag-of-features’ was adapted to identify the object class with 

tactile sensing in [15]. A ‘vocabulary’ of tactile images was 

formed using this method, by grasping a set of objects with 

varied poses. This method generates histograms for each 

class in the training set and during identification it compares 

them against a new histogram generated from grasping 

observations collected online. In [16], a k-Nearest Neighbors 

classifier was applied to the time series of tactile-array 

images during squeezing and de-squeezing (releasing) of the 

object to achieve object classification. The grip on the object 

was however lost during identification due to the need to 

collect data for the de-squeezing phase. By using a single, 

stable grasp in our case, we do not require a de-squeezing 

motion, so the grasp can be maintained during and after 

classification. Mobility and rigidity information of the object 

together with its class is identified by the method used in 

[17]. This paper also involves a k-Nearest Neighbors 

classifier being applied to data collected from sliding a tactile 

array on the object surface. 

Raw sensor data is used for tactile based object 

identification, performed by reinforcement learning 

techniques in both [7] and [17]. In [18], a 1-vs-all classifier is 

obtained by using time series of sensor measurements and 

Spatio-Temporal Hierarchical Matching Pursuit (STHMP), 

performed on raw data to build feature hierarchies for 10 

household objects. Joint position information was used in 

conjunction with tactile data in [7] to increase success rates. 

An incremental learning technique facilitates an online 

improvement of the employed classifier. A multimodal tactile 

sensor is integrated into a Shadow dexterous robot hand in 

[19] which provides force, vibration, and temperature data. 

Rigidity, texture and thermal properties of the object are 

extracted in this study through a series of exploratory 

movements. Data is again processed using reinforcement 

learning techniques. Multimodal object recognition was 

recently achieved in [20], using a four fingered hand and by 

employing Deep Learning methods. Force sensor arrays, 6 

axis force/torque sensors for each fingertip, and joint 

encoders were used to collect the required data and the 

impact of each sensor on the recognition performance was 

assessed. 

Similar work to ours is detailed in [21]. A single grasp 

was used for classification as in our work. This method also 

forms a feature vector with data collected upon events (when 

first contact of the fingers is detected, and in steady state) as 

opposed to those works that use time series data. A capacitive 

sensor was attached to the gripper of a PR2 robot during the 

experiments. Fullness of the containers is recognized in these 

experiments and all the objects used in the experiments have 

radial symmetry, therefore the results do not confirm that the 

approach is robust to variance in object orientation. The 

hybrid control scheme which switches between velocity and 

force control in this method differentiates from ours as our 

scheme utilizes simple, open-loop control. Open-loop control 

is an advantage for our work, as complicated controller 

design was required in [21], due to the effect of controller 

parameters on the classification performance. In [9] and [10], 

we presented similar work using a simple, adaptive robot 

hand that was equipped with simple tactile sensors and a 

Random Forests classifier, achieving a classification 

accuracy of 94% for a set of everyday life objects and 93% to 

94% for various model objects with different stiffness, sizes, 

and shapes. The proposed method could not however 

discriminate between different object materials, as no Google 

Soli was available, and a simpler adaptive robot hand was 

used. Finally, the work in [22] has inspired our approach to 

using Google Soli as it proposes a radar system for material 

and object classification.  

III. DESIGNS, SENSORS & METHODS 

A. A Two-Fingered Hyper-Adaptive Robot Hand 

The hyper-adaptive robot hand described in Fig. 1 uses a 

base and a palm module developed by the New Dexterity 

research group, utilizing two Dynamixel MX-64AR motors. 

The base has an appropriate compliant support for the 

positioning of the Google Soli sensor that allows it to 

conform to the object geometry during the post-contact, 

hand-object system reconfiguration. The fingers were based 

on the fingers of the Yale Open Hand Model T42 [23] and 

were modified to include hyper-adaptive finger-pads. Each 

finger uses a spring loaded pin joint at the base and a flexure 

joint between the two phalanges.  

The hyper-adaptive finger-pads consist of simple, easy to 

manufacture parts, using silicones (Smooth-On Ecoflex 00-

30) and steel pins. The array of pins fits inside a deformable 

silicone mold that allows the pins to conform to the object 

geometry as contact is made and force is applied. The 

compliance of these finger-pads allows the fingers to 

reconfigure to the object shape, distributing the contact 

forces and ensuring the stability and robustness of the grasp. 

The pins are placed within holes machined into an acrylic 

plate and have a tight tolerance to ensure they are 

constrained to through-plane motion. Silicone pads are fitted 

to the contact tips of the pins to provide a high friction 

surface for contact. The distal finger pad has a 4x4 array of 

pins, while the proximal has a 4x3 array. More details can be 

found in Fig. 2, where a close-up view of the finger structure 

is presented. The robot hand developed is symmetric and 

both fingers have the same geometry. The robot hand weighs 

830 g (with the Google Soli and the tactile sensors attached) 

and it has an angular aperture of 140 degrees and an aperture 

of 260 mm. Regarding the force exertion capabilities, each 



  

pin of the hyper-adaptive finger-pad can exert 1.2 N before 

being fully compressed. The maximum force that can be 

exerted per finger with fully compressed pins, is 60 N.     

The design of the hyper-adaptive finger-pads can be easily 

incorporated to other robot hand designs, if there is enough 

space on the finger geometry to accommodate the required 

pins. An alternative implementation of the hyper-adaptive 

finger-pads concept can be found in the robot gripper that is 

presented in Fig. 3. This robot gripper has a steady thumb 

that accommodates a hyper-adaptive finger-pad and the 

under-actuated and compliant robot finger of the Yale Open 

Hand Model T42 [23].  

B. Google Soli Sensor 

The Google Project Soli sensor is a radar-based sensor 

that emits millimeter-scale wavelength radio frequency 

signals. The direction of the electromagnetic radio frequency 

waves is controlled by the antenna beam pattern and the 

energy of the radio frequency waves is either absorbed or 

scattered by objects obstructing the propagation path. Super-

imposed reflected signals are received by the transducer, and 

appropriate software is used to locate and describe the 

dynamics and the properties of the scattering centers. The 

Google Soli sensor has been proven in [22] to be useful for 

material identification. The energy of reflected waves is 

however also affected by the object pose, with corner 

geometries, and flat surfaces perpendicular to the transmitted 

wave reflecting the most energy. The contribution of object 

pose to this phenomena has been mitigated in this work by 

using a mechanical design that reduces variation in the final 

pose of the objects within the hand. The Google Soli sensor 

is located above the hand palm and is supported by an elastic 

structure on the robot palm that has four corner springs, in 

order to ensure a better conformability to the object 

geometry during grasping and reconfiguration.  

C. Tactile Sensors  

For sensing contact and forces exerted on the grasped 

object, tactile sensors have been integrated into the hyper-

adaptive finger-pads on the distal phalanges. The low-cost 

 
Fig. 3. Another example of a hyper-adaptive robot gripper with a hyper-adaptive ‘thumb’ and an adaptive finger with two phalanges and two spring 
loaded pin joints. The gripper grasps a tennis ball (column 1), a plastic pear (column 2), and a paper box (column 3). The different parts of the hyper-

adaptive finger-pad are depicted in the top right sequence of images.  



  

and reliable ‘Takktile’ sensors are based on MEMS 

barometers mounted on printed circuit boards with a cast 

rubber coating to spread the load [24]. Each finger has 6 

sensors, with all sensors located on the distal phalanx. The 

sensors interface via a ‘Takkfast’ data collection module to 

the control PC using a USB cable. The Takktile sensors have 

excellent linearity (typically <1%) and low noise (<0.01 N), 

and the external addressing circuitry allows multiple sensors 

to communicate on the same bus at frequencies of more than 

100 Hz.  

D. Random Forests based Classification 

The machine learning methodology presented in this 

paper is based on a Random Forests classifier. The 

classification models are used to discriminate between the 

different object classes and solve two different problems: 1) 

classification of material, density or volume for cubes and 

cylinders, 2) classification of a range of everyday life 

objects. Random Forests was originally proposed by Tin 

Kam Ho of Bell Labs [25] and Leo Breiman [26] and is a 

popular ensemble classifier based on a combination of 

decision trees. This paper deals with a multiclass 

classification problem (identifying multiple everyday 

objects) and a multidimensional feature space, as the feature 

vector consists of 20 different feature variables. The choice 

of the classifier was based on the work done in [10], where 

Random Forests provided the best prediction accuracy out of 

a range of commonly used classifiers. Random Forests offer 

excellent predictive performance and a feature variables 

importance calculation procedure that can sort the features 

based on their importance.  

E. Features Selection & Features Importance Calculation 

The feature space used consists of the Google Soli 

readings, the motor positions and the contact forces exerted at 

different instances of the grasping process. We chose to use 

the readings at specific time instances instead of time series, 

in order to reduce the computational complexity of the 

classification. We have also verified that the use of time 

series does not offer any meaningful improvement of the 

predictive performance. Features related to the motor 

positions and the contact forces are extracted using an 

automated detection method (see Fig. 4). For a detailed 

description of all the feature variables that are used in this 

paper, please see Table I. 

 One of the main goals of this study is to identify the most 

important features for object classification / identification. 

This is particularly useful for us, as this is a topic of great 

interest for our research group and such knowledge may help 

us optimize our robot hand designs in order to select the 

appropriate locations for the tactile sensors or to optimize our 

object classification algorithms. To do so, we have used the 

Random Forests feature variables importance calculation 

procedure using the mean decrease in accuracy method. The 

values of the importance scores have been normalized to 

allow for more intuitive comparisons. Results are reported in 

subsection V-C.  

Table I. Features used for classification 

# Feature Description 

1 Aperture  The sum of the motor positions 

when contact with the object is first 

detected for both fingers 

2 First contact forces 

(Sum) 

The sum of the contact forces for 

initial contact of both fingers 

3 Final contact forces 

(Sum) 

The sum of the final contact forces 

of both fingers at the completion of 

the grasp 

4 Contact force 

gradient (Sum) 

The sum of the gradients of the 

contact forces between first and 

final contact of both fingers 

5 Final force (Sum) The sum of all tactile sensor 

readings upon grasp completion  

6 Soli Acceleration  Overall acceleration in the 

workspace of Soli 

7 Soli Energy Total 

(Mean) 

Total reflected energy 

8 Soli Moving Energy 

(Mean) 

Energy measured from the time-

varying component of the reflected 

radar signal 

9 Soli Strongest Energy 

Component (Mean) 

Energy reflected from the most 

dominant target component 

10 Soli Fine 

Displacement (Mean) 

Related to the post contact fine 

displacement of the grasped object 

11  Soli Fine 

Displacement (Time) 

 

Related to the timing of the post 

contact fine displacement of the 

grasped object 

12 

-

15 

Soli Fine 

Displacement 

(Polynomial 

Constants) 

Related to the post contact fine 

displacement of the grasped object 

16 Soli Movement Index  The level of movement of the most 

dominant component 

17 Soli Sonar (Mean) Sonar value 

18 Soli Spatial 

Dispersion (Mean) 

The measure of the medium 

permittivity  

19 Soli Velocity  Overall velocity of the object 

20 Soli Velocity 

Centroid  

Weighted average of the overall 

velocity 

 

 

Fig. 4. Example of automatic contact detection and feature extraction. 
The back lines denote the motor positions, the dotted yellow lines 

denote the first contact with the left finger and the dashed blue lines the 

first contact with the right finger. The solid grey lines denote the end of 
the hand-object system reconfiguration (“completion” of the grasp). 

Data from a random, single experiment (3 repetitions), are presented.  



  

IV. EXPERIMENTS 

In this section, we present the selected objects and the 

experiments that we conducted in this study. 

A. Selected Objects 

In this work, we use a wide range of everyday life objects 

of different sizes, shapes, and stiffness, as well as model 

objects with controlled properties (objects of the same size 

and shape but of different material). The characteristics (size 

and material) of all objects used in this study are reported in 

Table II.  

B. Experiments Conducted  

The experimental setup involved positioning the hand on 

a table surface such that the grasping action of the hand was 

on the same plane. An arbitrary position on the table surface, 

within the hand workspace / grasp, was then assigned for 

each object. For every trial, the object was rested at the 

assigned location with a variation in the object’s position 

and orientation of ±10 mm and ± 10 degrees respectively. 

The experimental procedure then involved closing the hand 

to grasp the object while data was recorded from the tactile 

and Google Soli sensors. Upon contact with the object 

surface the robot fingers reconfigured towards an elastic 

equilibrium configuration that was determined by the contact 

forces exerted. This reconfiguration moved the grasped 

object towards the wrist where the Google Soli sensor was 

located. Once a stable grasp of the object was achieved, data 

recording was ended, and the object was released. The 

experiment was repeated with the same object for a total of 

10 trials. This procedure was performed for all the objects 

presented in Table II.  

V. RESULTS 

In this section, we present the classification results for 

objects with controlled properties and everyday life objects, 

and a ranking of the most important features as determined 

by the Random Forests feature variables importance 

calculation procedure.  

A. Grasping Experiments 

A series of experiments were conducted to evaluate the 

efficiency of the hyper-adaptive finger-pads in extracting 

stable and robust grasps (please see Fig. 3 and 5). For most 

objects tested, the length of the pins enabled a better grasp as 

this allowed larger conformability to the object geometries. 

However, in our testing we did note that for very small 

objects (smaller than a squash ball) the pins of the proximal 

and distal phalanges could meet each other before 

encountering the object to be grasped. This did have an 

impact on the quality of the grasp as it affects how the 

fingers of the hand close on the object. Regarding the 

applicability of the particular design in different grasping 

scenarios, the pins could be easily used in other hand 

designs, especially in hands with relatively wide fingers (to 

enable the use of the silicone springs). It is important to note 

that the pins can be placed in any orientation and can be of 

any length, completely up to the discretion of the designer 

(please see Fig. 3). The length of the pins and the silicone 

springs will simply affect how much deformation they are 

capable of, with orientation determining in what direction 

the hyper-adaptive finger-pad is most conformable. A video 

containing some grasping experiments can be found at the 

following URL: 

http://www.newdexterity.org/hyperadaptive 

B. Classification Results 

For the training of the classifiers, we use the simple, 10-

fold cross-validation method, to assess how the classification 

results will generalize to an independent data set. The 

classification accuracies were averaged over the multiple 

rounds of the cross-validation method. The Random Forests 

were grown for 100 trees, since such a value gives a good 

classification accuracy without severely increasing the 

computational complexity (decision takes <10ms). The 

prediction accuracy for all 26 objects in the object set was 

over 99%. This set included three cubes of the same size but 

of different material (wood, PLA, and metal), four hollow, 

ABS cylinders having the same outer radius and height but 

Table II. Characteristics of the everyday life objects that were 
examined.  The objects are sorted by size.  

Objects Dimensions 

(mm) 

Material 

Squash Ball 40.5  Rubber 

Marble 45  Glass 

Cylinder 50x50  – 4mm 

Wall 

ABS Plastic 

Cylinder 50x50  – 5mm 

Wall 

PLA Plastic 

Cylinder 50x50  – 6mm 

Wall 

ABS Plastic 

Cylinder 50x50  – 8mm 

Wall 

ABS Plastic 

Cylinder 50x50  – 14mm 

Wall 

ABS Plastic 

Hollow Fill Cylinder 50x50  PLA Plastic 

Solid Fill Cylinder 50x50  PLA Plastic 

Cylinder 50x50  Mild Steel 

Cylinder 50x50  Wood 

Cube 50x50x50 PLA Plastic 

Cube 50x50x50 Mild Steel 

Cube 50x50x50 Wood 

Cricket Ball 70  Plastic and Cork 

Cylinder 50x70  PLA Plastic 

Cube 70x70x50 PLA Plastic 

Cardboard Box 31x112x146 Cardboard 

Computer Mouse 35x60x110 Plastic 

Cylinder 50x90  PLA Plastic 

Empty Can 110x73  Tin (empty) 

Full Can 110x73  Tin (corn inside) 

Soft Drink Can 167x63  Aluminum 

Glass Bottle 156x69  Glass 

Syrup Bottle 65x90x180 Plastic 

Spray Bottle 35x104x276 Plastic 

 

http://www.newdexterity.org/hyperadaptive


  

different inner radius, two solid PLA cylinders having the 

same size but different fill densities, and other everyday life 

objects. It must also be noted that we conducted initial 

experiments that are not included in this study which reveal 

that the variations in the object pose do not appear to affect 

the overall classification performance.  

C. Assessing the Feature Variables Importance 

In this subsection, we calculate the feature variables 

importance using the inherent procedure of the Random 

Forests classifier and we assess the results. The importance 

bar-plots of the different feature variables for the problem of 

discriminating between all the examined objects, are 

presented in Fig. 6. For each feature the importance scores 

have been calculated 5 times (for different partitions of the 

training data) and it can be observed that the importance 

values are consistent among partitions. It is also clear that 

specific features are more important than others. For 

example, features 1, 8, and 17, namely the motor aperture, 

Soli's moving energy, and Soli's sonar reading, have the 

highest feature importance scores across all features. On the 

other hand, features 6 and 16, Soli’s acceleration and Soli’s 

movement index, are of low importance, and thus are 

contributing less to the ability of the classifier to identify the 

 

Fig. 6. Feature variables importance bar-plots. The height of the different bar-plots represents the importance scores of the different feature variables. The 

20 features are described in Table I. The feature importance has been calculated for five different partitions of the training data and it is evident that the 
values are consistent across the five barplots of each feature. 

 

Fig. 5. Steps of the grasping and object identification processes. The system can identify the object using a single, open-loop, model-free grasp. 

 

 

 

 

 



  

examined objects. This information could be utilized in 

future work for the optimization of the classifier (e.g., to use 

less feature variables without compromising the classification 

accuracy).  

D. Limitations  

Although the proposed hand design exhibits an improved 

grasping performance (grasp stability), it must be noted that 

it is not as efficient for small objects (as discussed in 

subsection V-A). Additionally, it cannot be used for the 

execution of dexterous manipulation tasks, as the hyper-

adaptive finger-pads enclose the examined objects, 

constraining their motion within the hand. Moreover, the 

hand cannot be used in anthropomorphic designs due to 

space, packaging, and aesthetics constraints. It should also 

be noted that larger variations in the initial pose of an object 

may compromise the predictive performance and that new 

experiments are required to investigate this issue in detail.  

VI. CONCLUSIONS AND FUTURE DIRECTIONS 

In this paper, we proposed a hyper-adaptive robot hand 

design that combines the Google Soli radar sensor and tactile 

sensors to facilitate the execution of single-grasp, model-free 

object classification tasks. The hand conforms to the object 

geometry, offering increased robustness and stability in the 

execution of grasping tasks. A Random Forests classifier was 

used to discriminate between the examined objects, using the 

raw sensor values (no sensor calibration was required) and 

the motor positions in different time instances.  

Regarding future directions, we plan to revisit the design 

of the hyper-adaptive robot hand, optimize the sensor 

selection and placement, assess the role of object pose 

variations and their effect on the identification accuracy, as 

well as develop new algorithms for haptic object 

classification that will account for highly unstructured 

environments. 
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