Abstract:
Underground mines are a dangerous working environment and, therefore, robots could help putting less humans at risk. Traditional robots, sensors, and software often do no...Show MoreMetadata
Abstract:
Underground mines are a dangerous working environment and, therefore, robots could help putting less humans at risk. Traditional robots, sensors, and software often do not work reliably underground due to the harsh environment. This paper analyzes requirements and presents a robot design capable of navigating autonomously underground and manipulating objects with a robotic arm. The robot's base is a robust four wheeled platform powered by electric motors and able to withstand the harsh environment. It is equipped with color and depth cameras, lighting, laser scanners, an inertial measurement unit, and a robotic arm. We conducted two experiments testing mapping and autonomous navigation. Mapping a 75 meters long route including a loop closure results in a map that qualitatively matches the original map to a good extent. Testing autonomous driving on a previously created map of a second, straight, 150 meters long route was also successful. However, without loop closure, rotation errors cause apparent deviations in the created map. These first experiments showed the robot's operability underground.
Date of Conference: 01-05 October 2018
Date Added to IEEE Xplore: 06 January 2019
ISBN Information: