
CReaM: Condensed Real-time Models for Depth Prediction using
Convolutional Neural Networks

Andrew Spek∗ Thanuja Dharmasiri∗ Tom Drummond

Abstract— Since the resurgence of CNNs the robotic vision
community has developed a range of algorithms that perform
classification, semantic segmentation and structure prediction
(depths, normals, surface curvature) using neural networks.
While some of these models achieve state-of-the art results and
super human level performance, deploying these models in a
time critical robotic environment remains an ongoing challenge.
Real-time frameworks are of paramount importance to build a
robotic society where humans and robots integrate seamlessly.
To this end, we present a novel real-time structure prediction
framework that predicts depth at 30 frames per second on an
NVIDIA-TX2. At the time of writing, this is the first piece
of work to showcase such a capability on a mobile platform.
We also demonstrate with extensive experiments that neural
networks with very large model capacities can be leveraged
in order to train accurate condensed model architectures in a
“from teacher to student” style knowledge transfer.

I. INTRODUCTION

Roboticists endeavour to build systems which are real-time
capable for a vast array of applications including autonomous
vehicle navigation, visual servoing, and object detection.
The majority of the aforementioned tasks require a robot to
interact with other robots or humans and respond to actions
of one another. Due to this very reason, the low latency
aspect which stipulates coherency becomes a prerequisite
for such systems. While building a real-time system on a
modern computer can be challenging as it stands, doing so
on a mobile platform with less than one tenth of the compute
is extremely difficult. However, these mobile platforms are
much more appealing for real life scenarios as they consume
less power and are compact in nature compared to the
desktop workstation counterparts.

Another area of research that has been quite popular
within the robotics community is the application of machine
learning to robotics problems. Neural Networks are being
applied with resounding success to solve many problems and
have now surpassed human level performance on tasks such
as image recognition or even complex strategy games such
as Go, a task once thought too challenging for a machine.

We take a step towards combining real-time robotics and
machine learning on a resource constrained mobile platform.
More concretely, we present the first piece of work that
performs single image depth prediction which runs at 30fps
on a NVIDIA-TX2 or at over 300fps on an NVIDIA-
GTX1080Ti.

*The authors contributed equally
The authors are with the Faculty of Electrical and

Computer Systems Engineering, Monash University, Australia.
[firstname].[lastname]@monash.edu

A.

B.

C. D.

Fig. 1: Demonstrates the model running on the NVIDIA-TX2
development board (shown in green square D.) in real-time.
A. The colour image, B. The jet coloured groundtruth depth
image from a the Kinect C. The predicted depth from the
colour input image. Using our condensed model the demon-
stration runs at 30fps on the NVIDIA-TX2. Additionally the
model demonstrated has only been trained on the NYUv2
[1] dataset, but is still able to predict relatively convincing
depths on novel scenes such as the one pictured.

Learning deeper (more layers) and wider (more channels
per layer) models generally leads to better results [2], [3] for
most vision based tasks. However, the fundamental limitation
of such approaches is the inability to deploy on resource con-
strained devices. Our depth prediction framework not only
runs at frame rate on an NVIDIA-TX2 but also outperforms
denser architectures such as [4] despite the latter being able
to see the whole image in its field of view using stacked
fully-connected layers.

Model compression is the concept of replicating the per-
formance of a larger model or an ensemble of large models
using a smaller network. Common model reduction tech-
niques mainly focus on the architectural aspect and consist
of techniques such as quantization of weights, curtailing the
depth etc. In this work, the emphasis is predominantly on a
training regime which tries to replicate the latent space of the
deep model. This allows us to achieve superior performance
over randomly initialised models of equivalent size, while
training both models to convergence.

The primary reason behind targeting depth prediction in

ar
X

iv
:1

80
7.

08
93

1v
1

 [
cs

.C
V

]
 2

4
Ju

l 2
01

8

this work is due to the fact that it acts as basis for mapping
and navigation systems as it is useful in situation with low
levels of parallax while also eliminating the requirement
for expensive hardware (LIDAR) in outdoor environments.
Moreover, we provide models which perform at frame rate
for both indoor and outdoor scenarios and as a practical ap-
plication demonstrate coupling of real-time depth prediction
with an off-the-shelf SLAM system ORB-SLAM2[5].

The following bullet points provide a summary of the
contributions made in this paper in-order to build dense real-
time structure prediction frameworks :

• Present the first piece of work which performs depth
prediction at frame-rate on a mobile platform in the
form of an NVIDIA-TX2 while outperforming archi-
tecture with model architectures which has more than
30 times the number of parameters as ours. (Video
demonstration included in supplementary materials)

• We present an analysis of the system with extensive
experiments to show how different loss functions play
a vital role when learning the underlying latent repre-
sentation while not compromising the training time.

• Real-time depth prediction enables us to readily in-
tegrate the predicted depths with ORB-SLAM2[5] in
order to perform tracking and mapping on mobile plat-
forms while significantly reducing scale-drift.

II. RELATED WORK

This section provides a summary of the previous research
conducted in depth prediction, constructing compressed mod-
els and extracting the latent information of a neural network.

Inferring higher order quantities (semantic labels, struc-
tural information) from only colour image data allows
researchers to tackle a range of problems. Convolutional
Neural Networks perform remarkably well at extracting key
pieces of information and ignoring noise in image data.
Although a lot of image driven machine learning frameworks
aim to solve classification and semantic segmentation prob-
lems [6], [7], [8], [3], most of the techniques introduced can
be readily applied to predict geometric quantities such as
depths [9], [4], [10], [11], normals [9], [12] and curvature
[13].

An added benefit of predicted structural information is it
allows the use of conventional geometry based techniques
in concert with machine learning systems. Garg et al. [11]
constructed an unsupervised depth prediction framework
by enforcing an image reconstruction loss. Left-right con-
sistency of stereo images was leveraged in [14] and the
relationship of depths, normals and curvatures was exploited
in [13] to improve the accuracy of all three quantities.
Structure prediction systems have also been combined with
SLAM systems [15], however the neural network employed
in their approach [10] does not run at frame rate even on
a conventional gpu thus making it impossible to deploy on
a mobile platform. A similar approach proposed by Martins
et al. [16], uses a network inspired by [9] operating on a
mobile platform (Parrot SLAM drone) at approximately 4fps.

Contrary to this the proposed framework of this work runs
in real-time (30fps) on an NVIDIA-TX2.

Due to the attractive qualities such as low power con-
sumption and high mobility, researchers have been keen to
examine the possibility of building smaller architectures.
MobileNets [17], ICNet [18], ERFnet [19], have shown
reasonable accuracy and real-time performance on modern
GPUs. However, none of these methods achieve inference at
frame rate on an NVIDIA-TX2. Many of these approaches
focus on reducing the overall model size, while attempting
to maintain a comparable performance to larger systems. In
this work we focus more on the latent space transfer aspect
in which we employ a larger supervisor network to aid in
training the condensed network.

The machine learning community has investigated the
problem of model compression or emulating the performance
of a larger network. Hinton et al. in [20] introduced a
concept called distillation which aimed to replicate the
class probabilities of a larger model using a smaller model.
Since we are tackling a regression problem (compared to a
classification problem) training a smaller network to replicate
the prediction layer of a larger model becomes strictly
suboptimal compared to training directly on the ground truth
since there is no notion of class probability. Inspired by this
work we introduce a tensor loss where we aim to mimic the
latent space or the embedding of the penultimate layer of the
larger model. Initial results presented here indicate having
the supervised tensor loss gives inferior results compared to
learning the penultimate layer in an unsupervised manner.
Similar to [20] Bucila et al. [21] showed that it is possible
to replicate the performance of an ensemble of classifiers
using a single model. Their method relied on generating
synthetic data using an ensemble of networks and training
the smaller network on this synthetic data. Finally, Han
et al. demonstrated model weight compression through the
use of quantization and Huffman coding in [22] for image
classification.

III. PROPOSED FRAMEWORK

This section aims to provide a step by step breakdown of
the proposed framework. We begin by presenting the model
architecture implemented followed by the different loss terms
employed. Next we introduce the datasets that were used
during training and finally we conclude this section with an
account of the training regime that was used to train various
models.

A. Model Architecture

Our model design was inspired by ENet [24] and ERFNet
[25], which have demonstrated a decent trade-off between
performance and speed for the task of semantic segmentation.
They show in [24] the ability to run at near real-time
(≈10fps) performing a dense semantic segmentation task
on the targeted hardware, the NVIDIA-TX1. However we
wished to target an even higher frame rate, to allow for
every frame to have a depth estimate in real-time. Our
target hardware platform was the NVIDIA-TX2, which has

Solver Layer

Deep
Encoder

Deep
Decoder

Fast
Encoder

Fast
Decoder

Solver Layer

N-Dimensional
Manifold

Embedding

Large
Supervisor Model

Condensed
Real-time Model

Fig. 2: This demonstrates the concept behind our training
regimes we use to perform model compression through
knowledge transfer. The initial strategy was to minimise the
difference (dt

i) between the intermediate activations (also
referred to as the tensor loss) produced as input to the
solver layer by the network. The other approach involves
transplanting of the solver layer from the large network onto
the condensed network. We also examine a combination of
both approaches. In practice the transplant alone is both more
effective and much faster to train, although all knowledge
transfer approaches improve the performance over random.

≈30% more compute power over the previous NVIDIA-
TX1. We use the NVIDIA supported TensorRT framework
[26] in order to accelerate inference of our models. However
this limited the available layers to those supported by the
framework, which at the time of writing this paper, did not
support dilated convolutions [27]. Taking these factors into
consideration and after a number of attempts we decided
on the architecture defined in Table I to provide the best
compromise between runtime and accuracy.

B. Loss Functions and the Knowledge Transfer Process

The obvious choice of loss function when performing
regression is the L2 distance between the prediction and the
ground truth as shown in Equation 1. We choose this as

Model Architechture Breakdown

Layer Type Resolution(in, out) Channels (in, out)

E

Downsample (2×2) 320×240, 160×120 3, 16
Downsample (2×2) 160×120, 80×60 16, 64
Non-btl 1D (3×3) 80×60, 80×60 64, 64
Non-btl 1D (3×3) 80×60, 80×60 64, 64
Non-btl 1D (3×3) 80×60, 80×60 64, 64
Non-btl 1D (3×3) 80×60, 80×60 64, 64

Downsample (2×2) 80×60, 40×30 64, 128
Non-btl ND (3×5) 40×30, 40×30 128, 128
Non-btl ND (3×5) 40×30, 40×30 128, 128
Non-btl ND (3×7) 40×30, 40×30 128, 128

D

Deconv (4×4) 40×30, 80×60 128, 64
Non-btl 1D (3×3) 80×60, 80×60 64, 64

Deconv (4×4) 80×60, 160×120 64, 64
Non-btl 1D (3×3) 160×120, 160×120 64, 64

Deconv (4×4) 160×120, 320×240 64, 64

P Conv 2D (3×3) 320×240, 320×240 64, 1

TABLE I: A summary of the architecture implemented given
an input resolution of 320×240, which is used for both [1]
and [23]. The left column refers to the broad section of the
network as shown in Figure 3, E: Encoder, D: Decoder and
P: Predictor, where the predictor layer is the layer that can
be transplanted from the supervisor network.

a starting point to train our condensed networks defined in
Table I. The random models trained using this formulation
are referred to as R models throughout the remainder of the
paper. Note that since there are no existing networks which
share the same architecture as our condensed network, all
the weights were initialized using MSRA initialization [8],
except in the case of the transplanted networks (TR).

Ld =
1
N

N

∑
i=0
||Di−D∗i ||2 =

1
N

N

∑
i=0
||dpi||2 (1)

where Di represents the predicted depth map and D∗i rep-
resents the ground truth depth map obtained from a Kinect
or a Velodyne LIDAR. Additionally we define the distance
between the ith predicted and groundtruth depth to be dpi,
shown in Figure 2, where we use the super script c and
b to denote the error from the condensed and big network
predictions respectively.

Upon training the randomly initialized model using the
Euclidean loss defined in Equation 1, the next stage focused
on improving the accuracy. Since making the model deeper
was not an option as this would compromise the capability of
the system to predict at 30fps, we use different loss functions
similar to [28] to improve the accuracy. Another important
factor that was taken into consideration was the availability
of larger models that perform depth prediction. This inspired
us to create architectures that could learn from a bigger
model in a knowledge-transfer fashion.

The basic motivation is to take the power of a state
of the art depth estimation network [29] and attempt to
transfer the useful knowledge to our condensed network.
This creates a performance cap that is the performance
of the larger network, but would hopefully improve the
performance enough over random to be usable in robotics.

Encoder Decoder Solver
Input

(RGB Image)
Output

(prediction)

Downsample 2x Non-btl 1D - 3x3 Non-btl 1D - 3xN Deconv 2x Conv 2D 3x3

Fig. 3: The model architecture for our real-time depth estimation network. This network is constructed from mostly Non-
bottleneck blocks (Non-btl in figure), which are a series or residual type blocks shown in Figure 4. Downsample, Conv 2D
and Deconv are all standard operations.

3x1 Conv

1x3 Conv

Batchnorm

3x1 Conv

1x3 Conv

Batchnorm

Relu

3x1 Conv

1x3 Conv

Batchnorm

Nx1 Conv

1xN Conv

Batchnorm

Relu

Non-btl 1D - 3xNNon-btl 1D - 3x3

Fig. 4: Shows the submodules of the Non-bottleneck 1D
blocks. ”Non-bottleneck” refers to the channel count which
remains unchanged when passing through this layer. The
Nx1, 1xN, 3x1 and 1x3 Conv operations are standard asym-
metrical convolutions where N is chosen. In practice we used
two Non-btl ND - 3x5 blocks followed by one Non-btl ND
- 3x7 blocks, in an attempt to increase the receptive field as
much as possible. The plus indicates the addition of the two
sets of activations, followed by ReLU activation.

We designed our condensed network around the idea that the
final layer of the large depth estimator could be transplanted
onto our condensed network, shown in Figure 2.

The tensor loss as depicted in Equation 2 aims to mimic
the activations of the penultimate layer of the deeper model.
This is a supervised loss where we attempt to enforce the
tensors of large and condensed model to match.

Lt =
1
N

N

∑
i=0
||Ti−T ∗i ||2 =

1
N

N

∑
i=0
||dt

i ||2 (2)

Ti represents a tensor corresponding to the activations of

the penultimate layer of the condensed network and T ∗i
represents that of the deeper network.

After training till convergence using the tensor loss, the
final layer is freed and the network is fine tuned using the
depth loss. This model is denoted as T in the results section.

We also propose an alternative loss where the penultimate
layers are trained in an unsupervised manner in which we
transplant the final/solver layer of the larger model onto a
randomly initialized condensed model and the network is
trained using Equation 1 to provide useful activations for
the solver layer. The transplanted model (TR) updates all
the layers barring the solver layer.

Finally, we train the T+TR model which uses a combina-
tion of the tensor loss and the transplanted solver where the
network was trained for roughly 20 epochs using the tensor
loss followed by introduction of the transplanted layer and
further fine tuning using the depth loss for another 5 epochs.

We attempt to visualise the resulting embeddings created
by this training process in Figure 5. We expect to have
the tensorloss embedding to most closely relate to the large
network, while the transplanted network will find some point
nearby, and the random to be largely uncorrelated as the
space should have many local minima. In practice this is
exactly what we find and we discuss this further in the results
section.

C. Datasets

We train on several very popular large depth-color
datasets, NYUv2 [1], RGB-D[23] and KITTI [30]. The first
two of these are indoor datasets, filmed using the Microsoft
Kinect style sensor. NYUv2 provides a large number of varied
indoor sequences, where 249 scenes are used during training,
and 215 for testing. The official test set was created by
drawing 654 images from the test scenes. RGB-D provides
substantially less variation in a dataset than NYUv2 but has
enough to provide a challenging set of indoor scenes to
predict on. Finally KITTI is a large and varied outdoor dataset
with over 20,000 training images. We followed the standard
train-test split when creating the training set and evaluate on

N-Dimensional
Manifold

Embedding

Deep
Network

Tensor
Supervised
Network

Transplanted
Network

Randomly
Initialised
Network

Tensor Visualisation

Input to
Solver Layer

Input to
Networks

Groundtruth
Depth

Depth Predictions

Fig. 5: Demonstrates how the different network training
regimes will ultimately determine the manifold embedding
that the resulting networks form. The range of possible
outputs of the network are shown in the colour of the
network, and is intended to show that some of the embed-
dings are expected to very similar (overlapping) while others
will generate potentially completely unrelated embeddings.
We include a visualization of the embedded tensors as a
magnitude image, which correlates strongly to the resulting
depth magnitude.

the official test images. In addition to being outdoors and
providing a much larger range of depths to estimate, this
dataset also provides ground-truth odometry for a subset of
sequences.

D. Hyperparameters

We train each model with a batch size of 12 on a cluster
of GTX1080Ti GPUs. Adam Optimizer [31] was employed
as the optimizer with a initial learning rate of 1e-4. The
learning rate was halved every 2 epochs. The Tensorflow
[32] framework was used during training allowing for rapid

prototyping and later integrated with TensorRT for deploy-
ment on the NVIDIA-TX2 device.

IV. RESULTS

We evaluate the output of the proposed networks using the
datasets described in Section III-C. This section summaries
the results across several qualitative and quantitative compar-
isons to existing approaches, and demonstrates the usefulness
of our approach.

NYUv2 [1]
Method Relabs RMSlin RMSlog δ δ 2 δ 3

Liu [33] 0.230 0.824 - 61.4% 88.3% 97.2%
Eigenalex [9] 0.198 0.753 0.255 69.7% 91.2% 97.7%
Eigenvgg [9] 0.158 0.641 0.214 76.9% 95.0% 98.8%
Laina [10] 0.127 0.573 0.195 81.1% 95.3% 98.8%

Baseline [29] 0.111 0.480 0.161 87.2% 97.8% 99.5%

Real-time Networks
Ours (R) 0.216 0.765 0.277 64.4% 89.3% 97.1%
Ours (T) 0.204 0.713 0.261 68.5% 90.9% 97.5%

Ours (T+TR) 0.205 0.715 0.262 68.3% 90.8% 97.5%
Ours (TR) 0.190 0.687 0.251 70.4% 91.7% 97.7%

TABLE II: The metrics are explained in Subsection IV-A.
Lower numbers are better for the first three columns as these
represent errors and higher number are better for the last
three columns as they represent percentage of inliers.

0-50m KITTI [30]
Method Relabs RMSlin RMSlog δ δ 2 δ 3

Zhou [34] 0.201 5.181 0.264 69.6% 90.0% 96.6%
Garg [11] 0.169 5.104 0.273 74.0% 90.4% 96.2%

Goddard [14] 0.140 4.471 0.232 81.8% 93.1% 96.9%
Kuznietsov [28] 0.108 3.518 0.179 87.5% 96.4% 0.98.8%

Baseline [29] 0.092 3.359 0.168 90.5% 97.0% 98.8%

Real-time Networks
Ours(R) 0.147 4.530 0.234 80.3% 93.3% 97.3%
Ours(T) 0.139 4.434 0.228 81.7% 93.7% 97.5%

Ours(T+TR) 0.140 4.426 0.225 81.7% 93.8% 97.6%
Ours(TR) 0.156 4.363 0.224 81.8% 94.0% 97.7%

TABLE III: Results of evaluating KITTI dataset, using the
same metrics as defined in Subsection IV-A and Table II

A. Depth Evaluation

We evaluate each network variant on both NYUv2 and
KITTI datasets using the following standard depth prediction
metrics.

RMSlin :

√
1
n

n

∑
i=1

∥∥Di−D∗i
∥∥2 Relabs :

1
n

n

∑
i=1

|Di−D∗i |
D∗i

RMSlog :

√
1
n

n

∑
i=1

∥∥ln(Di)− ln(D∗i)
∥∥2

% of points with in δ :
n

∑
i=1

max
(

Di

D∗i
,

D∗i
Di

)
< δ , δ = 1.25m

We tabulate the results for the NYUv2 dataset in Table
II and for KITTI in III. Additionally we included some
qualitative results from NYUv2, RGB-D and KITTI in Figure
7 and 8. From the numerical results in both tables we

Transplanted
Network

Tensor Supervised
Network

Randomly Initialised
Network

Tensor Angle Correlation

Depth Error

1.317 0.605 0.773

Tensor Magnitude Visualisation

Network Input Groundtruth Depth
Tensor Magnitude

(Supervisor Network)

HighLow

Fig. 6: We demonstrate the relationship between the tensors
produced with the three different training approaches. The
first row shows the RGB input, the ground-truth depths, and
the magnitude of the tensors for the last layer of the large
network we use to transfer knowledge from. The second
row shows the tensor magnitude images for each network,
which are a visualisation of the norm of the tensor value. The
third row shows the angle correlation, which is the degree to
which the direction of the tensors agree. The final row shows
the magnitude of the depth error between the prediction and
ground truth. We include the RMS error in meters for each
of the predictions below their respective columns.

observed a consistent behaviour for both datasets with the
following trend:

Random < Tensorloss < Transplanted

The fact that the random model is clearly inferior com-
pared to all other variants highlights the importance of
knowledge transferring process especially when it comes to
condensed networks. Now we take a more in depth look
at the contributions of the tensor loss model (T) and the
transplanted model (TR). As it can be seen in Figure 6 the
tensor angles highly correlate with that of the supervisor
network when trained using the tensor loss, however the
magnitude of the activations correlate less strongly, which

appears to negatively effect the quality of the reconstruction.
One interesting thing to notice is that the angle negatively
correlates to the depth error, that is the most aligned tensors
have the least error, and this is flipped between the T and
TR. There seems to be a sort of an ‘uncanny’ valley in
this case where the small network gets much better and
better at emulating the penultimate activations but can’t quite
perfectly reproduce and gets stuck in a suboptimal minima,
while the less restricted TR network is free to navigate to a
minima that exploits as much of the information it can from
the transplanted last layer. This valley seems to be created by
the vastly reduced model capacity and we hope to investigate
further in future work.

Network Input Groundtruth Depth Predicted Depth

Fig. 7: We demonstrate the performance of our network at
estimating depths on two datasets, NYUv2 [1] and RGB-D
[23]. The first two rows are from [1] while the last two rows
are from [23]. All the images are from the test sets, and are
not present in the training data.

B. Pose Estimation

As an application of our work, We evaluate the pose
produced by an off-the-shelf SLAM system using the depths
inferred by our real-time network. We compare the resulting
poses against the ground-truth pose data available on a
select number of KITTI datasets. We summarise the results
in Table IV We show the comparative performance of the
original SLAM system [5] in the Mono, Stereo and RGB-D
configuration using our predicted depths as input. We use the
standard Absolute Trajectory Error as proposed in [23].

Additionally, in Figure 9 we show a qualitative comparison
of trajectory accuracy using our predicted depths compared
to using purely monocular data against the ground-truth

Groundtruth Depth

Stereo Depth Computed Using SGM

Predicted Depth

Network Input

Fig. 8: We demonstrate impressive qualitative performance
on the KITTI dataset [30], with our predicted depths closely
aligning to the groundtruth. The stereo reconstruction is in-
cluded to densify the sparse Velodyne point, using SGM[35].

KITTI Odometry Absolute Trajectory Error (m)
Ours Mono Stereo

Sequence Predicted Depths ORB-SLAM [36] ORB-SLAM [5]

Seq00 4.23 6.62 1.3
Seq05 2.01 8.23 0.8
Seq07 1.15 3.36 0.5

TABLE IV: Pose estimation evaluation on KITTI sequences,
measuring the ATE as defined in [23].

Ground Truth

Monocular
Ours (predicted depths)

Fig. 9: Demonstrates the improvement to the trajectory
produced using our predicted depths from colour vs using
colour images alone as input to the off the shelf SLAM
system [5] for seq00 of KITTI-odometry [30].

trajectory. Again we compute these trajectories using the
popular ORB-SLAM2 system [5]. This demonstrates that
by using our predicted depths the system out-performs the
monocular only approach, even when including the bundle-
adjustment and loop-closure present for both approaches.

In an attempt to show a concrete example of what this
system can contribute to an off-the-shelf SLAM approach we
demonstrate in Figure 10 the reduction in scale-drift given

Monocular Only
After Loop-closureBefore Loop-closure

Using Depth Predictions
After Loop-closureBefore Loop-closure

Fig. 10: Demonstrates the amount to which the scale-drift
can be reduced using our approach. The first row shows
the performance of standard monocular ORB-SLAM2 [5] on
sequence 00 of KITTI-odometry [30]. Before loop-closure a
very pronounced level of scale-drift is present. In contrast
when we provide our estimated depths, the scale drift is
almost completely removed, and the difference before and
after loop-closure is barely visible.

the same SLAM configuration, using our predicted depths vs
using the the colour data alone. This establishes a practical
application given that our approach can also infer at over
70FPS as shown in Table V.

Average FPS over 50 runs (Min, Max)

Resolution GTX1080Ti TX2

640×480 105.96 (100.82, 107.92) 7.68 (7.50, 7.71)
320×240 † 312.29 (295.25, 320.00) 30.03 (27.76, 30.37)
640×192 ‡ 214.75 (202.76, 221.58) 19.08 (18.23, 19.21)

320×96 473.09 (439.01, 498.73) 70.95 (65.54, 72.63)

TABLE V: Pose estimation - Real-time Performance FPS
Speed comparisons for different output resolutions, on each
device. The configurations marked with † and ‡ are the
typical output resolutions of the state-of-the-art networks for
indoor and outdoor datasets respectively.

C. Speed and Computation Performance

We include the timing information for our approach in
Table V. This shows that at the typical operating resolutions

we can infer at real-time on the NVIDIA-TX2, particularly
on KITTI which we infer at (320×96) which we demonstrate
is enough to dramatically improve the accuracy and reduce
the scale-drift in tracking from Monocular cameras.

V. CONCLUSION AND FURTHER WORK

In this paper we demonstrate an evaluation of model
compression with an application in robotics. We demonstrate
that a system with a significantly reduced model capacity
can provide good enough depths to improve accuracy of
a standard monocular SLAM system, and disambiguate the
scale without calibration. Additionally we show these com-
pressed models can be taken well into the realms of real-
time performance on low-power hardware without sacrificing
much performance. This shows our approach to model com-
pression should be considered a valid way to create real-time
robotics applications that integrate machine learning. Further
work could include improving the overall depth estimates
by using an additional refinement network, and perhaps
extending this system to provide estimated relative poses
from multiple frames in real-time allowing further integration
into the SLAM pipeline.

VI. ACKNOWLEDGEMENTS

This work was supported by the Australian Research
Council Centre of Excellence for Robotic Vision (project
number CE14010006).

REFERENCES

[1] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor Segmenta-
tion and Support Inference from RGBD Images,” pp. 1–14.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[3] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 4700–4708.

[4] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a
single image using a multi-scale deep network,” in Advances in neural
information processing systems, 2014, pp. 2366–2374.

[5] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM
system for monocular, stereo and RGB-D cameras,” IEEE Transac-
tions on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[7] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431–3440.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026–1034.

[9] D. Eigen and R. Fergus, “Predicting depth, surface normals and se-
mantic labels with a common multi-scale convolutional architecture,”
in Proceedings of the IEEE International Conference on Computer
Vision, 2015, pp. 2650–2658.

[10] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab,
“Deeper depth prediction with fully convolutional residual networks,”
in 3D Vision (3DV), 2016 Fourth International Conference on. IEEE,
2016, pp. 239–248.

[11] R. Garg, V. K. BG, G. Carneiro, and I. Reid, “Unsupervised cnn for
single view depth estimation: Geometry to the rescue,” in European
Conference on Computer Vision. Springer, 2016, pp. 740–756.

[12] A. Bansal, B. Russell, and A. Gupta, “Marr revisited: 2d-3d alignment
via surface normal prediction,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016, pp. 5965–5974.

[13] T. Dharmasiri, A. Spek, and T. Drummond, “Joint prediction of depths,
normals and surface curvature from rgb images using cnns,” arXiv
preprint arXiv:1706.07593, 2017.

[14] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monoc-
ular depth estimation with left-right consistency.”

[15] K. Tateno, F. Tombari, I. Laina, and N. Navab, “Cnn-slam: Real-time
dense monocular slam with learned depth prediction,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 6243–6252.

[16] D. Martins, K. van Hecke, and G. de Croon, “Fusion of stereo and
still monocular depth estimates in a self-supervised learning context,”
arXiv preprint arXiv:1803.07512, 2018.

[17] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,” arXiv
preprint arXiv:1704.04861, 2017.

[18] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, “Icnet for real-time
semantic segmentation on high-resolution images,” arXiv preprint
arXiv:1704.08545, 2017.

[19] L. Deng, M. Yang, H. Li, T. Li, B. Hu, and C. Wang, “Restricted
deformable convolution based road scene semantic segmentation using
surround view cameras,” arXiv preprint arXiv:1801.00708, 2018.

[20] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, 2015.

[21] C. Bucilu, R. Caruana, and A. Niculescu-Mizil, “Model compression,”
in Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2006, pp. 535–541.

[22] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[23] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of rgb-d slam systems,” in Proc. of the
International Conference on Intelligent Robot Systems (IROS), Oct.
2012.

[24] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet: A
deep neural network architecture for real-time semantic segmentation,”
arXiv preprint arXiv:1606.02147, 2016.

[25] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo, “Erfnet: Effi-
cient residual factorized convnet for real-time semantic segmentation,”
IEEE Transactions on Intelligent Transportation Systems, vol. 19,
no. 1, pp. 263–272, 2018.

[26] NVIDIA. (2018) Nvidia tensorrt - programmable inference accelerator.
[Online]. Available: https://developer.nvidia.com/tensorrt

[27] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” arXiv preprint arXiv:1511.07122, 2015.

[28] Y. Kuznietsov, J. Stückler, and B. Leibe, “Semi-supervised deep
learning for monocular depth map prediction.”

[29] T. Dharmasiri, A. Spek, and T. Drummond, “Eng: End-to-end neural
geometry for robust depth and pose estimation using cnns,” arXiv
preprint arXiv:1807.05705, 2018.

[30] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” International Journal of Robotics Research (IJRR),
2013.

[31] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[32] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large-
scale machine learning on heterogeneous distributed systems,” arXiv
preprint arXiv:1603.04467, 2016.

[33] F. Liu, C. Shen, and G. Lin, “Deep convolutional neural fields for
depth estimation from a single image,” in Proceedings of the IEEE
CVPR, 2015, pp. 5162–5170.

[34] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised
learning of depth and ego-motion from video,” in CVPR, vol. 2, no. 6,
2017, p. 7.

[35] H. Hirschmuller, “Stereo processing by semiglobal matching and
mutual information,” IEEE Transactions on pattern analysis and
machine intelligence, vol. 30, no. 2, pp. 328–341, 2008.

[36] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a
versatile and accurate monocular slam system,” IEEE Transactions
on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

