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Abstract— We describe a novel approach to image based
localisation in urban environments using semantic matching
between images and a 2-D map. It contrasts with the vast
majority of existing approaches which use image to image
database matching. We use highly compact binary descrip-
tors to represent semantic features at locations, significantly
increasing scalability compared with existing methods and
having the potential for greater invariance to variable imaging
conditions. The approach is also more akin to human map
reading, making it more suited to human-system interaction.
The binary descriptors indicate the presence or not of semantic
features relating to buildings and road junctions in discrete
viewing directions. We use CNN classifiers to detect the features
in images and match descriptor estimates with a database
of location tagged descriptors derived from the 2-D map.
In isolation, the descriptors are not sufficiently discrimina-
tive, but when concatenated sequentially along a route, their
combination becomes highly distinctive and allows localisation
even when using non-perfect classifiers. Performance is further
improved by taking into account left or right turns over a route.
Experimental results obtained using Google StreetView and
OpenStreetMap data show that the approach has considerable
potential, achieving localisation accuracy of around 85% using
routes corresponding to approximately 200 meters.

I. INTRODUCTION

Image based localisation and place recognition have been
looked at extensively as an alternative to infrastructure
dependent sensing such as GPS, especially when operating
in urban environments. The vast majority of systems adopt
an image to image database matching approach, in which
environment images are matched to a database of location
tagged images [1]. Although these have demonstrated im-
pressive performance, they are also limited in three key
respects. The first is scalability - localisation is dependent on
having a very large database of images or image features and
thus scaling to very large areas is problematic. The second
relates to invariance - matching is impacted significantly by
variable imaging conditions and so maintaining performance
at all times over extended periods is challenging. Finally,
such schemes do not align well with how it is believed
that humans perceive and undertake location-based activities,
which are thought to be based on some form of 2-D map
representation [2], [3], [4], and thus these approaches do not
lend themselves naturally to human-system interaction.

Motivated by the above, we consider an alternative ap-
proach using image to 2-D map matching, in which we link
images to semantic features on a 2-D map of an environment
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Fig. 1. Binary semantic descriptors (BSDs). 4-bit binary descriptors are
used to represent locations indicating the presence or not of semantic
features in 4 directions (front/back facing - junctions; left/right facing -
gaps between buildings). These are derived from a 2-D map and compared
bitwise with descriptors estimated via classifiers from images captured in
the same directions to establish localisation w.r.t the map. On their own the
descriptors are not sufficiently distinctive, but when combined sequentially
along routes as shown in Figure 2, then localisation becomes possible.

to give localisation. We therefore move away from matching
images and instead match semantic information. This is
akin to human map reading, in which a person relates the
surrounding visual appearance of an environment to the
semantic information they can perceive on a map, such
as buildings, road layout, etc. This renders the approach
better suited to human-system interaction. Moreover, the
abstraction and compression provided by semantic descrip-
tion also gives potential for significant gains in scalability
- our semantic descriptors are many orders of magnitude
smaller than images or sets of image features - and improved
invariance to variable imaging conditions, since via training,
the detection of semantic features in images can be made
less dependent on specific appearance.

In this paper we present preliminary investigations into
the approach. Our central idea is to characterise locations
by a small number of semantic features relating to road
junctions, buildings, etc, and then represent each location by
a binary semantic descriptor (BSD), with each bit indicating
the presence or not of a given feature in a given viewing
direction. This gives a very compact representation (we use
4-bit descriptors in this work) and so increases scalability.
We design classifiers to recognise the features in images,
allowing us to estimate the descriptors and hence in principle
recognise locations by comparison with a database of loca-
tion tagged descriptors derived directly from the 2-D map.
The approach is illustrated in Figure 1.
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However, due to their simplicity, the above descriptors
are not sufficiently discriminative on their own; there are
many locations having the same descriptors and when cou-
pled with non-perfect classifiers, localisation is not possible.
Nevertheless, when the descriptors are concatenated sequen-
tially, then the resulting route descriptors do become highly
distinctive, to the extent that localisation is possible despite
non-perfect classifiers. In essence, the pattern of semantic
features observed along a route become unique providing the
route is sufficiently long (in the experiments reported below
we achieved localisation after approximately 200 meters).
Moreover, when the direction of travel between locations
along a route is also taken into account, e.g. left and right
turns, performance is further improved. This routes based
approach is illustrated in Figure 2. Note that it is feasible
because of the compact nature of the map representation, i.e.
a small number of bits per location, and is something that
would be difficult to achieve using the comparatively large
representations used in image to image database matching.

In this paper, we present an implementation using Google
StreetView (GSV) and OpenStreetMap1 (OSM) data, with
the latter providing vector maps and the former giving
360 degree images at regular locations along roads. We
used road junctions and gaps between buildings as our
semantic features, assuming the former to be present or
not in front and back facing views, and the latter to be
present or not in left and right facing views. This gives us
4-bit descriptors for each location. We trained convolutional
neural network (CNN) classifiers to recognise the features in
images, achieving accuracy of around 75%. In experiments
on an area of around 2.5 km2, we achieved localisation
accuracy in excess of 85% when using routes consisting
of 20 or more locations, corresponding to distances of
approximately 200 meters. Although initial localisation is
delayed as the route evolves, once bootstrapped to the correct
location, the method successfully tracks the route at the
same rate as location images are captured and achieves this
using a significantly smaller database than required in image
to image database matching. The results suggest that the
method has considerable potential.

II. RELATED WORK

Approaches to image based localisation and place recog-
nition have almost exclusively focused on image to image
database matching, in which environments are represented
by sets of location tagged images or image features [1].
The key concerns in such methods are the invariance of
representations to changes in viewpoint and changes in
appearance caused by different lighting and weather condi-
tions. For example, the FAB-MAP algorithms [5] use image
features with a degree of viewpoint invariance to give large-
scale matching over long routes of up to 1000 km, whilst
other methods have sought to deal with changing appearance
either through invariant representations [6], storing multiple
representations [7] or learning models of appearance change

1www.openstreetmap.org
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Fig. 2. Route based localisation. (a) Images captured in four directions
(front, back, left and right facing) at locations along a route are converted
to BSDs using binary classifiers (b) and concatenated to produce route
descriptors (c). These are compared bit-wise (d) with a database of ground-
truth BSDs (e) derived from the 2-D map to determine the closest matching
route. Routes are then compared in terms of their turn patterns (f) to give
a final ranking of possible locations of the images w.r.t the 2-D map (g).

[8]. More recent work has looked at leveraging the power
of deep learning methods to gain improved matching [9],
[10]. However, in all cases, large scale localisation requires
large scale memory requirements, in the order of hundreds
of gigabytes [5].

In contrast, although there is a body of work which has
looked at using computer vision to extract navigation features
from paper maps, see e.g. the survey in [11], there has been
very little work on linking maps to images for localisation
as described in this paper. There has been some work on
utilising semantic information in the form of identifying
key landmarks and objects in images, such as buildings,
traffic lights, bollards, etc, and using these to represent
locations, see e.g. [12], [13]. These approaches have the
potential to provide good invariance, including with ultra-
wide viewpoint changes [12], and reduced representational
size, but to date they have been limited in scale and not
linked to map information. Closer in spirit to our work in
terms of alignment with human wayfinding is the PhotoMap
application described in [14] and [15]. Images of ‘You are
here’ public maps are geo-referenced with online maps by
hand to provide specialised local data alongside navigation
information on mobile devices, recognising the value of
pictorial map data for human spatial cognition.

There has been some recent work on estimating 6-D
camera pose using a combination of GPS, images and map
data in urban environments as described in [16], [17], [18],
[19], [20]. The methods described use building edges and
planar facades extracted from images to align with 2-D and
2.5-D maps geo-localised using GPS and so give improved
estimates of camera position and orientation. However, these
methods focus on obtaining precise metric estimates of
camera pose for applications such Augmented Reality [18]
based on clear views of building facades. As such they would
be difficult to extend to general localisation.

The closest work to that presented here is that described
by Seff and Xiao [21]. In a similar manner to our detectors
described below, they use a CNN approach to recognise se-
mantic features in images of urban settings, such as junctions,



number of lanes, drivability, bike lanes, one-way vs two-way,
etc. The network training is based on ground-truth features
obtained from OSM and images from GSV, in much the
same manner as in our approach. However, their focus is on
using the outputs of the classifier to validate map locations
provided by GPS for self-driving car applications, rather than
for general localisation. In addition, they consider locations
in isolation, in contrast to our use of route information.

Given the above and to the best of our knowledge, we
therefore believe that the approach presented here is the first
of its kind in terms of systematically linking 2-D map data
with images for position localisation over large areas.

III. OVERVIEW

The main components of the approach are illustrated in
Figure 2. From a 2-D vector map, i.e. OSM, we generate
binary semantic descriptors (BSDs) for locations spaced at
regular intervals along roads in an urban environment. Each
descriptor consists of 4 bits, with each bit indicating the
presence or not of a semantic feature in a given viewing
direction. We used four directions - front, back, left and right
facing - and two feature types - junctions and gaps between
buildings. The latter were chosen since they are easily
identified in the vector map and as described below, they
can be reliably detected in images using trained classifiers.

A database of location tagged route descriptors is then
created by computing all possible routes within the area of
interest up to a certain length in terms of the number of ad-
jacent locations and then concatenating the set of associated
BSDs as indicated in Figure 2d, where the circular discs
represent the BSDs and the black/white segments indicate
individual bits. Note that each route descriptor is then of
length 4Nr bits, where Nr is the number of locations in the
route. Thus, although the number of possible routes can be
very large, the route database has a small memory footprint.
For example, in the experiments described below, for an area
of approximately 2.5 km2, the number of possible routes
containing 40 locations (each approximately 400 meters
long represented by a 160-bit route descriptor) is just under
40× 106. The route descriptor database is then around 800
MB in raw form, i.e. prior to any compression, which would
be possible due to significant overlap between routes. This
contrasts, for example, with the 177 GB reported in [5]
required for image features to represent a single 1000 km
route, i.e. equivalent to 71 MB for a single 400 meter route.

Localisation w.r.t the map then proceeds as follows. Im-
ages in the four viewing directions are captured at a location,
i.e. within GSV in our case. Each image is then fed to
a binary classifier, which detects the presence or not of a
semantic feature, i.e. a junction for the front and back facing
views and a gap between buildings for the left and right
facing views. This gives a 4-bit BSD as illustrated in Figure
1, with each bit indicating the presence or not of the feature
in each viewing direction.

The above BSD could be compared with those for all
locations in the 2-D map to give localisation, but as noted
earlier, their simplicity means that they are not sufficiently

distinctive, with many locations having the same descriptor.
Instead, as shown in in Figure 2a-c, we concatenate BSDs
as the ’user’ moves along a route in the environment, cap-
turing images and generating descriptors at regular intervals,
creating a route descriptor. In our case, we have a virtual
user moving in GSV and generate BSDs at each successive
GSV location (approximately every 10 meters). At each
location, the current route descriptor is then used to query the
database, with Hamming distances used to provide a ranked
list of likely locations, as illustrated in Figure 2d-g.

To add further discrimination, we also compare the turn
patterns - the position of left or right turns in a route -
associated with the query and database routes, requiring that
these are identical for a valid match. The motivation here
is that direction changes of, for example, an autonomous
vehicle can be detected reliably and hence can be used to
eliminate spurious matches between route descriptors. The
database route having the lowest Hamming distance w.r.t the
query route and also the same turn pattern then provides the
location estimate.

In the following sections, we provide details of the BSD
generation, the design and training of the binary classifiers,
the generation and comparison of the turn patterns and a
probabilistic interpretation of the approach. Section VIII
provides details of the GSV/OSM experiments and results
and we conclude with a brief discussion of future work.

IV. BINARY SEMANTIC DESCRIPTORS

We denote the finite set of locations in an area of interest
by L = {l1, l2, . . . , lN}, where N is the total number of
locations. Associated with each location li is a BSD, which
we denote by the binary string di, with dij denoting the
jth bit, and define D = {d1, d2, . . . , dN} as the set of all
descriptors. In this work, j ∈ {1, 2, 3, 4} and each bit of
a BSD denotes the presence or not of a junction or a gap
between buildings in one of four viewing directions centred
on location i. These are derived from the vector map as
follows

dij =

{
JUNC(Vij) if j ∈ {1, 2}
BGAP (Vij) if j ∈ {3, 4} (1)

where (Vi1,Vi2) and (Vi3,Vi4) denote the (front,back) and
(left,right) viewing directions at location i, respectively. The
functions JUNC(Vij) and BGAP (Vij) return 1 if there
exists a junction or a gap between buildings, respectively,
in direction Vij , and 0 otherwise. As illustrated in Figure 3,
a feature is deemed to be present in a viewing direction if
one lies within the relevant quadrant of a circle of a given
radius centred on the location of interest, where the front
and back viewing directions are aligned with that of the road
upon which the location sits. In the experiments we set the
viewing distance radius to be 30m, which is similar to that
used in [21].

For localisation we need to estimate a BSD for a location
from images captured in each of the four viewing directions.
We do this using binary classifiers, trained to detect the
presence or not of the relevant semantic feature. Given image
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Fig. 3. Generation of a BSD from the vector map.

Iij at location i in viewing direction Vij , the estimated BSD
is given by

d̂ij =

{
DETECTJUNC(Iij) if j ∈ {1, 2}
DETECTBGAP (Iij) if j ∈ {3, 4} (2)

where DETECTJUNC(Iij) and DETECTBGAP (Iij) re-
turn 1 if a junction or a gap, respectively, are detected
in image Iij , and 0 otherwise, i.e. they mirror the BSD
generation functions in Equation 1.

We use a CNN approach to design the binary classifiers
DETECTJUNC and DETECTBGAP . For training data,
we make use of the correspondence between the vector maps
in OSM and the images in GSV in a similar manner to
that used in [21]. For each feature type - junctions and
gaps between buildings - we collect positive samples by
identifying the locations of the relevant features in OSM and
storing the images from the corresponding locations (based
on latitude and longitude) and relevant viewing directions
from GSV, ensuring that we get a uniform mix of viewing
scenarios. For example, in the case of junctions, we use front
and back facing images aligned with the road and ensure that
we have examples that cover the range of distances from the
junction up to the viewing radius used in the generation of
the BSDs. The training set is then completed by collecting
approximately the same of number of negative samples in
the corresponding viewing directions but not containing the
feature of interest. In the experiments, we used a training
sets consisting of 440,000 images per classifier taken from
220,000 locations in 23 different cities in the UK. None of
these locations were used for evaluating the classifiers or in
the localisation experiments.

We implemented the classifiers by using our training
dataset to fine-tune an off-the-shelf pre-trained CNN. Specif-
ically, we started from the pre-trained Places205-AlexNet
model [22], designed for scene classification in urban en-
vironments, which aligns with our application, and derived
from the pre-trained AlexNet model [23].We used colour
images cropped from GSV panoramas in the required view-
ing direction corresponding to a 90◦ horizontal field of view
and resized to 227 × 227 pixels. The latter results in some
distortion but given that we used the same process for both
training and testing, this was not deemed to be an issue.
Examples of positive and negative images from the training
dataset are shown in Figure 4. We tested performance of each
classifier using two test sets of 8000 images taken from the
same 23 cities but at locations not within the training set and
with an equal number of positives and negatives samples, i.e.
feature present and not present.

(a) (b)
Fig. 4. Examples of positive (feature present) and negative (feature not
present) images from the training datasets used for the semantic classifiers:
(a) junction (top) and no junction (bottom); (b) gap (top) and no gap
(bottom).

(a) (b)
Fig. 5. Examples of semantic classifications: (a) true positives (top) and
true negatives (bottom); (b) false positives (top) and false negatives (bottom).
In both (a) and (b) examples are arranged as: junction (top-left); gap (top-
right); no junction (bottom-left); no gap (bottom-right).

Both classifiers gave good balanced performance in de-
tecting the presence and non-presence of junctions and gaps,
with precision and recall values of 0.75 ± 0.02 on the test
set. Examples of correct classifications (true positives and
true negatives) and incorrect classifications (false positives
and false negatives) are shown in Figure 5. Note that the
latter illustrate the difficulty of the task. For example, the
bottom left view in Figure 5b contains a junction which
is significantly obscured and was incorrectly classified as
containing no junction, whilst the 2-D map indicates that
the bottom right view should contain a gap, but the site
appears to be under redevelopment and has been incorrectly
classified as not containing a gap. The latter is an example
of inaccuracies within the OSM data.

V. ROUTE DESCRIPTORS AND TURN PATTERNS

As noted earlier and as we demonstrate later, on their own
the above binary descriptors are not sufficiently discrimina-
tive to identify a location uniquely and allow localisation.
This is true even if we were able to design perfect classifiers
for extracting the descriptors from images. The simplicity of
the representation, whilst being extremely compact, means
that there are many locations with similar descriptors. We
address this ambiguity in two ways. First, we concatenate
descriptors along routes corresponding to adjacent locations,
constructing route descriptors, which prove to be highly
discriminative once the routes reach a certain length. Once
this length is reached, then localisation can proceed at the
rate that new locations are visited, i.e. enabling tracking, by



matching with a database of all possible route descriptors
constructed offline. Secondly, we introduce further disam-
biguation by incorporating turn patterns observed along
routes into the representation, i.e. the sequence no turn and
turn (left or right) at each location along a route, and using
these to identify the most likely match within the database.

Let A be an N ×N adjacency matrix, such that Aij = 1
if locations li and lj are adjacent, and Aij = 0 otherwise.
Locations are regarded as adjacent if on the 2-D map they
are connected by a road and there are no other locations
between them. A route is then defined as a finite sequence of
adjacent locations, i.e. the route r = (lγ(1), lγ(2), . . . , lγ(Nr))
is of length Nr, where γ(i) defines a sequence of adjacent
locations such that Aγ(i)γ(i+1) = 1, ∀ 1 ≤ i < Nr. For
simplicity we have restricted ourselves to routes that do not
loop or turn back on themselves, i.e. γ(i) 6= γ(j), ∀ i 6= j,
1 ≤ i, j ≤ Nr, but the method could be readily extended to
deal with such cases. We define RM as the set of all such
routes up to length M defined amongst all the locations in L.
Associated with each route is a route descriptor, consisting
of the sequence of BSDs corresponding to the locations along
the route, i.e. s = (dγ(1), dγ(2), . . . , dγ(Nr)), and we define
SM as the set of all route descriptors corresponding to the
routes in RM .

To incorporate turn information into the representation, we
define a binary turn pattern t = (tγ(1), tγ(2), . . . , tγ(Nr−1))
associated with a route r. The ith bit of t indicates whether
a left and right turn is present between locations lγ(i)
and lγ(i+1), i.e. tγ(i) = TURN(θγ(i), θγ(i+1)), where θγ(i)
denotes the front facing direction at location lγ(i) and

TURN(θi, θj) =

{
1 if bθi − θjc ≥ τ
0 otherwise (3)

where bθi − θjc denotes the absolute value of the smallest
angle between θi and θj , and τ is an angle threshold, which
we set to be 60◦ to ensure that we only include significant
turns. Thus t represents the sequence of turns that take place
along a route. We define TM to be the set of such turn
patterns corresponding to the routes in RM .

VI. LOCALISATION AND BOOTSTRAPPING

Consider an autonomous system making its way through
an urban environment, moving between locations in L along
a specific route of length < M . At any given location, our
goal is to identify its current location by recognising the
route taken to date, consisting of the current location plus
the previous Nr−1 locations, say. We do this by comparing
its estimated route descriptor ŝ (obtained by concatenating
the estimated BSDs at each location) with those in SNr

⊂
SM and its turn pattern t̂ with those in TNr ⊂ TM , hence
determining the most likely route from those in RNr ⊂ RM .

It is important to note that in this work we assume that
there is a one-to-one correspondence between the locations
in our 2-D map and the locations in the environment. This
enables us to do a direct comparison between estimated route
descriptors and those in the database. When using GSV and
OSM data this can be ensured by selecting OSM locations

corresponding to the known locations in GSV. In a practical
system, we would need a method of forming such one-to-
one correspondence or alternatively, a means overcoming the
lack of it. We discuss this further in Section IX.

We define the most likely route r∗ ∈ RNr
as being the

route whose route descriptor s∗ is closest to ŝ and whose
turn pattern t∗ matches t̂, i.e. such that

s∗ = argmin
s∈SNr

DIST (s, ŝ) (4)

and

DIST (t∗, t̂) = 0 (5)

where DIST (a, b) denotes the Hamming distance between
two binary strings a and b. For long routes (Nr > 20, say) the
number of elements in SNr becomes very large (> 500×103,
rising to near 40 × 106 for Nr = 40), and thus we use an
efficient pattern matching algorithm based on a BK-tree [24]
to find the closest route descriptor in Equation (4).

Note from the above that we assume that the turn pattern
for the query route is correct, but allow errors in the estimate
of the route descriptor due to the non-perfect classifiers used
in the semantic feature detectors. Our motivation for the
former is that in practice detecting significant left or right
turns by an autonomous system can be achieved reliably and
thus requiring an exact match is reasonable. Note, however,
that as we show later, turn patterns alone are not sufficient
to achieve localisation, as many routes share the same turn
pattern, and it is their combination with route descriptors that
gives the required level of distinctiveness.

The above provides an indication of the most likely loca-
tion given the current route. However it gives no indication
as to the confidence in the estimate. There are a number
of possibilities for this, including basing it on the distance
between s∗ and ŝ and/or the distance of s∗ from the second
best matching route descriptor. We found that a consistency
metric proved to be most effective, in which we deem a route
to be localised if there is sufficient overlap between the most
likely routes r∗ for a number of successive locations. We set
the overlap to be 80% of the locations need to be the same
and we required this to occur for 5 successive locations. In
essence, if successive query routes are matching with routes
that have significant overlap then it is a good indicator that
successful localisation has been achieved.

We also demonstrate later that once the above consistency
criterion has been met, the query route length can be fixed
and localisation proceed by successively updating the query
route by appending the latest BSD onto the end and removing
the first descriptor. Thus, the phase during which the query
route grows can be regarded as a bootstrapping process,
during which the route descriptor extends until it becomes
sufficiently distinct to allow localisation. Once complete,
then continuous tracking can take place using the fixed length
query at the same rate as the BSD are created at successive
locations. An example of bootstrapping and tracking is
shown in the video submitted as supplementary material.



VII. PROBABILISTIC FORMULATION
The above localisation process can also be considered in

probabilistic terms. Given an estimated BSD d̂ obtained at a
single location l, say, then the conditional probability that l
corresponds to li ∈ L can be written as

P (li|d̂) = P (li|di)P (di|d̂) ∝ P (li|di)P (d̂|di) (6)

where we assume that all descriptors di are equally likely.
Note that the term P (li|di) expresses the uniqueness of the
ground-truth descriptor di derived from the 2-D map. Since
our descriptors are only 4-bits long, then for a large number
of locations, e.g. 6000 in the experiments, P (li|di) << 1,
indicating that many locations have the same descriptors and
hence localisation is not possible. Given that we have an
estimate of the accuracy of our classifiers and hence the
detectors DETECTJUNC and DETECTBGAP , we can
approximate the likelihood P (d̂|di) in terms of the Hamming
distance h between di and d̂, i.e.

P (d̂|di) ∝ q4−h(1− q)h (7)

where q is the probability of correctly detecting the presence
or not of both junctions and gaps (we assume the same value
for both probabilities for simplicity, but as noted in Section
IV, we also observed similar values in practice of ≈ 0.75).

Extending the above to routes, we obtain the following
conditional probability that the route descriptor estimate ŝ =
(d̂1, d̂2, . . . , d̂Nr

) corresponds to route r ∈ RNr

P (r|ŝ) = P (r|s)P (s|ŝ) = P (r|s)P (ŝ|s) (8)

Hence from Equations (6) and (7) and assuming indepen-
dence between descriptors

P (r|ŝ) ∝ P (r|s)
Nr∏
i=1

P (d̂i|dγ(i)) (9)

∝ P (r|s)q4Nr−H(1− q)H (10)

where H denotes the Hamming distance between s and ŝ.
Here, P (r|s) expresses the uniqueness of the route descriptor
s, which as we demonstrate later is high for a sufficiently
long routes and thus P (r|s)→ 1, giving

P (r|ŝ) ∝ q4Nr−H(1− q)H (11)

Using this expression we can obtain an estimate of the
likelihood ratio of one route ri over another rj for a given ŝ

P (ri|ŝ)
P (rj |ŝ)

=
(1− q)Hi−Hj

qHi−Hj
(12)

where Hi is the Hamming distance between si and ŝ. Hence
for q = 0.75, this gives a likelihood ratio of 1/3δ for
a difference δ in Hamming distance from the estimated
route descriptor, which is significant. For example, a route
whose descriptor is δ bits closer in Hamming distance to the
estimated descriptor, is 3δ times more likely to be the correct
route. Thus, as we demonstrate in the next section, even with
a detector accuracy of only 75% for individual BSDs, the
concatenation of descriptors along routes can lead to a high
degree of distinctiveness for long enough routes.
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Fig. 6. Histogram showing the distribution of 4-bit ground-truth (blue) and
estimated (red) BSDs obtained from OSM and GSV images, respectively.

VIII. EXPERIMENTS

We evaluated the performance of the method using GSV
and OSM data for a 2.5 km2 region of London. None of the
locations within the region were used to train the semantic
classifiers. The region consisted of 6656 GSV locations and
from each location we gathered images corresponding to the
four viewing directions, from which we estimated 4-bit BSDs
using the classifiers described in Section IV.

To illustrate the distribution of descriptors across the
region and the performance of the classifiers, Figure 6 shows
the histogram of 4-bit ground-truth descriptors (obtained
from OSM, shown in blue) and estimated descriptors, shown
in red, where the horizontal axis corresponds to the 16
possible 4-bit patterns. The predominance of BSDs with
pattern ‘0000’ corresponding to locations in which there
is neither gaps between buildings to the left or right, nor
junctions towards the front or back, results from the fact that
many locations between junctions have these characteristics
as can be seen from the 2-D map of the area shown in Figure
11. Note that the distribution of the estimated descriptors is
close to that of the ground-truth due to the accuracy of the
classifiers, i.e. approximately 75%.

To assess the performance of the route based localisation,
we considered route lengths up to a maximum of M = 40
locations. We tested the method using 150 test routes and
for each we recorded the route length at which localisation
was achieved according to the consistency criterion, i.e. 5
successive consistent localisations. The results are shown in
Figure 7, which shows the percentage of routes that were
correctly localised within route lengths of 0-5, 0-10, ..., 0-
40 locations. We have shown the results for three methods
of matching routes: using only turn patterns (grey); using
only route BSDs (yellow); and using both BSDs and turn
patterns (blue). Note that the latter outperforms the others by
a significant margin and that BSDs alone also significantly
outperform turn patterns, which only manage to localise <
10% of routes even with a route length of 40 locations. This
clearly demonstrates the potential of the BSD approach. Note
in particular that over 85% of routes are correctly localised
even when only using routes consisting of up to 20 locations,
which corresponds to approximately 200 meters in GSV.

It is also interesting to consider the significance of the
classifier accuracy. Given that we know the ground-truth
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BSDs, we investigated using BSDs ’estimated’ using classi-
fiers with different accuracy (we assumed the same accuracy
for both detecting the presence or not of junction and
gaps). A plot of the percentage of correctly localised routes
versus the accuracy of the classifiers is shown in Figure
8 for the different route length ranges used in Figure 7.
Thus that at 75% accuracy, which we obtained from our
trained classifiers, over 85% of routes are predicted to be
correctly localised within 0-20 locations, which agrees with
our findings in Figure 7. Note also that if classifier accuracy
were increased to beyond 80%, then 80-90% of routes could
be correctly localised using < 15 locations, which again
illustrates the potential of the BSD approach.

Examples of estimated BSDs, their corresponding images
in the four viewing directions and the ground-truth BSDs
from OSM for part of a route are shown in Figure 9. Note the
deviation of the BSD estimates from the ground-truth, which
results from the inaccuracy of the classifiers. The challenging
nature of the detection task can be seen from the images.
This confirms the utility of concatenating BSDs along a route
in order to gain uniqueness and hence enable localisation.
Figure 10 further illustrates this, which shows the distribution
of Hamming distances from descriptors in the database for a
given test (query) route at lengths of 15 (left) and 30 (right)
locations, with and without using turn patterns (bottom and
top, respectively). The correct matches for lengths 15 and 30
have Hamming distances of 15 and 26, respectively. When
the test route length is 15 locations, the correct route is not
the closest (there are other Hamming distances with values

Fig. 9. Examples of BSD ground-truths, from OSM, and BSD estimates,
from the classification of the GSV images in four directions as shown.

With Turn

Without Turn

(a) (b)

Fig. 10. Histograms of Hamming distances between a test route descriptor
and those in the database for route lengths of 15 (left) and 30 (right)
locations, with (bottom) and without (top) using turn patterns.

< 15), although using turns (bottom) significantly reduces
the number of routes close to the query route (note that the
vertical axes in Figure 10 have significantly different ranges).
With 30 locations and without using turns, the correct route
does become equal closest with 18 others and there are a
significant number of others close by. In contrast, using turn
patterns with 30 locations drastically reduces the number of
candidate routes and the correct route becomes the closest
by a Hamming distance margin of over 20.

To illustrate the localisation process, Figure 11 shows
snapshots of the localisation of a test route at route lengths
of 2 and 24 locations. It shows the OSM 2-D map and
the locations are indicated by coloured squares along roads,
where the colour indicates the closeness between their route
descriptor and that of the test route (where locations share
routes, then the closest descriptor difference is shown).
The latest location along the test route is indicated by
the orange/red circle, where orange indicates that the route
has yet to be correctly and consistently localised, and red
indicates that localisation has been achieved. The BSDs,



Fig. 11. Snapshots of the localisation process for test route lengths of 2
(top) and 24 locations (bottom). See text for explanation.

estimated and ground-truths, along with their images, are
shown below the 2-D maps. Note that the bottom row of
images show the views at the closest (best) match locations,
but are not used in the matching process. With route length
of 2, the majority of locations have a low likelihood of
being correct (dark blue), whilst a small number of disparate
locations have a high likelihood (dark red). This reflects the
lack of distinctiveness of two 4-bit BSDs. In contrast, once
24 locations are reached, the route has been successfully
localised and the vast majority of other locations/routes have
been eliminated (their squares are not shown), reflecting the
confidence of the localisation. A video showing the complete
process has been submitted as supplementary material.

IX. CONCLUSIONS

We have presented a novel approach to position localisa-
tion in urban areas and to the best of our knowledge it is
the first example of linking 2-D maps to images over large
areas. The key contribution is the demonstration that compact
binary semantic descriptors concatenated over routes are
sufficiently distinctive to enable localisation and that the
representation is vastly smaller than that used in image to
image database approaches. Moreover, the use of simple
semantic classification offers the potential for invariance to
changing environment conditions, which is something that
we wish to demonstrate in future. In addition, the reported
work relies on an assumption of one-to-one correspondence
between map and image locations, achieved by using OSM
and GSV data, and this needs to be addressed for developing
a practical system, which we are in the process of doing.
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