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Abstract— Robust representation of actions and its sequences
for complex robotic tasks would transform robot’s understand-
ing to execute robotic tasks efficiently. The challenge is to under-
stand action sequences for highly unstructured environments
and to represent and construct action and action sequences.
In this manuscript, we present a review of literature dealing
with representation of action and action sequences for robot
task planning and execution. The methodological review was
conducted using Google Scholar and IEEE Xplore, searching
the specific keywords. This manuscript gives an overview
of current approaches for representing action sequences in
robotics. We propose a classification of different methodologies
used for action sequences representation and describe the most
important aspects of the reviewed publications. This review
allows the reader to understand several options that do exist in
the research community, to represent and deploy such action
representations in real robots.

I. INTRODUCTION

Robot actions are defined as controlling rules, explicit inverse
models, behaviours, routines, or policies that could help
doing robotic tasks to reach a specific goal [1]. In a short
time, robots are becoming competent in performing human
activities, e.g. surgery, cleaning, cooking and so forth in the
area of service robotics as well as in the industrial robotics
[2]. To perform different activities, robots need to execute
sequential or parallel action sequence to achieve a real-time
task planning, for example to do a “pick-and-place” task or
to assist in performing a “cleaning” task. Thereby, robust
representation of action sequences is of importance to design
efficient reasoning strategies for robot task planning and
execution.

In real-world scenarios, to accomplish a task goal, the
objects are perceived in the environment, the object specific
action is determined, and then is executed, where the action
sequence is specified in the robot planner [3]. There are often
several ways to execute an action sequence to achieve a
specific goal. During the sequential actions execution, the
first action should be executed successfully to execute the
second one. However, unexpected behaviour is often seen
with the robots during task execution, which characterizes
underlying deficiency of the planning systems to understand
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subtle differences between the actions [2]. Particularly in
industrial robotics, the planning system considers robot’s
current actions without its dependency on the previous or
next actions and environmental factors. It is often seen that
spatiotemporal actions are performed under very high degree
of uncertainties e.g. in the service robotics domain. Efficient
representation of actions or actions sequences is a bottleneck
for designing robust cognitive reasoning strategies and is of
special interest to artificial intelligence (AI) community.

Reviewing action sequences representation approaches
could be useful to researchers understanding possible ap-
proaches for action sequences representation for successful
execution of a complex robotic task and planning program
as well as achievement of minimal execution duration. In
recent years, robotic action sequences are represented using
different methodologies, for example using the logic-based
methods, knowledge representation techniques, to name a
few. This manuscript gives an overview of current approaches
for representing actions and its sequences concerning robotic
tasks.

II. LITERATURE REVIEW

The review collected the scientific papers which investi-
gate different approaches and methods for action sequences
representation for robotic task planning and execution. A
search of the literature was done using Google Scholar
and IEEE Xplore search engines. Different combinations of
keywords were used: “action sequences”, “knowledge repre-
sentation”, “logic”, “robot”, “natural language processing”,
“open-source frameworks”, “ROS”, “visual representation
languages”, and “robot planning”.

This section comprises six categories: Situation calculus;
Ontologies and other knowledge representation techniques;
Temporal and dynamic logic; Action sequences representa-
tion in planning languages; State Machines, Petri Nets, and
System Flow Charts; and in the last subsection we presented
other methodologies, that are also used for representation
of action and action sequences. Each subsection starts by
defining each category, the methods therein and examples of
application found in the literature. Table 1 summarizes the
approaches presented in this literature review, where we also
indicated the available ROS packages for each of them.

Situation calculus

In situational calculus [4][5], actions or change in the
situation either represent a change in the belief about the
world or beliefs about a changing state of the world in
the form of first-order logic, where the named “actions”



represent an entity, which changes. Another first order
term called “situation” is used to represent a sequence of
actions. In situational calculus, constant Sy represents the
“initial situation”, where actions have not occurred yet [4].
After the “initial situation”, an action sequence follows the
“situation” term in an order from right to left. “Actions” are
represented with functional symbols such as “put (A4, B)”
and “situations” are represented as first-order terms such as
“do(put (A, B), s)” which concludes a situation s during
the action “put”. Possible actions which could be executed
in the situation are represented by a binary predicate symbol
“Poss”. For example, a robot r can put the object x in
situation s only and only if the robot r is holding the object
z, is not heavy and is smaller than the table z, and the robot
r is located next to table z.

Poss (put(r, ), s) = [(Vz) holding (r, z, s)] A
—heavy(z) A smallerThan (z, z,s) A nextTo(r, z,s)

However, the above axiom is affected by a problem
called “Qualification problem” [6], where the axiom could
not infer a possibility to put the object on the table by a
robot. The latter could be solved by the non-monotonic
solutions e.g. “circumscription” [6]. The predicates whose
values become different from situation to situation is called
“fluents” [7][8]. To represent the world dynamics, “action
pre-condition” and “‘action effects” are represented. The
“action pre-condition” has to be true to execute the action
and “action effects” represent the “fluents” which change
because of the action. Such specification leads to the “frame
problem” [4], where inference engine needs to know which
fluents are unaffected by the particular action. The latter
creates a problem of combinatorial explosion, and system
needs to reason with all of such axioms. A possible solution
to this problem depends on the parsimonious representation
of action sequences and on the domain expert who specifies
the rules. It is important to specify the solution to frame
problem as it provides modularity and accuracy in the
presented knowledge. There are three main proposals to
solve the frame problem:

1) Pednault proposal [9]: This proposal provides a sys-
tematic mechanism for generating frame axioms from
effect axioms for deterministic actions. However, this
proposal misses the parsimonious presentation.

2) The David/Haas/Schubert proposal [10]: Explanation
closure axioms provide compact representation. While
Schuberts proposal argues that, it is impossible to solve
this problem. In closure axioms, the action theory
which contains the effects of actions can be manually
constrainted by adding closure axioms to theory.

3) Another option is to use successor state axioms [5]
where the domain expert enumerates possible effect
axioms, where fluents value can be changed.

Benefits of using situation calculus are that the primitive
actions can be represented efficiently. However, complex

actions, which depend on conditions, iterations and with
non-deterministic choice, could not be represented. The
“projection” task [11] defines a situation, where performing a
given sequence of actions would be true. The “legality” task
[4] follows the “projection” task and conforms if a condition
would hold after performing a sequence of actions, but not
whether that sequence can, in fact, be properly executed. The
researchers call the situation “legal” if it is an initial situation
or the results of performing an action whose preconditions
are satisfied starting in a legal situation, which is determined
by the “legality” task. Thus, situation calculus is an important
representation for designing discrete event scenarios with
high-level robot control.

Finzi et al. [12] have represented Temporal Flexible
Situation Calculus (TFSC) which is a declarative temporal
model. TFSC explicitly represents processes of the
robot system [13]. GOLOG (alGOl in LOGic) [14] is
an important programming language, where actions are
reduced to primitive actions which refer to actions in the
real world, like picking and moving the objects. Instead of
machine states, in GOLOG, the reasoning strategy employed
involving world states. Execution of the complex actions
require logical reasoning about how world changes. Over
the past years, GOLOG has been extended to be used in
realistic domains, especially in robotics such as concurrent
actions [15], time [16], continuous change [17], an explicit
knowledge representation [18], sensing [19] and stochastic
actions [20].

Ontologies and other knowledge representation techniques

With the evolution of knowledge-based systems, action
sequences are formalized using the separation of termi-
nology, called “TBox” from the logical assertions, called
“ABox” where real-world instances are specified in action
libraries [21]. Action libraries contain a set of actions that
are frequently used within a given domain. Tenorth et al.
[22] represented actions based on the logical inference steps,
which were implemented in Description Logic (DL) and Web
Ontology Language (OWL). Abstract structure for an action
in a task is specified using class restrictions in OWL. The
class abstraction and restrictions include objects references,
which are to be manipulated along with object locations.
Class restrictions were obtained from a comprehensive on-
tology, called “KnowRob” [23], which contains a taxonomy
of more than 130 actions commonly observed in everyday
activities.

In another work [24], three knowledge levels were de-
fined for a class called “action knowledge”, i.e. primitive
behaviour level, which includes motion as preconditions and
action effects as well as feature extraction algorithms for
perception; task level which defines long-term goals for the
symbolic preconditions and action effects; and the subtask
level, which defines functions. The authors have specified
“preActors” which perceives objects that an action uses as
inputs and “postActors” which are generated as its results.
The “preActors” includes the role of an object in determining



action, initial locations and states. The change in the state of
an object is specified as “objectOfStateChange”. Perceptual
actions can detect an object, and actions can substantially
change objects by transforming them into another one,
destroying or adjoining them with another one. In this work,
the robot uses effect axioms to predict the outcome of actions
as the resulting world state. Similarly, the ontology and
production rules have been used in [25] for the execution
planning in surgery based on the perceived instruments.
However, the task execution has not been done by the robots.
Kunze et al. [26] have introduced a concept of “Action
tree”. “Action tree” is a hierarchical tree, which consists of
sub-actions associated with dependencies on robots capabil-
ities and considers robots experience on performing some
action. The “Action tree” is specified in a semantic robot
description language (SRDL). The dictionary of primitive
actions (“DictAct”) [27] is defined with four attributes, e.g.
pre-condition, post-condition, input and results. In another
work of knowledge representation in action sequencing [28]
four levels of hierarchical structure was represented, i.e.
control primitive level, control skill level, skill level and task
level, where an action sequence is considered as a process.
With “RoboEarth” action language [29], the action recipes
consisting formal and grounded representation are stored in a
database called “Action recipe database”, and shared through
“RoboEarth”. However, these action recipes can only be
used to execute pre-programmed tasks, and lack flexibility if
applied in the dynamic environment because it cannot predict
the state of the environment as well as of the robot. The cost
of carrying out these action is also not specified so the action
recipes could not be optimized during the execution planning.
A hybrid formalism based on DL, called “NeoClassic” [30]
, is used to define actions as a sequence of a start instance
and an end instance on a process, where action sequences
are represented by the situations occurring concurrently, i.e.
with the preconditions and the effect of the actions.

Temporal and dynamic logic

Temporal and dynamic logic was used for translating the
robot instructions into action goals and action sequences
[31]. When applied together, temporal logic translates pro-
vided robot instructions into action goal, and then dynamic
logic is used to detect the action sequence, which used in
execution planning. Here, instead of translating instructions
into actions, the instructions are transformed into propo-
sitions and then an action sequence is derived. Recently,
Kress-Gazit et al. [32] have specified temporal logic of robot
actions for motion and task planning and for generating robot
controllers.

Action sequences representation in planning languages

Various action representations have been applied for the
execution planning in robotics. For example, STRIPS plan
language attempts to find a sequence of operators, which
proves the given goal. STRIPS is a declarative description of
actions, or operations, pre- and post-conditions, and effects,
where the description of the world are specified in first-order

predicate calculus [33]. An action applies to any state that
specifies the precondition. Otherwise, the action does not
affect. Results of executing an applicable action a in a state
', is same as s, where the action has started, except that any
positive literal P, in the effect of a, is added to s/, and any
negative literal =P is removed from s’. STRIPS only permits
positive literals and conjuctions. However, representation
with STRIPS was found to be insufficient to represent
real world action sequences and complex predicates. As
an advancement to STRIPS, Action Description Language
(ADL) was developed. ADL expressiveness lies between
STRIPS and situational calculus, which supports an open-
world assumption. Pednault [34] stated that STRIP could
be more expressive if effects of an operator is conditional.
The ADL is finally evolved to ADL-C which can represent
static and dynamic laws. Contrary to STRIPS, ADL also
allows negative literals and disjunctions. One of the first
autonomous mobile robots, “Shakey”, used symbolic repre-
sentations to determine action sequences that would achieve
its goal [35]. The symbolic representation allows dealing
with continuous belief state and the complex problems could
be handled efficiently. The Planning Domain Description
Language (PDDL) is used to describe this abstract symbolic
action, its goals, and states [36]. Hierarchical Task Network
(HTN) [37] decomposes action description into hierarchical
tasks which could correspond to STRIPS actions. HTN is
structured hierarchically from goals to the low-level com-
mands. To optimize the performance, an order of actions is
changed at different levels in the hierarchy. HTN modifies
itself to adapt to action sequences, where the planner is
integrated into the optimization process.

State Machines, Petri Nets, and System Flow Charts

Programming robots to perform the tasks, i.e. what the
robot should do, in unknown environments, is complex.
For simple systems and with a low autonomy level,
task scripting is enough. However, the programmer must
adequately ensure that the robot can evolve from failure
modes, e.g. a robot stop due to an obstacle. When an
increase of robot autonomy is needed, the robot must be
capable to plan, execute, re-plan the tasks that need to
be done. Task planning is the answer for the previous
issue, also allowing to scale for more complex scenarios.
ROS (Robot Operative System), as the standard choice for
development of robotic applications currently have a set of
functionality for task plan execution, e.g. SMACH (“State
MACHines”) [38] (that implements state machines) and
Petri Net Plans (PNP)-ROS [39] (that implements Petri
Nets). Other frameworks do exist as shown in Table 1, e.g.
the System Flow Chart (SFC) framework [40]. SMACH
is a python library that allow to design complex robot
tasks and can change the robot behaviour. It is based on
hierarchical state machines. In this work, the framework is
defined using “State” and “Container”. “State” defines the
current execution step and its outcomes, that will enable
further states. “Container” represents collections of one
or more robot states that implement the robot execution



policies. The main drawback of this functionality is that the
implementation is very code intensive and can be tricky to
develop very complex systems. PNP-ROS is in fact a bridge
between the PNP library and ROS, that enables execution
of PNP in ROS. PNP comprises basic structures, that can
represent the execution phases of actions needed to perform
a given task, e.g. “initiation”, “execution”, “termination”
and “transitions”. The latter are very important because it
represents the events that have conditions to control state
triggering. The PNP library contains an execution engine, a
tool to generate the plans “PNPgen”, and bridges to Nao and
Pepper robots, along the ROS bridge (PNP-ROS). “PNPgen”
is a tool that translates the output of some planning system
to PNP, e.g. from the “ROSPlan” framework, or Hierarchical
Agent-based Task Planner (HATP), or Markov Decision
Process (MDP) policies. To control the actions execution
and ROS topics, it uses the “actionlib” protocol, which is
also defined in ROS. The framework allows definition of the
execution rules: interrupts (conditions that can determine the
interruption of an action), recovery (how to recover from an
interrupt), social and/or ethical norms, parallel execution.
Simple example rules can be defined:

“If BatteryLow during RobotOperation
then Recharge; failed_plan”

“If PersonCloseToRobot during RobotM otion
then skip_action; WaitFor NoPersonCloseToRobot,;
RestartAction”

In [41], a 3-layered petri net model is proposed, which
comprises the environment, action executor, and finally the
action coordination layers. The environment layer represents
the environment discrete-state event-driven dynamics, that
results from the human robot actions and the physical en-
vironment. The action executor layer starts to represent the
actions, e.g. changes in the environment and the conditions
that they can occur. The action coordination layer is the one
where the task plans, composition of actions, are defined.
System Flow Chart (SFC) is a well-known visual program-
ming language for PLC’s, Programmable Controller. In [40]
and [42] present the developing stages of a knowledge-based
framework, to define and control the execution of tasks,
using SFC’s. Moreover, the system is capable, from high-
level tasks description, to develop the SFC’s, e.g. the robot
code to be executed (actions, sequence of actions and its
transitions).

Other representations

Motion description language (MDL) [43] provides a basis
for the control of robots using sets of behaviours or robotic
actions, timers, and events. MDL captures composition of
this behaviour, which is a reaction to environmental events.
“Maneuver automata” [44], which can be seen as a subset of
MDLs, use regular language expressions to solve the motion
task. Here, each string in the language maps to a possible
motion behaviour of the system. Each symbol specifies a

motion primitive that belongs to a library of necessary
motions. However, the problem with symbolic representation
is an incomplete knowledge representation, where the robot
action sequences are not generated. In [45], authors have
presented “action mode representation”. In “action mode
representation”, an action mode is considered as a unit of
behaviour. For example, for autonomous mobile robot use
case, a behaviour, i.e. robot moving to follow one motion, is
represented with many action modes and transitions between
them. “action mode representation” is useful, for defining
action pre-conditions, where it is used to represent sensor-
based behaviours. A hypergraph, i.e. AND/OR graphs [46]
were used to represent the action sequences. In AND/OR
graph, the nodes represent actions. Planning is done using
the tree search with the objective to reduce the number of
nodes in the representation. Recently, temporal AND/OR
graphs [47] have also been used to represent the action
sequences for a robot tasks, e.g. assembly planning. How-
ever, such graphs could not be represented automatically
which has limited application in real-time systems. There are
several studies [48] [49] [50] focusing on the learning action
sequences based on robot observations or demonstrations,
which overcomes the limitation of learning sequential as well
as concurrent actions. However, the representation obtained
from demonstrations could be difficult to generalize. A
hierarchical representation is introduced to generalize an
action sequence according to the explanation-based theory
[51] from a single demonstration and to combine elementary
operations to accomplish more complex compound tasks.
Temporal Action Logic (TAL) [52] presents a narrative based
formalism for reasoning about actions and change where
narratives include action type specifications, causal or depen-
dencies constraints, observations at a specific point in time,
and action occurrences through duration. Influence diagrams
[53] have also been used to represent the action sequences,
where actions are represented as decision nodes, outcome
states (including goals) as probabilistic state nodes, and
preferences using value nodes. Depending on the node types
they connect, the arcs in the influence diagram represent
probabilistic information dependence.

III. DISCUSSION AND CONCLUSION

Following a growing need for autonomous systems, new
techniques have been proposed to handle the robot actions
and its sequences. Research studies have been performed
for optimizing, understanding and managing the action se-
quences. We presented a critical review on the action rep-
resentation based on the different approaches e.g. logic and
knowledge representation techniques, and so forth focusing
on works of modelling action sequences for task planning
and execution. This review, summarized in Table 1, allows a
more in-depth understanding and different approaches repre-
senting the action sequences in the robotics field. From this
review the reader understands several options that do exist in
the research community, to represent and deploy such action
representations and frameworks in real robots. For example
the review clearly states if exists a ROS implementation, and



TABLE I
AN OVERVIEW OF ACTION SEQUENCES REPRESENTATION APPROACHES

No. Publication Representation approach

ROS implementations & packages

Applications

McCarthy et al. 1969;  Situation calculus; GOLOG

Levesque et al. 1998

programming Inaguage

No

Service and industrial robotics

Thielscher 1998

Situation calculus; Fluent

Yes “CRAM_language”

Service and industrial robotics

calculus
3. Levesque et al. 1997 GOLOG programming No Service and industrial robotics
language
Tenorth et al. 2013; Ontology and e N . .
4. Kunze et al. 2011 Prolog predicates Yes “knowrob Service robotics
5. Ifinen; Ztl_aéo?z);l I Ontology No Service robotics
Hierarchical task
6. Aramaki et al. 1999 representation; state No Industrial robotics
space model
7. Janssen et al. 2014 Ontology Yes “CRAM_language” Service robotics
8. Chella et al. 2001 Description Logics No Service and industrial robotics
9. Dzifeak et al. 2009 ;l;)egcp;oral and Dynamic No Service robotics
. Yes “hrl_clickable_world”; . . . .
10. Fikes et al. 1971 STRIPS plan langauge “thbp - ROS Hybrid Behaviour Planner” Service and industrial robotics
] Action Description . .
11. Pednault 1987 Language (ADL) No Industrial robotics
12. Fox et al. 2003 PDDL 2.1 Yes “ROSPlan” Service and industrial robotics
Hierarchical Task “ . ,, . . . .
13. Erol et al. 1994 Network (HTN) Yes “behavior_tree Service and industrial robotics
14. Bohren et al. 2010 State machine Yes “SMACH” Service and industrial robotics
15. Ziparo et al. 2011 Petri Nets Yes “PNP_ros” Service and industrial robotics
Motion Description . . . .
16. Brockett et al. 1998 Language (MDL); No Service and industrial robotics
17. Frazzoli et al. 2005 Maneuver Automata No Service and industrial robotics
18. Suzuki et al. 1991 Action mode representation No Service and industrial robotics
19. DeMello et al. 1996 AND/OR graph; No Service and industrial robotics
20. DeJong 1996 Temporal action logics No Service and industrial robotics
21. Ogasawan ef al. 1993  Influence diagrams No Service and industrial robotics

its package names. Based on the initial development frame-
work and on the follow-up implementations, applications do
exist for service and/or industrial applications.

Although is difficult and nearly impossible to have the ex-
act number of robots that have implemented each action rep-
resentation framework, a good indicator can be the number of
citations of each seminal paper in Google Scholar. According
to the literature review, the most popular action representa-
tion framework, implemented in ROS, is “KnowRob” with
244 paper citations. “CRAM” and “SMACH” follows with
more than one hundred seminal paper citations. “PNP_ros”
is also popular in the research community with 76 citations.
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