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Abstract— In this paper, we analyze the effects of contact
models on contact-implicit trajectory optimization for manipu-
lation. We consider three different approaches: (1) a contact
model that is based on complementarity constraints, (2) a
smooth contact model, and our proposed method (3) a variable
smooth contact model. We compare these models in simulation
in terms of physical accuracy, quality of motions, and compu-
tation time. In each case, the optimization process is initialized
by setting all torque variables to zero, namely, without a
meaningful initial guess. For simulations, we consider a pushing
task with varying complexity for a 7 degrees-of-freedom robot
arm. Our results demonstrate that the optimization based on
the proposed variable smooth contact model provides a good
trade-off between the physical fidelity and quality of motions
at the cost of increased computation time.

I. INTRODUCTION

Discovering contact-rich motions for manipulation and
locomotion tasks without specifying a contact schedule is a
captivating idea. Thus, contact-implicit trajectory optimiza-
tion attracted many researchers from fields such as robotics,
computer graphics, and bio-mechanics. The main idea of this
approach is to define an optimization problem with costs
and constraints describing a task of interest so that a contact
schedule and corresponding forces are found as a result of
trajectory optimization.

In this method, selection of the contact model is crucial
since it provides optimization with a way to infer contact
dynamics. Complementarity constraints that describe rigid-
body collisions have been extensively used for this pur-
pose. A time-stepping scheme that uses complementarity
constraints to model rigid-body dynamics with inelastic
collisions and Coulomb friction was first proposed by Stewart
& Trinkle [1]. Anitescu & Potra [2] modified this method
to handle any configuration and any number of contacts.
Based on this time-stepping scheme, Posa et al. [3] proposed
a direct method for contact-implicit trajectory optimization
to prevent the “combinatorial explosion” of hybrid models.
Indeed, the idea of transcribing a non-smooth trajectory
optimization problem with impacts and discontinuities into a
nonlinear optimization problem with complementarity con-
straints was first introduced by Yunt & Glocker [4]. However,
in [4], the optimization of control inputs is decoupled from
the optimization of states and contact forces; whereas, in [3],
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they are all optimized simultaneously. Nonetheless, in both
methods, contact dynamics is modeled as a complementarity
problem. [5] also solves a complementarity problem to find
a contact schedule.

On the other hand, smooth contact models facilitate con-
vergence of gradient-based solvers. For this reason, [6–9] use
smoother fragments of complementarity constraints; whereas
[10–12] directly define contact forces as smooth functions of
distance. In [13] and [14], contacts are modeled within the
cost function by using auxiliary variables. In addition, there
are other contact modeling approaches that fall outside of
this classification such as the ones in [15] and [16].

Although contact-implicit trajectory optimization is, by
definition, independent of task and can be generalized to
both locomotion and manipulation tasks, a significant part
of the related literature focuses on locomotion tasks (e.g.,
[5], [7–9], [12], [16]). Nonetheless, for instance, [3], [13],
[14], [17] investigate manipulation tasks but their analysis is
either limited to planar case or based on animated characters
(i.e., physical realism is not as critical as in robotics).

In manipulation tasks, distances between the robot and
objects of interest can be quite large as compared to those
in locomotion tasks (i.e., between feet and ground). Hence,
smooth contact models are likely to be advantageous for
manipulation since they would ease discovering contacts that
are initially distant as well as improve convergence. However,
existing smooth contact models sacrifice physical accuracy
to achieve that. Thus, in this study, we propose a variable
smooth contact model that allows the optimizer to adjust
the smoothness of the contact model. Moreover, we analyze
impacts of different contact models on the performance of
contact-implicit trajectory optimization for manipulation. We
compare a complementarity constraints-based contact model
(CCCM), a smooth contact model (SCM), and the proposed
variable smooth contact model (VSCM) for a non-prehensile
manipulation task of pushing a cubic object on a tabletop by
a Sawyer robot which has a 7 degrees-of-freedom (DOF)
arm. We test all methods in simulation for different initial
distances between the end effector and the object. The results
suggest that the VSCM provides a good trade-off between
the physical accuracy and quality of resulting motions at the
cost of increased computation time.

The rest of the paper is organized as follows. In Section
II, we describe the dynamic model of the system, the contact
models, and the corresponding optimization problems. The
results and their analyses are presented in Section III. Finally,
concluding remarks and the future research directions are
given in Section IV.

ar
X

iv
:1

80
6.

01
42

5v
2 

 [
cs

.R
O

] 
 3

0 
Ju

l 2
01

8

http://arxiv.org/abs/de-em/0004482


II. METHODOLOGY

A. Dynamic Model

The dynamics of an n DOF robot that is in contact with
environment is given by:

M(q)q̈+C(q, q̇) = τ +Jext(q)T
λ ext , (1)

where q, q̇, q̈ ∈ Rn are the joint positions, velocities, and
accelerations, respectively; M(q) ∈ Rn×n is the inertial ma-
trix; C(q, q̇) ∈ Rn represents the Coriolis, centrifugal, and
gravitational terms; τ ∈ Rn is the generalized joint forces;
Jext(q) ∈ R6next×n is the Jacobian matrix mapping the joint
velocities to the Cartesian velocities at the external contact
points; and λ ext ∈ R6next is the generalized contact forces at
the contact points for next external contacts. In this study, we
use MuJoCo physics engine [18] to model the dynamics.

The vector of generalized joint forces can be decomposed
as follows:

τ = u+ Ĉ(q, q̇)−Jc(q)T
λ c(γ), (2)

where Ĉ(q, q̇) is an estimation of C(q, q̇) and λ c ∈ R6nc

and Jc ∈ R6nc×n are respectively the generalized contact
forces due to contact model and the corresponding Jacobian
matrix for nc contact candidates. u is the control input that
is handled by the optimization. λ c is calculated from the
magnitude of normal contact force γ ∈Rn

c that is determined
by either optimization or contact mode. λ c acts on the
environment in addition to the forces due to the contact
mechanics in MuJoCo (i.e., λ ext ); thus, it can be deemed a
virtual force. As a result of this decomposition, the robot can
compensate Coriolis, centrifugal, and gravitational effects as
well as virtual forces when the control input is zero.

B. Contact Models

In this study, the following three contact models are
investigated. Although the contact models only generate
normal contact forces as only pushing manipulation is con-
sidered here, MuJoCo takes into account frictional forces in
simulations.

1) Complementarity Constraints-based Contact Model:
A rigid-body contact model can be formed by the following
complementarity constraints:

φ(q)≥ 0, (3)
γ ≥ 0, (4)

γ
T

φ(q) = 0, (5)

where φ(q) : Rn → Rnc is the signed distance function
mapping the joint positions to the closest distance between
bodies, i.e., (3) prevents interpenetration between bodies. γ ∈
Rnc is the Lagrange multiplier that physically corresponds to
the magnitude of the normal contact force, thus (4) ensures
that bodies can only push each other. Equation (5), which is
evaluated element-wise due to computational reasons ( [3],
[22]), guarantees that either distance or contact force must be
zero; and these three constraints constitute a complementarity
condition that can be denoted by 0≤ γ ⊥ φ(q)≥ 0.

Recently, Manchester & Kuindersma [9] proposed a vari-
ational contact-implicit trajectory optimization that is similar
to [3]. However, in [9], equality constraints in complementar-
ity conditions are relaxed through slack variables to improve
the convergence, as in [23], by allowing positive contact
forces to act from distance while also penalizing this term
and thus minimizing deviation from strict rigid-body contact
conditions. In this work, we use a similar approach and
relax (5) through a slack variable s ≥ 0 that determines the
deviation from the strict rigid-body contact:

γ
T

φ(q)≤ s. (6)

Consequently, (3), (4), and (6) form the complementarity
constraints-based contact model that we use in this study.

2) Smooth Contact Model: The relaxation in the com-
plementarity constraints provides a smoother contact model;
however, using such a model is restrictive since it requires a
constrained optimization algorithm. On the other hand, using
directly a smooth contact model, such as those in [10–12],
would eliminate this limitation. In this study, we use the
following exponential formulation for the magnitude of the
normal contact force, γ , that is based on the contact model
proposed in [12] and analogous to a spring model:

γ(q) = k e(−αφ(q)), (7)

where k is the spring stiffness and α determines the curvature
of the contact force with respect to the distance, φ(q).
We neglect the damping component in the original spring-
damper model for the sake of simplicity. Figure 1 shows the
variation of the magnitude of the normal contact force, γ , vs.
the distance, φ(q), with negative distance being penetration
into the contact surface.

3) Variable Smooth Contact Model: In the smooth contact
model, a fixed value for each parameter is selected such
that the convergence of gradient-based optimization is sat-
isfactory. In other words, discovery of contacts is facilitated
by allowing, albeit very small, contact forces to act from
distance at the cost of loss in physical fidelity. As a conse-
quence, there is a trade-off between the physical accuracy
and the convergence of optimization. Thus, the parameters
need to be tuned very sensitively based on the task. In order
to mitigate this problem, we propose a variable soft contact
model in which the spring stiffness k is a decision variable
of optimization, and the curvature parameter is a function of
k, i.e., α = c/k where c is a constant.

In Fig.1, the variation of γ vs. φ(q) curves with respect
to k and c is shown. For the first three curves (indicated
by red, yellow, and green), c = 103; and for the remaining
curves, c = 5×103. In this study, we used the greater value
for c because the distance - contact force relation converges
to a rigid-body contact model as c becomes larger, while it
is more similar to a soft contact model for the smaller c. It
is also noted that the contact force due to this contact model
completely vanishes when k = 0.

Using small values for k is possible when tasks such
as locomotion are considered because usually either there
are existing contacts or the distances between the contact



Fig. 1. Variation of the magnitude of the normal contact force with respect
to the distance for various stiffness and curvature values.

candidates on the robot and the environment are small. Nev-
ertheless, if one considers a manipulation task that requires,
e.g., pushing an object that is far away from the robot, it is
necessary to use a much larger k in order for the optimization
to be able to discover such motions. However, a large k
becomes problematic as the distance goes to zero since
making an actual contact with dynamic objects becomes
almost impossible. Thus, the VSCM allows the optimization
to handle k such that the virtual force γ is minimized.

C. Contact-Implicit Trajectory Optimization

In the contact-implicit trajectory optimization, the main
goal is to find contact forces along with control inputs given
a high-level definition of the task in terms of an optimization
problem. The optimal control problem of trajectory optimiza-
tion (i.e., an infinite-dimensional problem) can be converted
into a finite-dimensional problem through transcription meth-
ods which can be divided into three categories as single
shooting, multiple shooting, and direct transcription [24]. In
this study, we transcribe the problem into a single-shooting
optimization problem by using evenly separated collocation
points for the control inputs.

We consider the task of non-prehensile manipulation of
pushing a cubic object on a tabletop by a 7 DOF robotic
arm. The corresponding cost function can be written in terms
of final costs and integrated costs. In this case, the final
costs are based on the distance of the object’s center of
mass (CoM) from a desired position, pe

o, and the deviation of
the object’s orientation from desired Euler angles, θ

e
o; while

the integrated costs are based on the end-effector velocity,
ẋ(q, q̇), and the magnitude of the normal contact force, γ .
Moreover, we normalize these cost terms such that pe

o is
divided by the norm of the initial position error, which yields
pe

o,normalized , and the integrated costs are divided by N so that
the optimization process is less sensitive to the task and the
duration. As a result, the final and integrated components of
the task-related cost (c f and ci, respectively) are calculated
in terms of the weights w1,...,4, the control sampling period
tc, the time step l, and the number of time steps N by:

c f = w1||pe
o,normalized ||22 +w2||θ e

o ||22, (8)

ci =
tc
N

N

∑
l=1

(w3||ẋl(ql , q̇l)||22 +w4||γ l ||22). (9)

The following optimization problems are solved by a sequen-
tial quadratic programming (SQP) algorithm by running for-
ward simulations in MuJoCo to evaluate cost and constraint
functions.

1) Optimization Problem for CCCM: The optimization
problem that includes the relaxed complementarity con-
straints is defined as:

minimize
u1,...,N ,γ1,...,N ,s1,...,N

c f + ci +w5

N

∑
l=1

s2
l (10)

subject to

φ l(q),γl ,sl ≥ 0 for l = 1, ...,N (11)

φ
T
l (q)γl ≤ sl for l = 1, ...,N (12)

For this problem, the weights are selected as w1 = 104, w2 =
104, w3 = 2×10−1, w4 = 2×10−1, and w6 = 103.

2) Optimization Problem for Smooth Contact Models:
The optimization problem takes the following unconstrained
form for smooth contact models:

minimize
u1,...,N ,(k1,...,N)

c f + ci. (13)

The only difference is that the stiffness for each control time
step kl is a decision variable for the variable SCM. The
weights for both problems are same and selected as w1 = 103,
w2 = 103, w3 = 2×10−1, and w4 = 2×10−2.

III. SIMULATION EXPERIMENTS

A. Experimental Setup

The algorithms are tested in simulation for a simple
scenario of pushing a cubic object on a tabletop with a
Sawyer robot that has a 7 DOF arm. For simulations, we use
MuJoCo physics engine since it is shown to be favorable for
robotic systems with contacts [19]. Optimization problems
are solved through an SQP-based solver called SNOPT [20].
Additionally, we use IFOPT [21] as an interface between
MuJoCo and SNOPT.

In order to keep the complexity of the task low for the
sake of comparison, we consider a simple pushing task in
which the robot needs to push a cubic box 0.25 m along
the x-axis of the world frame (see Fig. 2) without rotating it.
Therefore, we take into account only two contact candidates:
one on the object’s closest surface to the robot, and one
at the center of the end-effector plate of the robot. The
simulation environment and the contact frames associated
with the contact candidates on the robot and the object are
depicted in Fig. 2. Nonetheless, it is noteworthy that the robot
can make contact at arbitrary positions on its surface.

For all simulations, the duration is 1 s, and the control
sampling period tc = 50 ms, i.e., N = 20. The initial con-
figuration of the arm is calculated by the following function
of β that also determines the distance between the contact
candidates q0 = [−π/12,−π/β ,0,3π/β ,−π/6,−2π/β ,0]T .

We run simulations for three different values of β that
are 5, 6, and 7, and the corresponding initial distances
between the contact candidates are 0.30 m, 0.17 m, and
0.11 m, respectively. Figure 3 demonstrates the three initial



Fig. 2. Simulation environment along with the world frame and the frames
associated with the contact candidates on the robot and the object.

(a) β = 5, φ0 = 0.30 m (b) β = 6, φ0 = 0.17 m

(c) β = 7, φ0 = 0.11 m

Fig. 3. The initial configurations of the robot for different values of β .

configurations of the arm. It is seen that not only the initial
position but also, albeit slightly, the orientation of the end
effector vary depending on β . The purpose of different initial
configurations is to change the complexity of the task in a
controlled manner by assuming that difficulty in discovering
contacts augments as the distance increases.

The stiffness parameter of the SCM is selected as 100
after a careful tuning considering the overall performance,
and the corresponding α is calculated by c = 5×103/k, as
in the VSCM. We use the same value to initialize and upper
bound k in the VSCM-based optimization (VSCMO). This
value seems reasonable when one looks at the distance range
here and the γ vs. φ(q) curves in Fig. 1. In all cases, the
initial guess for u is zero, namely the robot is stationary
throughout the simulation.

B. Visual Analysis

In order to observe the discrepancies between motions
that are optimized by assuming different contact models,
we visualize the resulting motions in the following.1 First, a
motion found by the CCCM-based optimization (CCCMO) is
shown in Fig. 4. In this motion, the first contact between the
robot and the object is made at t=470 ms. Then, the contact
starts to slide in the −y direction by causing an undesired
rotation of the object in addition to the desired translation.
After the contact is broken, the arm rises due to the impact.

Second, Fig. 5 illustrates a resulting motion of the SCM-
based optimization (SCMO). The robot approaches the ob-
ject, and the object is still stationary at t=300 ms. However,

1Please see the accompanying video for all simulation results: https:
//youtu.be/u06ZTmut0N0.

Fig. 4. Snapshots of a resulting motion obtained for the CCCM for t = 5,
470, 720, and 1000 ms. Yellow cylinders represent active contacts.

Fig. 5. Snapshots of a resulting motion obtained for the SCM for t = 5,
300, 385, and 1000 ms. Yellow cylinders represent active contacts.

at t=385 ms, the object starts to move due to the force
generated by the SCM, even though there is no actual contact
between the robot and the object. At the end, the object
is successfully manipulated with no visible rotation; yet
the arm is repelled significantly due to the large γ values
during pushing. The problem of pushing without an actual
contact might be alleviated by a very sensitive tuning of k;
however, an actual contact still would be very hard to achieve
in conjunction with satisfactory motion and convergence.
Moreover, repeated sensitive tuning is likely to be necessary
even for slight changes in the task, such as the initial
configuration of the robot.

Last, a motion obtained from the VSCMO is demonstrated
in Fig. 6. Here, the object does not move until there is
an active contact at t=715 ms. Then, the object is pushed
successfully to the desired pose, while the arm is not repelled
significantly and stops by making contact with the table.
In this case, the arm actually contacts the object. This is
possible owing to the adjustment of stiffness parameter k by
the optimization.

In addition to these, it is clearly seen that the contact at
t=715 ms occurs at neither of the contact candidates on the
robot nor the object. This is possible due to the fact that the
robot can make and break contacts at arbitrary parts of its
surface by the virtue of MuJoCo physics engine.

https://youtu.be/u06ZTmut0N0
https://youtu.be/u06ZTmut0N0


Fig. 6. Snapshots of a resulting motion obtained for the VSCM for t = 5,
500, 715, and 1000 ms. Yellow cylinders represent active contacts.

C. Numerical Analysis

After the visual analysis, we investigate the numerical
results obtained from the simulations for all the contact
models and the initial configurations in the following. First,
we focus on the physical fidelity of the resulting motions.
In order to measure the physical inaccuracy throughout a
simulation, we use a metric that is calculated by integrating
the magnitude of the normal contact force acting from
distance, i.e., tc ∑

N
k=1 γk. Table I shows the values of this

metric for all cases. It is seen that the CCCMO provides the
best physical fidelity by far for the first two cases. Whereas,
the VSCMO has the minimum physical inaccuracy in the
last case, namely there is almost no virtual force. Moreover,
it provides a much better physical accuracy over the SCMO
in all cases.

TABLE I
PHYSICAL INACCURACY METRIC

φ0 [m] CCCMO [N-s] SCMO [N-s] VSCMO [N-s]
0.11 0.1121 2.0400 1.2137
0.17 0.0238 1.4914 1.2676
0.30 0.0373 0.0381 0.0001

Tables II and III demonstrate the final position and ori-
entation errors for all cases, respectively. It is seen that in
all cases, the VSCMO provides the best performance in
terms of the manipulation task, when it is assumed that the
differences between the orientation errors for the SCM and
VSCM in the first two cases are negligible. Furthermore, it
is the only method that can perform the task satisfactorily
(i.e., with a position error smaller than 10 cm) for all initial
configurations. On the other hand, the SCMO is also able
to perform the task successfully except for the last case;
while the CCCMO can find an almost successful motion
only for the smallest initial distance, and even in that case,
the orientation error is quite large.

The computation times for all cases are shown in Table
IV. We admit that our implementation is significantly slower
than the state-of-the-art counterparts such as [11] and, in
particular, [12]. However, an optimized implementation of

TABLE II
FINAL POSITION ERROR

φ0 [m] CCCMO [m] SCMO [m] VSCMO [m]
0.11 0.1052 0.0285 0.0185
0.17 0.1979 0.0318 0.0291
0.30 0.1924 0.1908 0.0836

TABLE III
FINAL ORIENTATION ERROR

φ0 [m] CCCMO [rad] SCMO [rad] VSCMO [rad]
0.11 0.7067 0.0238 0.0533
0.17 0.4022 0.0586 0.0654
0.30 0.3475 0.4547 0.0415

the presented methods is out of scope of this work. Here,
we are rather interested in comparing them in terms of the
convergence speed. Based on these results, it is not possible
to say that there is a clear relationship between the initial
distance (or the complexity of the task) and the computation
time; i.e., there is a positive correlation for the CCCM, a
negative correlation for the SCM, and no correlation for
the VSCM. However, it is fair to say that, excluding the
second case, the SCMO converges significantly faster than
the VSCMO and has the fastest convergence, as anticipated.
On the other hand, the CCCMO has the slowest convergence
speed except for the first case in which its computation time
is slightly larger than SCM.

TABLE IV
COMPUTATION TIME

φ0 [m] CCCMO [s] SCMO [s] VSCMO [s]
0.11 43.09 41.07 111.22
0.17 44.52 27.87 16.28
0.30 112.77 23.98 60.49

D. Variation of Stiffness for VSCMO

Finally, the k trajectories obtained from the VSCMO are
depicted in Fig. 7 for all initial configurations.2 It is seen that
the optimization handles the stiffness k as if it is a binary
variable; i.e., k is either around 100, its initial value and the
upper bound, or equal to zero. The collocation points when
it is equal to zero correspond to the instants of the simulation
when the arm is approaching to the object. This is caused by
the fact that the virtual force generated by the contact model,
γ , that is proportional to k and inversely proportional to
the distance, φ , is penalized. Consequently, in the VSCMO,
contacts can be easily discovered from distance as in the
SCMO as well as the robot can actually make contact with
the object to physically move it, as distinct from the case for
the SCM with fixed parameters (see Figs. 5 and 6). Moreover,
this can be achieved for a wide range of tasks without a
sensitive tuning of the contact model parameters.

2Please see the accompanying video for the virtual and actual contact
force trajectories for all cases.



Fig. 7. k trajectories found by the VSCM-based optimization for the three
values of the initial distance between the contact candidates.

IV. CONCLUSION

In this paper, we analyze the impact of contact models on
the performance of contact-implicit trajectory optimization
for manipulation. The trajectory planning method in question
is a single shooting optimization. Three different contact
modeling approaches are investigated: (1) a complementarity
constraints-based contact model, (2) a smooth contact model,
and (3) our proposed variable smooth contact model. We
perform simulations of a 7 DOF Sawyer robot arm carrying
out a pushing manipulation task of varying complexity.

An analysis of the resulting trajectories yields the follow-
ing observations. First, all of the methods are capable of
discovering a pushing motion given zero initial values for the
torque variables. Second, the proposed approach, VSCMO,
is the most reliable as it finds satisfactory motions for all
initial configurations. Third, the VSCMO provides the best
performance when both the quality and the physical accuracy
of the motions found are considered. Notwithstanding, its
convergence is slower than the SCMO which outperforms the
CCCMO in all cases. However, the SCMO is very sensitive
to the parameters of the SCM, and therefore, it is hard to tune
for a range of tasks. On the other hand, the VSCM allows
the optimization to vary the smoothness of the contact model
as necessary. Consequently, the VSCMO is more robust to
changes in the task and, thus, more suitable for contact-
implicit trajectory optimization for manipulation.

Nevertheless, the task we investigate here in this paper is
limited to one contact candidate on both the robot and the
object. We aim to test the proposed method on more complex
tasks and behaviours. Furthermore, in future work, we aim
to implement our proposed method experimentally.
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[12] M. Neunert, M. Stäuble, M. Giftthaler, C. D. Bellicoso, J. Carius,
C. Gehring, M. Hutter, and J. Buchli, “Whole-body nonlinear model
predictive control through contacts for quadrupeds,” arXiv preprint
arXiv:1712.02889, 2017.

[13] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex
behaviors through contact-invariant optimization,” ACM Transactions
on Graphics (TOG), vol. 31, no. 4, p. 43, 2012.
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