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Abstract

Autonomous robotic assisted surgery (RAS) systems aim to reduce human errors and improve 

patient outcomes leveraging robotic accuracy and repeatability during surgical procedures. 

However, full automation of RAS in complex surgical environments is still not feasible and 

collaboration with the surgeon is required for safe and effective use. In this work, we utilize our 

Smart Tissue Autonomous Robot (STAR) to develop and evaluate a shared control strategy for the 

collaboration of the robot with a human operator in surgical scenarios. We consider 2D pattern 

cutting tasks with partial blood occlusion of the cutting pattern using a robotic electrocautery tool. 

For this surgical task and RAS system, we i) develop a confidence-based shared control strategy, 

ii) assess the pattern tracking performances of manual and autonomous controls and identify the 

confidence models for human and robot as well as a confidence-based control allocation function, 

and iii) experimentally evaluate the accuracy of our proposed shared control strategy. In our 

experiments on porcine fat samples, by combining the best elements of autonomous robot 

controller with complementary skills of a human operator, our proposed control strategy improved 

the cutting accuracy by 6.4%, while reducing the operator work time to 44 % compared to a pure 

manual control.

I. INTRODUCTION

Advances in robotic and camera technology have led to dramatic improvements of medical 

robots. Robotic assisted surgery (RAS) systems incorporate highly dexterous tools, hand 

tremor filtering, and motion scaling to enable a minimally invasive surgery (MIS) approach, 

improving patient outcomes by reducing collateral damage and patient recovery times [1]. 

State of the art systems for robotic assisted surgeries are based on a tele-operated paradigm. 

1Note that yA only represents a model describing the local behavior of the autonomous controller. Since there exists an innate constant 
tracking error in general, due to factors such as sensing noise and actuation accuracies, a global error model will have a static offset 
e.g. y′A = yA + yoffset. The skewness of the function may be related to the fact that trajectory was always followed in a counter-
clockwise pattern.
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The commercially successful da Vinci Surgical System (Intuitive Surgical, Sunnyvale, 

California) [2] is used for a wide range of surgical procedures in urology, gynecology, 

cardiothoracic, and general surgery. Another tele-operated system is the Raven surgical 

robot developed at the University of Washington [3]. Autonomous control algorithms for 

RAS aim to leverage robotic accuracy and repeatability for surgical procedures. 

Autonomous RAS has the potential to reduce human errors, deliver improved patient 

outcomes independent of surgeon’s training and experience, and enable remote surgeries 

without high-bandwidth network connections [4]. Autonomous RAS with pre-planned 

functionality was introduced in bony orthopedic procedures (e.g. ROBODOC, Caspar, and 

CRIGOS), radiotherapy, and cochlear implants [5], [6]. Efforts in automating deformable 

and unstructured soft tissue surgeries include knot tying, needle insertion, and executing 

predefined motions [7]–[9].

However, full automation in complex surgical environments is not infallible and safe 

operation requires surgeon supervision and allow surgeon to take over control. Our goal is to 

perform complex surgical procedures collaboratively between robot and surgeon with the 

highest possible degree of autonomy, while ensuring safe operation at all times. Thus a 

critical element in realizing an effective collaboration between the autonomous robot 

controller and human operator is designing algorithms that will make the autonomous 

system “self-aware” of the limitations of its automation capabilities. These algorithms 

innovate by aiming to maximize the level of automation of the RAS that interacts with 

complex environments and minimize the expected errors of the variables for which the robot 

is confident that it can control more accurately than its human collaborator.

Shared control strategies have been implemented outside of medicine in controlled 

environments. The shared control strategy takes the following general form

U t = α t M t + 1 − α t A t , (1)

where manual control commands from a human operator (i.e. M (t)) are combined with 

autonomous control commands (i.e. A(t)) with complementary scales (i.e. α(t) ∈ [0, 1] and 1 

− α(t) respectively) to from the total control input to the robot (i.e. U (t)). Examples of the 

control commands include position, velocity and acceleration profiles, and force/torque.

Various novel methods have been proposed for defining the function α(t) as shown in Fig. 1. 

In these methods, α(t) is determined when the robotic control task is on the fly based on an 

independent variable x to fulfill certain performance criteria. For example, α(t) can 

dynamically change as a function of tracking accuracy [10], proximity to obstacles and/or 

desired locations [11], the accuracy of predicting human intentions in controlling the robot 

[12], the level of manipulation precision [13], and the trust of human to the autonomous 

controller of robot [14] similar to the functions shown in Fig. 1.a-d. It has also been shown 

that a fixed level of α(t) (Fig. 1.e) helps people with disabilities pick-and-place objects more 

easily via an assistive robotic arm [15]. Fig. 1.f shows an example of a human-like autonomy 

al-location in which when the difference between human’s self-confidence and his/her trust 

to the autonomous systems exceeds a high threshold, s/he chooses manual control and vice 

Saeidi et al. Page 2

Rep U S. Author manuscript; available in PMC 2019 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



versa [16]. A suitable candidate for x is the confidence level in manual and autonomous 

controls and their dynamic uncertainties which is consistent human-like decision-making 

algorithm [16] and hence reduces operator confusion and resistance [17]. However, the 

choice/design of α requires identification experiments for both manual and autonomous 

controls to reveal their strengths and weaknesses.

In this work, we develop and evaluate a “self-aware” confidence based shared control 

strategy for our Smart Tissue Autonomous Robot (STAR) [18] to combine the best elements 

of autonomous robot controller with complementary skills of a human operator. More 

specifically, we develop a shared control strategy with an automated control allocation 

between the autonomous and manual controls. We consider 2D pattern cutting surgical tasks 

including the effects of partial blood occlusion of the cutting pattern as common 

disturbances during surgery. We use an electro-cautery system in STAR to perform 

consistent and accurate surgical incisions [19]. For the given RAS system and surgical task, 

our contributions are the following: i) we develop a confidence-based shared control 

strategy, ii) we assess the performances of each control resource and identify the confidence 

models for human (i.e. manual control) and robot (i.e. autonomous control) as well as the 

confidence-based allocation function α(t), and iii) we experimentally evaluate the accuracy 

of our proposed shared control strategy via multiple tracking tests as well as cutting on 

porcine fat samples and compare it to single mode control strategies. Our proposed shared 

control strategy is depicted in Fig. 2. To our knowledge, this study represents the first 

successful demonstration of confidence based shared control in a complex surgical task such 

as performing electro-cautery on tissue samples with blood occlusions.

II. METHODS

A Testbed

The shared control testbed for implementing our confidence-based shared control strategy is 

shown in Fig. 3. A 7-DOF lightweight Kuka arm (KUKA LWR 7+) is used as the surgical 

robot. Since we consider a pattern cutting task in this paper, we use our electro-cautery 

prototype developed in [19] to perform the cuts on porcine fats samples. We built this 

prototype by modifying a commercially available 2-DOF laparoscopic grasper Radius T 

(Tuebingen Scientific, GMBH, Tbingen, Germany). The quick release interface of the tool is 

electrically isolated from the shaft, while two conductors within the center of the tool are 

electrically coupled to an electro-surgical generator (ESG). To use the electro-cautery tool, a 

needle electrode is inserted into the quick-release interface, and a cutting waveform is 

selected on the ESG. When the operator activates a foot pedal, the cutting waveform is sent 

from the needle electrode, to the target tissue, and returned through a grounding pad 

underneath the sample. The electrical signal vaporizes tissue in contact with the electode, 

cutting the sample. As shown in Fig. 3, a Point Grey Chameleon RGB camera is used to 

provide the visual feedback to the operator. This camera is also used with the autonomous 

controller to detect the desired incision trajectory via OpenCV computer vision libraries 

[20]. A Sensable Phantom Omni haptic controller device is utilized to allow the operator to 

control the robot manually. The control system including the planning algorithms, robot 

Saeidi et al. Page 3

Rep U S. Author manuscript; available in PMC 2019 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



controllers, computer vision, and the control allocation strategies are integrated via Robot 

Operating System (ROS) [21].

B. Control System

In this section, we describe how the autonomous and manual control inputs to the robot (i.e. 

A(t) and M (t) in Figure. 2 and Eqn. (1)) are implemented during the experiments. The block 

diagram of the autonomous controller is shown in Figure 4. Using this control loop, real-

time video frames from the RGB camera are processed to detect the reference trajectory to 

cut (e.g. a circular pattern). Edge and contour detection algorithms in OpenCV are used to 

detect the reference cutting trajectory in each test. Then, the reference trajectory is converted 

from the image frame to the Carte-sian robot frame using a homography transformation. The 

resulting reference and the real-time positions of the robot are used in the trajectory 

generator and planner to produce multiple equidistant waypoints starting from the closest 

point on the trajectory to the robot. Smooth time-based trajectories are produced between the 

waypoints using Reflexxes Motion Libraries [22]. Kinematics and Dynamics Library (KDL) 

in Open Robot Control Systems (OROCOS) [23] is used to transform the task-space 

trajectories of the robot to the joint space trajectories, which is the final output of the high-

level autonomous control (i.e. A(t)). Finally, IIWA stack developed in [24] helps to apply the 

low-level controllers of the robot to follow the desired joint-space trajectories.

The block diagram of the manual control is shown in Fig. 5. In this control loop, the human 

operator is responsible for using the visual feedback from the camera to detect the desired 

trajectory, plan, and follow the trajectory using the Phantom Omni haptic device. The 

position feedback from the robot is used in addition to the position commands from the 

limited workspace of the haptic device to determine reference positions of the robot in the 

task space. This is done simply by identifying the initial position of the robot when the test 

starts and adding new reference positions read from the displacement of the haptic device to 

produce the final position of the robot in the Cartesian task-space. Similar to the autonomous 

control, inverse kinematics determine the joint-space command (i.e. M (t)) and IIWA stack 

guarantees its accurate tracking.

For the shared control mode described in this paper, the haptic device allows the operator to 

switch the control between autonomous and manual via the push buttons on the controller as 

shown in Figure 6. We developed a graphical user interface (GUI) designed to inform and 

prepare the user of the suggested control mode and mode switches (determined via the α(t) 
function) by highlighting the parts of the trajectory that should to be done in manual mode. 

The rest of the trajectory should be completed autonomously.

C. Surgical Task

We chose the second task (i.e pattern cutting) from the Fundamentals of Laparoscopic 

Surgery (FLS) as a bench-mark in this work. FLS is the standard training method in 

laparoscopic surgery and includes five subtasks with increasing difficulty [25]. In the pattern 

cutting task, an operator is asked to cut a 5 cm diameter circular pattern. Surgical proficiency 

is defined as two consecutive samples where all cuts are within 2mm of the circular pattern, 

and total cutting time is less than 98 seconds. To simulate typical occlusions observed in 
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surgical environments, we prepared multiple test samples under different random pseudo-

blood covered conditions (such as the samples shown in Fig. 7). Pseudo-blood is used due to 

consistency, ease of storage and contamination concerns, as the optical properties of real 

blood vary widely with physiological conditions such as osmolarity and haematocrit [26]. In 

practice, pseudo-blood effectively obscures cutting trajectories in RGB images, and is 

similar in appearance and consistency to real blood.

D. Identification of Human and Robot Performances

The first step towards designing an effective shared control strategy is to identify the 

strengths and weaknesses of each control resource (i.e. the manual control performed by 

human and autonomous control performed by robot). The factors affecting human 

performance include the camera angle and the dissimilarities between the kinematics of the 

control device and the robot. The robot performance will be affected by the random failures 

in detecting the desired cutting trajectory as well as slight imprecision in the calculation of 

the robot tool location via the robot kinematic chain. Next, we explain the data collection 

and processing steps for the identification process.

1) Data Collection: A laser pointer, shown in Fig. 8.a is initially used to identify the 

tracking accuracy of the autonomous and manual controls in the identification tests. Using 

the laser pointer, the desired cutting trajectory is followed under manual and autonomous 

control (in manual control, operator uses the laser pointer as a visual cue to control the robot 

along the desired trajectory). The laser pointer is used in our initial experiments because it 

allows a fast way of collecting multiple data sets from different test conditions as it does not 

require any time consuming tissue preparation process. This is especially helpful because a 

reliable identification process requires multiple data sets. Moreover, we can quickly replicate 

the test samples made on the paper for laser pointer and keep the test conditions identical in 

different test modes, which is hard to achieve when working with soft tissue samples. 

Finally, it is also easier to initially evaluate the tracking behavior of different control modes 

since it only requires a simple post-processing algorithm, as explained later in Section II-D.

2. During the experiments, robot motion was constrained to a plane parallel to the X-Y plane 

of the samples at a fixed height (61.43 cm) and orientation to minimize laser-pointing 

inaccuracies. As later detailed in Section III-D, we will examine the hypothesis and results 

obtained by the tests using the laser pointer against a set of tests using real tissues and our 

electrocautery tool.

2) Post-processing: The performance of the autonomous controller is recorded during 

each process via the Point Grey camera and the video is post-processed to asses the tracking 

accuracy compared to the desired trajectory. A C++ code was written using OpenCV to 

detect the laser pointer and the location and size of blood blobs during each experiment as 

shown in Fig. 8. We first used perspective transformations to obtain a top view of the desired 

trajectory(Fig. 8.a). Each pixel represents 0.2 mm on the trajectory plane in our experiment. 

Using the new image frame, we track the location of the laser pointer during the experiment 

using color thresholding and blob detection (Fig. 8.b). A similar method is used for finding 

the location of blood stains (Fig. 8.c). The position of the laser pointer is compared to the 

desired track in the video frames and the tracking accuracy is recorded
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III. EXPERIMENTS AND RESULTS

A. Preliminary Manual and Autonomous Control Tests

Using the testbed, data collection, and processing techniques explained in Section II, we 

conducted 22 experiments with the laser pointer following circular patterns and assessed the 

tracking error under different control modes, test conditions, and sample orientations. This 

included four experiments for the samples a-e in Figure 7 with different size blood stains 

and two each for sample f (since it is symmetric). A graduate student from the University of 

Maryland was trained as the operator in our tests. The results are shown in Fig. 9 and 

indicate that in the ideal case, i.e. no blood occlusion of the track, the autonomous controller 

outperforms the manual control (0.49 ± 0.33 mm vs 0.83 ± 0.56 mm). However, as the 

complexity (i.e. size and number of blood stains) increases, the error of the autonomous 

controller increases, while the manual control accuracy remains in the same range 

throughout the experiments.

Representative examples of two test cases with no blood stains and with multiple blood 

stains are shown in Figures. 10 and 11. As it can be seen in Figure 10, when the trajectory is 

not blocked by blood, the autonomous controller accurately detects and follows the cutting 

pattern. On the other hand, as shown in Figure 11, due to the existence of different blood 

stains on the desired pattern, the tracking accuracy locally decreases near the blood covered 

regions. This happens because the desired trajectory is not detected correctly by the 

boundary detection algorithms and no prior information about the shape of trajectory is 

utilized. From these results, we can conclude that the local performance of the autonomous 

controller on the non-occluded parts of the track is superior to manual control accuracy and 

vice versa. Therefore, a careful design of a shared control strategy can take advantage of the 

local strengths of both controllers and result in a more accurate control system. We achieve 

this by identifying confidence models for the autonomous and manual controls in the 

vicinity of blood stains. These models will provide insight on how and when to switch the 

control modes to improve the overall task performance.

B. Identification of Confidence Models and Autonomy Allocation Function

In order to perform a uniform analysis of the performance of manual and autonomous 

controllers near the blood stains regardless of blood location and size, we perform 

normalization on the raw experimental data. We define d as a measure for identifying the 

intersection of the desired track with the blood stain as shown in Figure. 12. When we enter 

the blood stain from a clean part of the track we have d = − 1, in the middle d = 0, and when 

we leave the blood d = 1. Using this definition, the intersection of the track with blood stains 

of difference sizes is normalized based on their sizes (larger/smaller blobs cause larger/

smaller occlusion on the track). We used blob detection algorithms in OpenCV to find the 

location and size of blood stains on the track and normalized their intersections. We also 

identified the tracking error along d for each experiment and normalized it based on the blob 

sizes.

Using the data collected from the experiments and the above-mentioned normalization 

process, we analyzed the local performance of autonomous and manual controllers based on 
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the proximity to the blood stains. The results are shown in Fig. 13. In this figure, first the 

normalized tracking errors are plotted versus d . Then, using the curve fitting toolbox in 

MATLAB [27], different curves are fitted to the collected data. As it can be seen in Figures. 

13.a-b, a linear function and a skewed Gaussian function respectively describe the local 

behavior of the manual control and autonomous control near the blood blobs. The fitted 

function for manual control is yM = aMd + bM with aM = −0.002, and bM = 0.061 and for the 

autonomous control is according to the following

yA = aAe

−
d − bA

cA

2

with aA = 0.206, bA = 0.213, cA = 1.257. As it can be seen in Fig. 14.c, these fitted functions 

suggest that the manual control is effective in the neighborhood of blood stains while as we 

leave this region the autonomous controller becomes more effective 1. Therefore, using the 

fitted curves in 13.a-c, we define confidence models for human (i.e. manual mode) and robot 

(i.e. autonomous mode) respectively as CM = 1 − ym and CA = 1 − yA.

Once the confidence models for human and robot in the pattern cutting task are identified, an 

autonomy allocation strategy needs to be determined based on these functions such that the 

pattern cutting accuracy is maximized. We use the confidence models to locally select the 

most reliable control resource as the control task is performed. The confidence models and 

the autonomy allocation α identified in experiments are shown in Figure. 14. Since 

confidence in manual CM is more or less constant, we choose α as well as the decision 

thresholds for switching to manual or autonomous control modes as a function of confidence 

in autonomous control CA. We design the switches such that the mode which we have more 

confidence in is chosen. According to the α function and the CA model shown in Figure. 14, 

as we approach the blood stain (i.e. d approaches 0 from negative values), confidence in 

autonomous control gradually decreases from 1 and reaches a low threshold τl (here τl = 

0.93 occurring at d = − 1.15). After this thresh-old, we are locally more confident in the 

manual control than the autonomous control. As we approach the middle of the blood stain 

on track (i.e. d ∼ 0), confidence in autonomous control reaches a minimum level (here 0.79) 

and then starts increasing until it reaches a higher decision threshold τu after which the 

autonomous control is again more reliable than manual control (here τu = 0.94 occurring at 

d = 1.6). Therefore, at τu, switching back to autonomous control (i.e. α = 0) results in a 

better tracking performance. Next, we test this hypothesis with a set of preliminary 

experiments with the laser pointer as well as a set of cutting tests on real porcine fat samples 

with our robotic electrocautery tool.

C. Shared Control Tests with Laser Pointer

Using the confidence models and the control allocation strategy identified in Section III-B as 

well as the GUI in Fig. 6, we performed 18 tests with the laser pointer using the blood 

stained samples in Fig. 7 (i.e. similar to the tests in Section III-A, while excluding the clean 

track that does not require a shared control). In order to implement the shared control 
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strategy efficiently, when the operator is not controlling the robot (i.e. autonomous mode), a 

tracking controller smoothly controls the motion of the haptic device to track the current 

position of the robot. This reduces the confusion of operator regarding the current location 

of the robot and the orientation of motion when returning back to controlling the robot. The 

results are summarized in Fig. 15. As it can be seen in Fig. 15.a, the average tracking error 

of the shared control is generally lower than single-mode manual and autonomous controls. 

However, since the shape of the large blood stain in Figure 7.d is more irregular compared to 

the other samples, the switching policy does not accurately suggest the switching thresholds, 

which depend on estimating the blood location and its intersections with track. This results 

in a larger error for the shared control in the large blood sample compared to pure manual 

control. The overall average tracking error for the laser tests on blood stained samples with 

the three control strategies is shown in Fig. 15.b. These results indicate that pure 

autonomous control is the worst choice when a blood stain is present on the track (1.272 

± 1.439 mm errors). Shared control demonstrated a 7.4 % improvement in tracking accuracy 

compared to pure manual control (0.731 ± 0.559 mm for S compared to 0.789 ± 0.566 mm 

for M). This improved performance is obtained while the operator needs to control the robot 

at only 21.85% of the time compared to 100% for manual control (Figure. 15.c).

D. Electrocautery on Porcine Fat Samples

The results of performing cuts on the porcine fat samples using our robotic electrocautery 

system are shown in Fig. 16. For these results, similar test samples were made using porcine 

fat layers, circular cutting pattern, and two blood stains (large and medium sizes). Using 

these samples, five experiments were conducted including one pure autonomous control (i.e. 

A), two pure manual control (i.e. M-1 and M-2), and two Shared control tests (i.e. S-1 and 

S-2). In order to analyze the accuracy of the cuts in different test condition, the performance 

of the robot was recorded during each experiment. The first frame (before the start of cut) 

and the last frame (after finishing the cut) of each video were extracted. The initial desired 

trajectory was manually marked on the first frame and labeled as “desired cut”. Similarly, 

using the video, the cut trajectory was marked manually on the last frame and labeled 

“performed cut”. The resulting marked frames were then used in a C++ code that identifies 

the desired and performed cuts in two frames using contour detection algorithm in OpenCV. 

Then, for all the pixels of the performed cut contour, errors compared to the desired cut 

contour are calculated. In our analysis, a 76 mm by 76 mm area of the test sample holder 

frame is mapped to a 500 by 500 pixel image so that a uniform measurement system is used 

for all the tests. Using this mapping, the final error of the performed cut is calculated in 

milliliters. The result of this analysis is summarized in Table I. As it can be seen in this table 

and Figure. 16, the pure autonomous controller results in the worst tracking error (on 

average 3.212 mm). This is compatible with our results using the laser pointer in the 

complex multiple-blood stain test conditions. The confidence-based shared control strategies 

proposed in this paper, (i.e. S-1 and S-2) resulted in lower and more consistent tracking 

errors compared to the pure manual tests (i.e. M-1 and M-2) by comparing the average and 

standard deviation values. Among the four tests for manual and shared controls, the average 

value of the cutting error for the combined S-1 and S-2 tests was 6.4 % lower compared to 

the combined M-1 and M-2 tests (i.e. 0.991 mm in shared vs 1.057 mm in manual). This 

improvements are also consistent with our predictions obtained from the previous tests with 
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the laser pointer. During S-1 and S-2, operator controlled the robot 44.01% of the time. Our 

previous research in the shared control strategies via a through human subject study [14] 

indicates that the combined effect of performance improvement and operator workload 

reduction leads to the satisfaction of the operator about the control system.

IV. DISCUSSION

Although the overall outcome of shared control is better compared to the other control 

strategies, sudden switches from autonomous to manual control can sometimes lead to 

increased transient error due to the lack of situational awareness of the operator when 

returning back to the control loop. In such situations, the operator suddenly applies a large 

command which is not consistent with the previous autonomous control commands and this 

causes an initial impulsive motion until the operator regains the control efficiently. This case 

did not occur frequently in our tests, but if not addressed properly, it remains a potential 

source of reduced performance under shared control. Examples of successful and 

unsuccessful control mode switches in the tests with the laser pointer are included in Fig. 17 

with labels Test-a and Test-b respectively. As it can be seen in Test-a, the operator handles 

the switching between control modes effectively near the blood stains when the confidence-

based strategy suggests α = 1 from α = 0 and reduces the average tracking error to 0.6 mm 

compared to the pure manual or autonomous control. However, in Test-b, at the switching 

moment near the blood stain, the operator mishandles the switch and this results in a high 

error, value which eventually leads to a larger average error 0.77 mm compared to pure 

manual control 0.67 mm. Therefore, identifying the switching effects on the tracking 

accuracy and their corresponding costs provides more insight and potential for further 

improvement of the performance of the proposed confidence-based shared control strategy.

Finally, in this study a static scenario was considered by factoring out the dynamic changes 

in the environment e.g. growth of blood stain sizes and the visibility of the desired cutting 

pattern as we proceed in completing the cuts. In our experiments, we set a fixed depth of cut 

and used a high power on the electrocautery tool to perform the incision in one pass. In 

clinical electrocautery scenarios, however, completing the cut requires the use of 

electrocautery tool in multiple passes, while gradually increasing the depth of cut. In this 

case, as we continue cutting the trajectory in different depths, the original marked desired 

trajectory deforms and might not be identifiable for the robot, since real-time recalculation 

of trajectory is needed, which in turn results in a dynamic growth of error in the autonomous 

controller. Such dynamics will affect the confidence models as time goes on during the 

surgical procedure. Hence, consideration of dynamic deterioration of the performance of 

autonomous or manual controllers will add a new dimension to the proposed confidence-

based shared control strategies.

V. CONCLUSION

In this work, we developed a confidence-based shared control strategy for our smart tissue 

autonomous robot. We demonstrated how the confidence models for manual and 

autonomous controls can be obtained for a 2D cutting surgical task. We also identified a 

confidence-based control allocation function for the shared control system and tested our 
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strategy in multiple tracking and cutting experiments. The results indicate that this study 

exhibits the potential to improve the overall task performance of robotic assisted surgery 

systems via an effective shared control strategy, while reducing the work time of the operator 

compared to pure manual control. Our future work will include minimization of the effects 

of control switches on the performance of the shared control system, as well as the inclusion 

of dynamic changes of the surgical task environment in the confidence models.
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Fig. 1: 
Examples of the control allocation function α.
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Fig. 2: 
Block diagram of our proposed confidence-based shared control strategy for STAR.
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Fig. 3: 
Experimental testbed.
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Fig. 4: 
The autonomous control loop.
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Fig. 5: 
The manual control loop.
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Fig. 6: 
GUI and mode switches.
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Fig. 7: 
Different test samples: a) no blood occlusion, and disturbance by blood from b) small, c) 

medium, d) large, and e-f) multiple blood stains.
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Fig. 8: 
Steps of post-processing the tracking data using laser pointer mounted on the KUKA LWR 

shining on the circular pattern: a) obtaining a video frame and mapping the 10 cm by 10 cm 

test area to a 500 by 500 pixel frame using corner detection and perspective transformation, 

b) tracking the green laser blob compared to the reference circle, and c) detecting the blood 

stain size and locations.
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Fig. 9: 
Tracking error for pattern following task with manual and autonomous controls under 

different test conditions.

Saeidi et al. Page 20

Rep U S. Author manuscript; available in PMC 2019 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10: 
Example trajectories of autonomous and manual control under ideal test conditions (no 

blood stains).
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Fig. 11: 
Example trajectories of autonomous and manual control under complex test conditions 

(multiple blood stains).
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Fig. 12: 
Example of the definition of start, middle, and end points of blood occlusion on the track.
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Fig. 13: 
Fitted curves for normalized errors vs the proximity to blood d.
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Fig. 14: 
Confidence models.
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Fig. 15: 
Comparison of the tests with laser pointer between pure manual (M), pure autonomous (A), 

and shared (S) control strategies.
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Fig. 16: 
Results of electrocautery on porcine fat samples. Top row shows the desired cuts and bottom 

row shows the performed cuts.
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Fig. 17: 
Examples of successful and unsuccessful shared control switching and their pure manual 

and autonomous control counterparts. Test-a (successful) is with multiple blood stains and 

Test-b (unsuccessful) is with a small stain.
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TABLE I:

Tracking errors in the sample cuts

Error (mm)

Test

A M-1 M-2 S-1 S-2

avg 3.212 0.881 1.234 0.866 1.116

std 2.141 0.662 1.114 0.565 0.899
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