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An Improved Formulation for Model Predictive Control of Legged
Robots for Gait Planning and Feedback Control

Kai Yuan and Zhibin Li

Abstract— Predictive control methods for walking commonly
use low dimensional models, such as a Linear Inverted Pen-
dulum Model (LIPM), for simplifying the complex dynamics
of legged robots. This paper identifies the physical limitations
of the modeling methods that do not account for external
disturbances, and then analyzes the issues of numerical stability
of Model Predictive Control (MPC) using different models
with variable receding horizons. We propose a new modeling
formulation that can be used for both gait planning and
feedback control in an MPC scheme. The advantages are the
improved numerical stability for long prediction horizons and
the robustness against various disturbances. Benchmarks were
rigorously studied to compare the proposed MPC scheme with
the existing ones in terms of numerical stability and disturbance
rejection. The effectiveness of the controller is demonstrated in
both MATLAB and Gazebo simulations.

I. INTRODUCTION

The performances achieved by legged robots during the
DARPA Robotics Challenge (DRC) suggest that more im-
provements in control shall still be made [1]. The common
approach for locomotion among all high ranked DRC hu-
manoids is to split motion planning and stabilizing control
into two separate parts [2], [3]. First, an optimal walking
pattern under the given environmental constraint is found
and used as reference in a feed-forward manner. Then a
closed-loop control tracks this reference for the execution,
i.e. stabilization of the planned motion pattern under distur-
bances and uncertainties. This decoupled use of feed-forward
and feedback control leads to suboptimal performances,
especially in the presence of disturbances.

This motivates the use of Model Predictive Control (MPC)
to remedy this problem [4]. MPC achieves closed-loop con-
trol by continuously solving the feed-forward optimization
using the feedback of current states and constraints. In MPC,
high-level tasks can be embedded in the cost function of
the optimization problem, and stability of the motion is
ensured by designing suitable constraints. This study aims
to formulate a coherent model for MPC suitable for both
online/offline planning as well as realtime feedback control
against external perturbations.

Zero-Moment Point (ZMP) based approaches generate
stable gaits by keeping the ZMP within the Support Polygon
(SP) [5]. This is usually enforced by either closely tracking
the ZMP, or by constraining the ZMP in an optimization
problem. When the solver time is secondary for planning,
more complete and complex whole-body models could be
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Fig. 1: Physics simulation in Gazebo of NASA’s Valkyrie walking
over uneven terrain using the proposed MPC framework.

used to plan for a long horizon resulting in a small deviation
from the optimal trajectory. In contrast, MPC solves the opti-
mization problem using simple models, and stability around
the planned trajectory is guaranteed by optimizing at a high
frequency. The most common simple model is the Linear
Inverted Pendulum Model (LIPM) [6]. Despite its limitations
on the Center of Mass (COM) height and the necessity of
coplanar contacts between feet and ground, it is extensively
used in optimization for dynamic locomotion: a Differenial
Dynamic Programming (DDP) approach was proposed in
[7], and the work in [8] used the LIPM to calculate the
closed-form solution of an LQR problem. Lastly, the LIPM
dynamics can also be used to represent the ZMP constraint
[9] and to design feedback controllers [3], [10].

In the past decades, the importance of MPC for dy-
namic locomotion has increased. First an unconstrained MPC
scheme was proposed in [11] for walking pattern generation
of bipedal humanoids. Improved disturbance rejection was
then achieved by constraining the ZMP [12]. Furthermore
MPC was used for automatic foot placement [13], Push
Recovery [14], and Capture Point (CP) tracking [15], [16].

We propose an MPC framework that particularly distin-
guishes the external perturbation in our formulation making
it real-world applicable, and also has dual-uses for Motion
Planning and Feedback Control. Our formulation is able to
generate a stable COM motion given Center of Pressure
(COP) or CP references while satisfying the ZMP con-
straints. Our contributions are summarized as follows:

• Analysis of numerical and physical issues in existing
MPC frameworks;



• A proposed formulation that solves the numerical and
physical problems analyzed above;

• Integration of the proposed MPC with whole-body
control for real-world application (Fig. 1);

• Benchmarking of the proposed MPC framework against
existing ones.

In Section II, the different use of dynamics models for
optimization are revisited and compared, and a better for-
mulation is proposed to explicitly differentiate the COM
acceleration caused by external pushes. An MPC framework
for Walking Pattern Generation and Feedback Control is
proposed in Section III. Then the numerical stability of dif-
ferent optimization formulations are analyzed, evaluated, and
discussed in Section IV. A comparison of these controllers
in the presence of disturbances is then studied in Section V.
Lastly we conclude our study in Section VI.

II. DYNAMIC MODELS

The ability to model the robot’s dynamics allows control
design to provide stability and robustness to uncertainties.
The idea of the LIPM is based on the assumption that the
dominant dynamics of a biped robot can be described by a
single inverted pendulum [6] (Fig. 2), which is fast-solvable
for optimization problems.

Fig. 2: Representation of NASA’s Valkyrie’s dynamics as an LIPM.
The real COP p∗ is controlled by COP velocity ṗ through a torque-
control based tracking controller. The resultant COM acceleration
ẍcom is composed by the acceleration generated by the real COP
and the external disturbance ẍext (left: no disturbance, right: with
disturbance). The fictitious ZMP p′ is represented by the CTM.

A. Linear Inverted Pendulum Model: COP as Control Input

For a constant COM height zc, the dynamics of the
Inverted Pendulum become linear and the states of the COM

are determined by a second order differential equation [11]:

ẍ =
g

zc
(x− px), (1)

with COM position x, velocity ẋ, acceleration ẍ, height zc,
gravity constant g, and ZMP px. The LIPM describes the mo-
tion of the COM propelled by the Center of Pressure (COP).
Due to symmetry of the LIPM motion, only the x component
is analysed; the y component behaves analogously.

In the literature the LIP based model (1) was repre-
sented with both a two-dimensional x = [x, ẋ]T [15], [17],
and a three-dimensional state space vector x = [x, ẋ, p]T

[18], [14]. The two-dimensional state space version is used
for Capture Point (CP) tracking with the output y =
[1,
√
zc/g]x. The three-dimensional version was used both

for control design [18], [14] and state estimation [19]. The
ZMP’s dynamics exhibit an integrator behavior using the rate
change ṗ directly as input into the system.

B. Cart-Table Model: Jerk as Control Input

A common way to plan a stable gait is to predefine a
ZMP trajectory within the Support Polygon that will be then
tracked closely, where the Cart-Table Model (CTM) [11]
serves as an inverse dynamics model of the LIPM (1) that
enables accurate ZMP tracking by the output feedback of the
simulated ZMP p given COM position x and acceleration ẍ:

p = x− zc
g
ẍ. (2)

Although the CTM is suitable for gait planning, it has two
limitations: 1. its input-output causality does not reflect the
causality of the actual robot: the real system does not have
a real control input that can be arbitrarily manipulated at
the COM. In fact, the real system behaves like an Inverted
Pendulum, where the COM is driven by the COP. 2. Due to
the reversed causality the COP (ZMP) position is calculated
wrongly in the case of disturbance. The real COP p∗,
which can be measured and directly controlled, generates
the nominal COM state xnom = [xnom, ẋnom, ẍnom] (Fig.
2 left). For the undisturbed system, COM state xcom and
the COM motion generated by COP xnom are identical, i.e.
xcom = xnom. However, in case of an external disturbance
(Fig. 2 right) that causes acceleration ẍext, the COM state
evolves according to the dynamics generated by the resulted
acceleration ẍcom = g(xcom−p∗)/zc + ẍext, while the COP
p∗ is controlled by a COP tracking controller and indepen-
dent from the external push. The CTM uses the resultant
COM state to rule back the cause of this acceleration, i.e.
where the COP/ZMP is. However, once the external accel-
eration is injected, the CTM no longer accurately captures
this behavior and thus yields a wrong COP calculation as
p′ = xcom − zc(ẍGRF

+ ẍext)/g = p∗ − zcẍext/g.

C. Proposed formulation

The fact that the COM state does not generally reflect
the COP of a real system due to disturbance motivates the
incorporation of the COP as an additional state in order to
correctly model the real physical process. By differentiating



(1), we can see that the jerk is determined by COM velocity
and rate change of COP ṗ:

...
x =

g

zc
(ẋ− ṗ). (3)

Also, by rearranging (3), the rate change of COP ṗ can be
represented by the COM state ẋ and the COM jerk

...
x resulted

by the influence of the COP position:

ṗ = ẋ− zc
g

...
x. (4)

In theory, both ṗ and
...
x are mutually exchangeable control

inputs to represent the newly introduced dynamics (4) of p :

d

dt


x
ẋ
ẍ
p

 =


0 1 0 0
0 0 1 0
0 g

zc
0 0

0 0 0 0



x
ẋ
ẍ
p

+


0
0
− g

zc
1

 ṗ (5)

yCOP =
[
0 0 0 1

]
x (6)

yCP =
[
1
√

zc
g 0 0

]
x. (7)

Our proposed equivalent formulation is:

d

dt


x
ẋ
ẍ
p

 =


0 1 0 0
0 0 1 0
0 0 0 0
0 1 0 0



x
ẋ
ẍ
p

+


0
0
1
− zc

g

 ...
x (8)

yCOP =
[
0 0 0 1

]
x (9)

yCP =
[
1
√

zc
g 0 0

]
x. (10)

To sum up, the COM dynamics can be controlled by two
different control efforts: controlling the COP p (1) or its
derivative ṗ, or controlling the jerk

...
x (2). Both models

require a COP controller that is able to track the desired
COP, which is compatible with modern torque controlled
hardware. The different formulations that were used in this
study are summarised in Table I.

# Model Control Input Origin

A LIPM: x = [x, ẋ]T p [17]
B LIPM: x = [x, ẋ]T p [15]
C LIPM: x = [x, ẋ, p]T ṗ [14], [18]
D’ LIPM: x = [x, ẋ, ẍ, p]T ṗ Proposed (5)
D LIPM: x = [x, ẋ, ẍ, p]T

...
x (representing ṗ) Proposed (8)

E CTM: x = [x, ẋ, ẍ]T
...
x [11], [12]

TABLE I: Definition of formulation A, B, C, D’, D as LIPM and
E as CTM with their control inputs and origins.

We opt for formulation D and will show that the proposed
state space formulation (8) has two main advantages com-
pared with existing ones: 1. analysis in Section IV will show
that the proposed formulation is numerically more stable than
the LIPM dynamics based state space formulations A, B, C,
D’, and thus the proposed formulation D can be used for
both short and long prediction horizons; 2. the disturbance
rejection is greatly improved by introducing the new state p
which will be shown in Section V.

III. MODEL-PREDICTIVE CONTROL FRAMEWORK

MPC enables loop closure by optimizing over a predefined
prediction horizon N at a given frequency 1/T considering
constraints. This section formulates a constrained optimiza-
tion problem which is then incorporated into an MPC frame-
work consisting of an Model-Predictive Controller, Whole-
Body Controller, and a State Estimator.

A. Optimization Problem Formulation

The optimization problem, which the MPC is continuously
optimizing over, is formulated as a Quadratic Programming
(QP) problem due to its convex property and the existence
of fast QP solvers. For this, the previously introduced con-
tinuous state space systems is discretized at a sampling time
T . For any discrete Linear Time-Invariant (LTI) system

xk+1 = Adxk +Bduk, zk = Cdxk (11)

the outputs Zk+1 = [zk+1, ..., zk+N ]T at each time step can
be recursively stacked up to the prediction horizon N :

Zk+1 =

CdA
1
d

...
CdA

N
d

xk +

 CdA
0
dBd 0 0

CdA
1
dBd

. . . 0

CdA
N−1
d Bd · · · CdA

0
dBd

Uk

Zk+1 = Atxk +BtUk.

(12)

The original cost function minimizing tracking error
ez(U) = Z(U)− ZRef and control input U :

J = (Z − Zref )TQ(Z − Zref ) + UTRU, (13)

can be rewritten into a quadratic optimization formulation:

min
U

1

2
UTHU + fTU (14)

s.t. AU ≤ B. (15)

The column matrix U ∈ RN×1 contains all control actions
over the prediction horizon N . The matrix H ∈ RN×N and
f ∈ RN×1 are obtained by rewriting the cost function (13):

H = BT
t Bt +

R

Q
1N , f = BT

t (Atxk − Zref ), (16)

with identity matrix 1N of prediction horizon size N .
The ZMP constraints for (15) is obtained from (12):

Zmin ≤ Zk+1(Uk) ≤ Zmax (17)[
−Bt

Bt

]
U ≤

[
Atxk − Zmin

−(Atxk − Zmax)

]
. (18)

Furthermore, for real world applications, the rate of change
for the COP ṗk = ẋk − zc

...
xk/g plays a crucial role. If the

optimal controller produces an unrealizable COP trajectory,
the system will not be able to track it. Hence, a constraint of
the rate change of the COP according to the physical system
is necessary as:

∆pmin ≤ ẋk −
zc
g
uk ≤ ∆pmax (19)[− zc

g +Bt
zc
g −Bt

]
U ≤

[
∆pmax −Atxk

−(∆pmin −Atxk)

]
, (20)



where the output zk = ẋk is the velocity of the COM.
The maximal admissible values of the COP rate change are
determined by the individual robot. For Valkyrie the maximal
rate change is approximately ±2m/s. Constraint (20) will
be used for all CTM based QP formulations with input
uk =

...
xk. For LIPM based formulations, the rate change

is the input uk = ṗk that can be directly constrained:

∆pmin ≤ uk ≤ ∆pmax. (21)

B. MPC framework

The MPC framework (Fig. 3) consists of three parts:
MPC, Inverse Dynamics, and State Estimator. First, the
sensor information ξsensor from the sensors is passed into
a state estimator [19] outputting state x. Next, the Model-
Predictive Controller solves the QP problem (12) for the
optimal control input U using the state x obtained from
the state estimator. The first element of the optimal control
input U(1) = uk is used to forward simulate the dynamics
(11) for the reference trajectory ξref . Lastly, an Inverse
Dynamics low-level controller maps the reference COM and
COP trajectories from the MPC to joint torques τ which are
then tracked on the actuators.

The torque commands τ , along with joint accelerations
q̈ and ground reaction forces λ, are calculated as the so-
lution X = [q̈, τ ,λ]T from a whole-body QP optimization
problem, presented in [7]1:

min
X

XTHX + fT (22)

s.t. AeqX +Beq = 0 (23)
AineqX +Bineq ≥ 0. (24)

The cost function (22) is calculated as a weighted sum
over Cartesian space acceleration tracking of COM and
body links, such as swing foot and hands, COP tracking,
and regularization of X . The equality constraints (23) are
determined by the equations of motion:

[
M(q) −S −JT (q)

] q̈τ
λ

+ h(q, q̇) = 0, (25)

with inertia matrix M(q), selection matrix S, stacked Ja-
cobian matrices JT (q) of the contact links, and nonlinear
effects h(q, q̇). Torque limits, friction constraints, and COP
constraints are considered in the inequality constraints (24).

IV. ANALYSIS OF NUMERICAL STABILITY RELATED
WITH PREDICTION HORIZON

Guaranteeing numerical stability is an important aspect for
digital control, as numerical brittleness can induce oscilla-
tions and instabilities into systems, where no noise or uncer-
tainties exist. In optimization, if the matrices are ill-defined,
nominal systems can diverge and unbounded responses can
be evoked by small changes [20], [21]. Specifically, well
defined matrices At, Bt (12) are important for the prediction

1For details of the implementation, please refer to [7].

MPC
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Dynamics
Actuators

𝝉𝝃𝑟𝑒𝑓

𝒙 State 
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Sensors

Robot

Controller

Fig. 3: Overview of the MPC framework.

matrix H in the cost function (14). Numerical issues caused
by the long prediction horizon were avoided by a Singular
Values Decomposition (SVD) of the optimization matrix in
[20], [21]. Consequently, the constraints become softened
and thus do not guarantee stability. In the following, the
influence of the Prediction Horizon N on the numerical sta-
bility of different state space formulations will be analyzed,
and the study will show that the numerical issues can be
prevented by an appropriate choice of the dynamic model.

A. Numerical Stability

For determining the numerical stability and sensitivity
the condition number κ(A) = ‖A‖‖A−1‖ of a matrix A
will be used as an indicator. Using the Euclidian norm
the calculation of the condition number becomes κ(A) =
σmax(A)/σmin(A), where σmax, σmin are the maximal and
minimal Singular Values (SV) respectively. As a general
rule, condition numbers κ(A) exceeding 1/ε, where ε is the
number precision, can be considered to be an indicator for
ill-defined matrices and therefore numerical brittle systems.
The larger the condition number becomes, the more digit pre-
cision is lost during numerical operations, such as inverting,
multiplying, etc. [22]. The condition number is exponentially
influenced by the prediction horizon N . The larger N
becomes, the more elements of AN

d get exponentiated as
in (12), resulting in large SV and therefore larger condition
numbers. Due to this reason, it is desirable that the inter-
multiplication of rows and columns in Ad are smaller than 1
to prevent the condition number to grow exponentially large.
In the CTM formulation, values in the system matrix A and
control matrix B are either 0 or 1. However, this is not the
case for the LIPM formulation.

Fig. 4 shows the influence of the prediction horizon N on
the condition number of different optimization formulations.
For the matrices Ad, Bd in equation (12) the 5 formulations
in Table I are considered. The matrix Cd is determined by
whether COP or CP is tracked. Apart from formulation A, B,
which due to its two-dimensional state space is only able to
track CP alone, all other formulations are able to track both
CP and COP. It can be seen that the Condition Numbers (CN)
are identical for formulation A and B until the prediction
horizon N exceeds 5s,where the CN exceeds 1/ε and thus
fluctuates due to numerical inaccuracies.

This phenomenon can be observed in all LIPM based state
space representations: the function of CN over prediction
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horizon follows an exponential curve, but after the CN ex-
ceeds 1/ε, the CN fluctuates, while still increasing exponen-
tially. An exception is the COP tracking formulation C: the
matrices are well-conditioned for output matrix Cd = [0, 0, 1]
and state vector x = [x, ẋ, p]T . The CTM formulation E, and
the proposed formulation have well-defined matrices, and the
CN only exceeds 1/ε after more than a 100s.

B. Open Loop Stability for Planning

To further evaluate whether the state space formulations
are suitable for planning, i.e. optimization over a long
prediction horizon, the Eigenvalues (EV) were analyzed. As
in Table II, the prediction horizon does not influence the
EV of the CTM based representations. For LIPM based
representations however, the prediction horizon influences
the EV after NT = 5.5s making these models unsuitable for
long term planning as the open-loop case is highly unstable.

In Fig. 5, the effect of a prediction horizon Tprev = 5.5s
for solution U of the planning problem (14) is shown exem-
plary (all LIPM formulations exhibit this behavior) for CP
tracking using formulation C and our proposed formulation
D. The yellow line is the COP rate change trajectory that
achieves perfect tracking given the CP reference.

It can be seen that the optimal solution using the LIPM
(blue line) performs poorly, due to oscillation and deviations
from the reference. This is caused by large prediction hori-
zons, which can be observed by analyzing the last row of the
prediction matrix Bt in (12). It describes the contribution of
each input uk, k = [1, ..., N ] to the final output zN . As shown
in Fig. 5, the control inputs of LIPM based formulation
have almost no effect on the final state after 2s. In contrast,
our proposed formulation and formulation A (red line) are
unaffected by the prediction horizon. All inputs uk influence
the final state with decreasing importance as k increases.

The comparative analysis shows that LIPM based models
are not suitable for long term planning. If the loop is closed
by the optimal solution of such models with large prediction

Prediction Horizon NT

Formulation 1.5s 2.5s 3.5s 4.5s 5.5s

A: CP CN 1e07 7e09 3e12 2e15 2e19
EV 0.97 0.97 0.97 0.97 68.74

B: CP CN 1e07 7e09 3e12 2e15 2e19
EV 1.03 1.03 1.03 1.03 8.81

C: CP CN 3e08 2e11 9e13 1e19 1e21
EV 0.97 0.97 0.97 1873.3 216.3

C: COP CN 4e04 1e05 2e05 3e05 5e05
EV 1.03 1.03 1.03 1.03 1.03

D: CP CN 3e05 4e06 2e07 1e08 3e08
EV 1.00 1.00 1.00 1.00 1.00

D: COP CN 5e04 2e06 1e07 7e07 2e08
EV 1.00 1.00 1.00 1.00 1.00

E: CP CN 3e05 4e06 2e07 1e08 3e08
EV 0.97 0.97 0.97 0.97 0.97

E: COP CN 5e04 2e06 1e07 7e07 2e08
EV 0.97 0.97 0.97 0.97 0.97

TABLE II: Condition Number (CN) and Eigenvalue (EV) over
different prediction horizons NT for the formulations presented in
Section II, and COP or CP tracking.
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Fig. 5: COP rate change trajectories (left y-axis) for LIPM and
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final output zN is in dashed lines for LIPM (blue) and CTM (red).

horizons (empirically maximum tested: 4s), the computed
control input (COP) oscillates and ultimately diverges the
system. This is caused, beside oscillations, by the ill-defined
prediction matrices Bt result in inaccurately calculated feed-
back gains K, and therefore destabilize the system.

Summarized, all CTM based optimizations are suitable for
long prediction horizons and therefore gait planning. The gait
planner generates a COM trajectory that follows the ZMP or
the CP reference. Due to the well-defined prediction matrices
At, Bt, the proposed formulation D and E can generate
walking patterns to up to 100s. Given a ZMP or CP reference,
an one-shot solution of the optimization can then be used as a
nominal gait planning. The limitation of existing CTM based
MPC schemes will be studied in the next section.

V. SIMULATION BENCHMARKS

This section presents the comparison study of closed loop
behavior for different formulations C, E, and our proposed
formulation D in COP and CP tracking tasks while applying
a variety of impulse and constant disturbances.



A. Simulation setup
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Fig. 6: Overview of the simulation setup in MATLAB.

For simulating the physics, two different platforms are
chosen: Gazebo and MATLAB. The validity of the proposed
MPC framework (Section III) for gait planning and feedback
control is shown in the real world simulator Gazebo (Fig. 1).
The framework is able to handle unmodelled inclined terrain
of up to 5◦ pitch and 10◦ roll inclination. The results can be
seen on https://youtu.be/7uwtorW_kzE.

For benchmarking the disturbance rejection abilities a
numerical simulation is conducted in MATLAB. The robot’s
dynamics (Fig. 6) are numerically integrated at Tsim = 1ms,
and the closed-loop MPC is running at a frequency of
fmpc = 100Hz. The COM dynamics follow the “COP→
acceleration” (1) causality determined by the LIPM (Fig. 2):

ẍcom =
g

zc
(xcom − p∗) + ẍext. (26)

Formulation C expresses identical dynamics as formulation
A and B, and can therefore be seen as a representative
extension of the latter. The objective (13) of the optimization
is tracking a predetermined ZMP or CP trajectory under con-
straints. For numerically sensitive systems, correct selection
of parameters is crucial: short prediction horizons or over-
constrained inputs (R < 10e−6) may result in instability. The
prediction horizon was chosen as N = 2.5s, the weights as
Q = 1, R = 10e−6. The system is considered to be unstable,
if the states diverge, the ZMP exceeds the SP (e.g. Fig. 8a),
or no solution of the optimization problem is found, i.e. the
COP rate change constraint is significantly violated.

B. Disturbance Rejection

To determine the capability of disturbance rejection for
the different formulations with different tracking objectives,
four types of disturbances are studied: three impulses at
different impact times, and one constant disturbance. All
types of disturbances have relevance in the real application:
impulse disturbances can be considered as pushes, or sudden
impacts caused by collision, e.g. improper swing foot land-
ing. Constant acceleration disturbances can be caused by an
external load, biased COM position from the state estimation
errors [19], or model uncertainties. The maximal rejectable
disturbance of the individual models is detailed in Table III.

Alternatively for formulation E, instead of applying the
erroneously calculated ZMP, it is possible to simply apply
clipping of the output ZMP/COP when it exceeds the SP
as the work in [23]. Even though clipping can prevent the
system from getting unstable due to the ZMP exceeding the

SP, the system can still become unstable due to divergent mo-
tion, or insufficient COP rate change. This approach is still
inferior to our proposed formulation in theory, because the
constraints are not correctly represented in the formulation
and hence the clipped control effort is inevitably suboptimal,
which leads to roughly 50% less disturbance rejection ability
compared to that of our proposed formulation.

Disturbance duration in seconds

Formulation 0–10 2.4–2.45 2.6–2.65 2.8–2.85

C (CP) 0.36 (0.31) 2.04 (0.91) 2.57 (0.92) 2.02 (0.80)
C (COP) 0.18 (0.15) 2.23 (1.00) 2.78 (1.00) 2.23 (0.89)
D (CP) 0.50 (0.43) 2.04 (0.91) 2.57 (0.92) 2.29 (0.91)
D (COP) 1.17 (1.00) 2.16 (0.97) 2.76 (0.99) 2.51 (1.00)
E (CP) 0.42 (0.36) 0.30 (0.13) 0.37 (0.13) 0.34 (0.14)
E (COP) 0.56 (0.48) 0.35 (0.16) 0.42 (0.15) 0.44 (0.18)
E clip. (CP) 0.35 (0.30) 1.42 (0.64) 1.40 (0.50) 1.40 (0.56)
E clip. (COP) 0.56 (0.48) 1.39 (0.62) 1.39 (0.50) 1.37 (0.55)

TABLE III: Maximal rejectable disturbance for CP or COP
tracking. The ratio in the brackets is normalized by the maximal
disturbance (bold) for the specific disturbance type and formulation.

C. Performance Analysis
1) Comparison of Models: Under constant disturbance

our proposed formulation performs twice as good as the
others (Table III). Our proposed MPC withstands more than
double the amount of disturbance compared to the other
formulations in COP tracking tasks, and withstand averagely
34% more perturbation in CP tracking tasks. Compared to
other formulations, the disturbance is handled better, and
therefore the COP rate change only hits the constraints at
much larger perturbations. Formulation C fails due to the
violation of the COP rate change constraints, and the ZMP
in formulation E violates the SP constraints earlier (Fig.7).

For constant disturbances, the proposed formulation D is
able to distinguish between disturbance-generated and self-
generated accelerations and therefore correctly calculating
the COP that respects the physical constraints. By doing so,
it is able to counterbalance the constant disturbance, track the
COP reference with zero steady state error after 1 second by
offsetting the COM away from the nominal trajectory and
leaning against the constant push (cf. behavior after 7s). In
contrast, formulation E generates the COP away from the
desired reference with steady state error while keeping the
COM at the nominal trajectory yielding.

Formulation C shifts both COP and COM away from
the nominal trajectory, because only the input ṗ is used to
track the COP reference without considering the COM state.
However, convergence is only guaranteed by including the
COM states in the cost function or constraints. For short dis-
turbances, e.g. impulses, deviations between predicted COM
state and real disturbed COM state do not influence the per-
formance of the controller. But for long, constant deviations,
ignoring the COM state leads to decreased performance. This
can be seen in Fig. 7(b). It can be further elaborated by
turning the constant disturbance off, and observing how the
steady state error vanishes, as predicted COM state and real
COM state coincide again (cf. attached video).

https://youtu.be/7uwtorW_kzE
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(a) Constant disturbance while COP tracking with formulation C.
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(b) Constant disturbance while COP tracking with formulation E.
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(c) Constant disturbance while COP tracking with proposed for-
mulation D.

Fig. 7: Comparison between formulation C (a), E (b), and proposed
D (c) for constant disturbance ẍext = 0.15m/s2. The proposed
formulation D updates the COP trajectory correctly according to
(8). Formulation E calculates the COP trajectory wrongly by (2),
attributing the external acceleration wrongly to the COP.

For impulse disturbances (Fig. 8), the time of impact is
almost irrelevant with respect to the ratio (see Table III). Al-
though satisfying the internal model of the ZMP constraint,
formulation E becomes unstable because of the violation of
the SP constraint due to an erroneously calculated ZMP (cf.
Section II-B). Both the proposed formulation D and C can
handle the ZMP dynamics correctly with almost the same
performances that are better than formulation E.

In summary, the disturbance rejection capability is not
fully maximized in the CTM based MPC formulation E.
LIPM based MPC formulations perform similar to the pro-
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(a) Impulse disturbance while COP tracking with formulation E.
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(b) Impulse disturbance while COP tracking with proposed formu-
lation D.

Fig. 8: Comparison between formulation E (a), and proposed D (b)
for an impulse push of ẍext = 0.5m/s2. Due to wrongly capturing
the COP dynamics the controller in (a) is wrongly reacting to the
disturbance, moving the COP outside of the SP. Formulation (b) is
correctly complying with the ZMP constraint.

posed formulation for impulse disturbances, but reject less
performance during constant disturbances.

2) Comparison of Control Objectives: Although our for-
mer study shows that the COP tracking has good perfor-
mance against disturbances, decomposing the COM’s motion
into a stable and unstable parts and controlling the unstable
part of divergent component or capture point is known for
additional advantages [24].

Setting the control objective of minimizing CP, i.e. CP
tracking, makes the system fully utilizing the stability margin
while being disturbed by quickly moving the COP to the
boundaries as possible. In contrast, an objective of minimiz-
ing COP error, i.e., COP tracking, limits the deviation of
COP away from the reference, thus a slower COP response
in the presence of disturbance, so a problem may arise if a
second disturbance occurs.

The CP tracking recovers faster and can therefore possibly
handle a new impulse, whereas the COP tracking recovers
slower being vulnerable to a new push. The response of an
impulsive push using the proposed formulation can be seen
Fig. 9. After getting disturbed for 50ms at t = 2.20s, the
CP tracking has COP settles back at t = 2.5s, while for the
COP tracking the COP is still at 30% of its stability margin.
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(a) COP tracking with proposed formulation D.
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(b) CP tracking with proposed formulation D.

Fig. 9: Comparison between COP (a) and CP (b) tracking under
an impulse disturbance of ẍext = 1m/s2 .

Besides, the COP tracking scheme reinforces smaller COP
errors due to its objective and thus demands larger COP
rate change; while the CP scheme allows small harmless
variations of COP as long as CP is tracked and COP is
feasible, thus requires smaller COP rate change.

VI. CONCLUSION

This paper has proposed a formulation for Model-
Predictive Control based on the Linear Inverted Pendulum,
which has an improved performance over previous formula-
tions and is suitable for both gait planning and feedback
control of legged locomotion. It resolves two previously
unattended problems: (1) numerical stability in the case
of long prediction horizons, making the proposed method
more suitable for gait planning; (2) enhanced disturbance
rejection attributed to the incorporation of COP as a new
state variable, and therefore correctly including the COP
in the feedback loop. Our study showed that the proposed
formulation was able to reject larger disturbances than the
previous LIP formulations. Furthermore, in combination with
a whole-body controller, the proposed MPC framework was
able to blindly traverse unknown inclined terrain of up to 5◦

and 10◦ for pitch and roll inclination respectively.
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