
Joint Point Cloud and Image Based Localization
For Efficient Inspection in Mixed Reality

Manash Pratim Das1, Zhen Dong2 and Sebastian Scherer3

This paper has been accepted for publication at the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Madrid, 2018. c©IEEE

Abstract— This paper introduces a method of structure
inspection using mixed-reality headsets to reduce the human
effort in reporting accurate inspection information such as
fault locations in 3D coordinates. Prior to every inspection,
the headset needs to be localized. While external pose
estimation and fiducial marker based localization would require
setup, maintenance, and manual calibration; marker-free
self-localization can be achieved using the onboard depth sensor
and camera. However, due to limited depth sensor range
of portable mixed-reality headsets like Microsoft HoloLens,
localization based on simple point cloud registration (sPCR)
would require extensive mapping of the environment. Also,
localization based on camera image would face same issues
as stereo ambiguities and hence depends on viewpoint. We
thus introduce a novel approach to Joint Point Cloud and
Image-based Localization (JPIL) for mixed-reality headsets
that uses visual cues and headset orientation to register small,
partially overlapped point clouds and save significant manual
labor and time in environment mapping. Our empirical results
compared to sPCR show average 10 fold reduction of required
overlap surface area that could potentially save on average 20
minutes per inspection. JPIL is not only restricted to inspection
tasks but also can be essential in enabling intuitive human-robot
interaction for spatial mapping and scene understanding in
conjunction with other agents like autonomous robotic systems
that are increasingly being deployed in outdoor environments
for applications like structural inspection.

I. INTRODUCTION

The onset of portable mixed reality headsets like Google
Glass and Microsoft HoloLens has enabled efficient human
interactions with 3D information. These headsets are found
to be suitable for on-site inspection [1], [2], due to their
ability to visualize augmented geo-tagged holograms and
measure 3D distances by virtue of gaze and gesture. Notably,
before every inspection, the headset needs to be localized,
preferably with onboard sensors, to establish a common
frame of reference for 3D coordinates. As spatial mapping
and understanding is key to mixed-reality, we can safely
assume that the primary sensors would include at least a
depth sensor and a camera. However, due to low form factor
and portability, these sensors have limited range. Given a
prior 3D model of the structure as a template, existing
methods for simple point cloud registration (sPCR) [3], [4]
can be employed on a spatial map generated on-site by
the headset. These methods, however, require significant
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Fig. 1: An inspector initiates JPIL with a gesture. JPIL uses spatial
map, camera image and headset orientation for localization.

overlap between the point clouds and thus would require
the user to sufficiently map the structure on the order of
300m2 surface area. Conversely, camera pose estimation
using 3D-2D correspondences [5] lacks desired precision and
depends on viewpoint due to stereo ambiguities.

In this paper, we introduce an efficient approach to
Joint Point Cloud and Image-based Localization (JPIL)
for marker-free self-localization of mixed-reality headsets
that requires minimum on-site mapping time. JPIL can
successfully register spatial map with significantly low
overlap with a prior 3D model by combining additional
information from camera image and headset orientation,
which is simply available from the onboard camera,
IMU and magnetometer sensors. Interestingly, it simplifies
the problem to an extent that is critical for operation
in symmetric environments. A small spatial map might
resemble multiple structures on the prior 3D model, thus,
a camera pose estimation (CPE) problem is solved, as a
function of point cloud registration to differentiate between
multiple candidates. The resulting localization accuracy is
similar, albeit at significantly lower point cloud overlap.
The contributions of this paper are: 1) We contribute a
JPIL method (Section V) to use spatial map (Section III),
camera image (Section IV) and headset orientation to
localize mixed-reality headset with minimum mapping time.
2) A modified binary shape context based 3D point cloud
descriptor with an efficient multiple-candidate descriptor
matching algorithm (Section III-B). 3) We empirically show
that JPIL method results in the successful registration of
point clouds with overlap as low as 10m2 and average 10
fold reduction in required surface area.

Finally, we provide software implementation 1 and
hardware verification on a Microsoft HoloLens.

1Source code: https://bitbucket.org/castacks/jpil
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II. DIGITAL MODEL AND SETUP

A common frame of reference is required to report 3D
coordinates that can be persistently used across multiple
inspection sessions. While a global positioning system (e.g.,
GPS) can be used, instead, we use a digital 3D model (Fig. 2)
M of the structure and report all 3D coordinates in its
reference frame R. M has to be real scale and can be a
partial or full representation of the structure. The source for
M can be a computer-aided model or a map generated by
other 3D reconstruction methods such as [6], [7]. If M of a
structure does not exist prior to its inspection, then the user
can scan the structure to build a map that can be used asM
in future inspections.

Fig. 2: An example CAD model M of the Delaware Memorial
Bridge.

We choose a 3D triangular mesh as the format for M
as ray casting on a mesh for measurement is accurate and
computationally cheap due to the surface representation. In
most cases, a mixed-reality headset would setup up a local
frame of reference R′ and an arbitrarily defined origin x′0
for its operation. Let M′ define the triangle mesh generated
by spatial mapping. Orientation q is estimated in Easting,
Northing and Elevation (ENU) geographic Cartesian frame
from the IMU and magnetometer for both the models. The
models are thus aligned with the ENU frame.

Localization of the headset has to be performed only once
per inspection session, where a transformation is established
between R and R′. Headset pose x′t w.r.t R′ at time t is
tracked by the headset itself. A normal inspection procedure
under the proposed method would be to first map a small
(∼ 5m2) structural surface M′ and initiate JPIL with
(M,M′, x′t, qt), where t represents the time in that instance.

III. POINT CLOUD REGISTRATION

JPIL samples M and M′ meshes to generate
corresponding point clouds for registration. Point cloud
registration estimates a 4× 4 transformation matrix A given
M and M′, such that M′ perfectly aligns with M when
every point of M′ is transformed by A Fig. 3.

pMi = ApM
′

i (1)

where pMi and pM
′

i are corresponding points (homogeneous
coordinates) in M and M′ respectively. A common
framework consists of essentially the following steps:
1) Keypoint extraction, 2) Descriptor computation,

3) Descriptor matching, and 4) Transformation estimation.
The models are aligned with ENU frame, thus, A will have
negligible rotation component. We use binary shape context
descriptor [8] for step 1 and 2 while we modify step 1
to incorporate the orientation information. The modified
descriptor (tBSC) is now orientation specific. Finally, we
propose an efficient algorithm for step 3 (subsection III-B).
Thus, we discuss steps 1 and 3 in detail while briefly
revising the other steps.

Model M′

Model M

Origin of M′

Origin of M

pM
′

i

pMi

A

Raycast in gaze

direction gM
′

i

Current headset position

xM′
i

Fig. 3: R establishes a common frame of reference at the origin of
M. During each inspectionM′ is generated, whileM is common.
A raycast performed in gaze direction gM

′
t from headset’s position

xM
′

t gives the measurement pM
′

t . Point cloud registration estimates
A, that allows the point of interest pMt to be reported in R.

A. Keypoint extraction

Keypoint extraction complements the feature descriptors
by providing points that are expected to have high feature
descriptiveness and are robust to minor viewpoint changes.
For each point p′ of a point cloud, we perform two separate
eigenvalue decompositions on the covariance matrices Mxy

and Mxyz .
The covariance matrices Mxy and Mxyz are constructed

using p′ and its neighboring points within a supporting radius
r(scale), which is user defined. We used r(scale) = 0.4. The
neighboring points qj(j = 1, 2, . . . ,m) and p′ are denoted
as N = {q0, q1, q2, . . . , qm}, where q0 is the point p′ and
m is the number of neighboring points. A new set of points
N ′ = {q′0, q′1, q′2, . . . , q′m} is generated from N with only the
x and y component of those points. The covariance matrices
Mxyz and Mxy are calculated as follows:

Mxyz =
1

m+ 1
(qj − q0)(qj − q0)T (2)

Mxy =
1

m+ 1
(q′j − q′0)(q′j − q′0)T (3)

The eigenvalues in decreasing order of magnitude
{λ1, λ2, λ3} and {λ′1, λ′2}, along with the corresponding
eigenvectors {e1, e2, e3} and {e′1, e′2} respectively, are
computed by performing eigenvalue decompositions of Mxyz

and Mxy respectively.
Now, the point p′ is considered a keypoint if:



• (λ′2/λ
′
1) < k : Note, {λ′1, λ′2} are the eigenvalues

computed from Mxy , which in turn is formed from the
2D distribution of N ′ in the x, y plane. This condition,
thus, promotes points with well defined eigenvectors.

• Highest curvature among its neighbors. The curvature c
is defined by c =

(
λ3

λ1+λ2+λ3

)
.

For each keypoint, a local reference frame (LRF) is
defined. An LRF imparts invariance in feature descriptors
to rigid transformations. Descriptors are computed based on
the LRFs, thus, it is critical for LRFs to be reproducible.
In [8], the authors define an LRF by adopting p as the origin
and e1, e2, e1 × e2 as the x-, y-, and z-axes, respectively,
where × represents the cross product of vectors. However,
the orientation of each eigenvector calculated by eigenvalue
decomposition has a 180◦ ambiguity. Therefore, there are
two choices for the orientation of each axis and thus four
possibilities for the LRF. They end up computing descriptors
for all four possible LRFs and thus leading to reduced
precision. This ambiguity is generally faced by all sPCR
methods that use eigenvectors for LRF. In, contrast JPIL
adopts Ê, N̂ , Ê × N̂ as the x-, y-, and z-axes, respectively,
where Ê and N̂ is a vector towards magnetic East and North
respectively. Thus, the LRF is written as

{p, Ê, N̂ , Ê × N̂} (4)

B. Multiple Candidate Registration

Since, M′ would generally be very small as compared
to M, the registration would have translational
symmetry Fig. 4. Let the descriptor for a keypoint pi
be defined as di and PM = {pM1 , pM2 , pM3 , . . . , pMm } and
PM′ = {pM′

1 , pM
′

2 , pM
′

3 , . . . , pM
′

n } be the set of keypoints
for M and M′ respectively.

Let Cdesc(di, dj) be the hamming distance between two
binary descriptors di and dj , and cmax denote maximum
possible value of Cdesc(di, dj). A match M is a set of
keypoint pairs {pM′

, pM} formed by selecting a keypoint
pM

′
i and pMj from PM′ and PM respectively such that
Cdesc(d

M′
i , dMj ) < cmax×εdesc, where εdesc is a user definable

threshold. M contains set of matches that 1) belong to either
one of the possible candidates, and 2) are outliers. We find a
family of match sets O where a set represents a candidate. O
is found based on geometric consistency with error margin
of εclust and clustering on M given by Algorithm 1. We used
εclust = 0.8.

Subroutine RIGIDTRANSFORM(o) called by Algorithm 1
estimates the transformation matrix a from the corresponding
3D points using singular value decomposition. An alignment
is evaluated based on how similar the two point clouds looks
after alignment. M′ is transformed by a to get M′a, and
M is clipped to get Mc using a box filter of dimension
equivalent to the bounding box of M′a. The idea is to
compute two tBSC descriptors d1 and d2, one each for
M′a and Mc with radius equivalent to longest side of
the bounding box, and keypoints p1 and p2 at the box
centers respectively. Subroutine ALIGNCOST(a) return the
alignment cost given by Cdesc(d1, d2).

Algorithm 1 Find multiple candidate registrations

1: procedure FINDREGCANDIDATES(M, εclust)
2: O ← {} . Family of match sets
3: Aall ← {} . Set of transformations
4: C ← {} . Set of alignment costs
5: nos← |M |
6: gr ← zeros(1, nos)
7: i← 0
8: while i < nos do
9: if gr[i] == 0 then

10: {pM′
, pM} ← M [i]

11: gr[i]← 1
12: o← {M [i]}
13: j ← i+ 1
14: while j < nos do
15: if gr[j] == 0 then
16: {qM′

, qM} ← M [j]
17: ex ← |pMx − pM

′
x − qMx + qM

′
x |

18: ey ← |pMy − pM
′

y − qMy + qM
′

y |
19: ez ← |pMz − pM

′
z − qMz + qM

′
z |

20: if ex + ey + ez < 3× εclust then
21: o← o ∪ {M [j]}
22: gr[j]← 1

23: if |o| > 4 then
24: a← RIGIDTRANSFORM(x)
25: c← ALIGNCOST(a)
26: O ← O ∪ {o}
27: C ← C ∪ {c}
28: Aall ← Aall ∪ {a}
29: i← i+ 1

30: return O,A,C

IV. IMAGE BASED CANDIDATE SELECTION

The motivation behind JPIL to use visual cues is the rich
amount of information that is present in a single image.
While the depth sensor on the headsets has a range of about
5m and about 70◦ field of view (FOV), a spherical camera,
can provide full 360◦ horizontal and 180◦ vertical field of
view. Consider a particular candidate j: let its transformation
matrix and alignment cost be aj and cj respectively. Since,
the headset pose x′t w.r.tM′ at time t is known (Section II).
JPIL generates synthetic projection images IMt,j (qt, xt,j) of
M setting a virtual camera at position xt,j = aj × x′t and
headset orientation qt = {qRoll

t , qPitch
t , qYaw

t } in ENU frame.
If j is the correct candidate, then the camera image It

and synthetic image IMt,j should match better than those of
the other candidates. Thus, implying xt,j to be the correct
headset pose w.r.t R. We evaluate a match based on the
distance metric described in Section IV-A.

We demonstrate JPIL with a spherical camera, however it
is not a necessity. The user may use any camera with suitable
FOV for their case. We however do recommend the use of
spherical cameras as the localizability increases with FOV
and we discuss the benefits of the same in the experiments.



Fig. 4: Multiple possible registration candidates for very small
(3m×1.5m×0.5m)M′ (Blue). A user can easily map such small
region which is sufficient for unique localization when coupled with
image based candidate selection.

A. 3D-2D Image Match Distance Metric
Given a 3D point cloud structure and a camera image,

the estimation of the camera pose is a standard computer
vision problem. We follow interesting articles [5], [9] from
the literature that solves this problem. And use it as a
framework to build upon our method that supports spherical
image projection and a orientation constraint non-linear
optimization for camera pose.

Since, IMt,j is generated by projecting M on a sphere, we
can backtrack from a pixel coordinate (x, y) to the 3D points
px,y = f(IMt,j , x, y). The initial goal is to detect 2D-2D
image correspondences between IMt,j and It, and establish
3D-2D correspondences after backtracking from IMt,j Fig. 5.

Let Px,y = {p|p = px+ix,y+iy , ix ∈ [−n, n], iy ∈
[−n, n]} where n is kernel dimension. Standard deviation
σx,y = std(Px,y). JPIL rejects a correspondence if σx,y <
εσ , assuming the 3D point to be uncertain.

Let pk and p̄k be 3D point and image pixel respectively
of kth correspondence. x′t,j is the position of headset in
M according to jth candidate. Using spherical projection,
we can project p̄k to a point p̄s

k on the projection sphere.
Also, we can project every point pk to a point ps

k(qo, x
′
o)

on projection sphere as a function of orientation qo =
{qRoll
o , qPitch

o , qYaw
o } and position xo (viewpoint). Thus, we can

solve for {qo, xo} by minimizing the cost CSnP(qo,xo) on the
set of 3D-2D correspondences with RANSAC [10] based
outlier rejection.

CSnP =
1

2

∑
k

(
‖psk(qo, xo)− p̄sk‖

2
)

(5)

qαt − εq < qαo < qαt + εq

where α is Roll, Pitch or Yaw angle and εq is the
allowed flexibility. We use Ceres solver [11] for the
optimization. To evaluate the similarity of two images there
are many distance metrics in the literature, like Hausdorff
distance [12], photometric error [13] and homography
consistent percentage inlier matches. Since, we have the
3D information of an image, we rather check for geometric
consistency with the error in position given by Cimage:

Cimage(It, IMt,j ) = ‖xt,j − xo‖ (6)

3D Point Cloud M

IMt,jIt

2D-2D
3D-2D

Fig. 5: Generating 3D-2D correspondence from 2D-2D image
correspondences and backtracking to point cloud.

B. Confident Positive Matches

The cost function CSnP is non-linear and due to noise in
feature matching, the optimization might reach a false local
minimum giving erroneous xo estimate. Therefore, Cimage
metric is only good to determine if a match is confident
positive L+ given by:

L+(It, IMt,j ) =

{
1, if Cimage(It, IMt,j ) ≤ ε+

0, otherwise
(7)

where ε+ depends on the noise level and we used ε+ = 1.5.

V. JOINT POINT CLOUD AND IMAGE BASED
LOCALIZATION

To summarize, JPIL has as its inputs, a reference model
M, a small 3D map of the structure scanned in the particular
sessionM′, headset position x′t, headset orientation in ENU
frame qt and spherical image It at time t. The output of JPIL
Algorithm 2 is A, the transformation ofM′ toM, such that
headset position xt = A× x′t w.r.t R can be estimated.

Algorithm 2 Localize Headset w.r.t R
1: procedure JPIL(M,M′, x′t, qt, It)
2: αt ← registration error threshold
3: PM ← set of keypoints from M
4: PM′ ← set of keypoints from M′
5: M ← Descriptor match of PM and PM′

6: [O,Aall, C]← FINDREGCANDIDATES(M,αt)
7: n← |Aall|
8: j ← 0
9: while j < n do

10: IMt,j ← Synthetic spherical image for Aall[j]
11: if L+(It, IMt,j ) then
12: return Aall[j]

13: i← arg min(C)
14: return Aall[i]



VI. EXPERIMENTAL RESULTS

We performed few experiments to evaluate the following:
1) Performance of CPE with orientation constraints and

differentiability between candidates.
2) Tolerance of tBSC to error in orientation.
3) Relation of Cimage(It, IMt,j ) to error in orientation and

relative distance between the camera poses of the two
images.

4) Relation of Cimage(It, IMt,j ) to εσ .
5) Reduction in minimum required surface area and

mapping time.
The experiments were performed on a Microsoft HoloLens

headset with a Ricoh theta S 360◦ camera Fig. 6. We used
an off-board computer to process the data. The HoloLens
uploaded M′ (∼ 10 MB), It (∼ 700 kB for 1280 × 640
pixels), x′t and qt to the server. M (∼ 1.2 GB) was already
present in the server and an instance of JPIL was running
to accept communication from the HoloLens and return
back the transformation A. We used SPHORB [14] feature
descriptors for the spherical images.

HoloLens
EDM
prism

Theta 360◦

camera

Fig. 6: Microsoft HoloLens used for the experiments and test arena.

We tested JPIL in real world as well as simulated
environments. Real world data from HoloLens was collected
from Charles Anderson bridge, Pittsburgh, PA, USA. We
used a high precision Terrestrial Laser Scanner (TLS) to
generate dense RGB M. The ground truth positions for
the experiments were measured using a Electronic Distance
Measuring (EDM) Survey equipment that can report the
position of an EDM prism with millimeter accuracy. We
manually calibrated the EDM measurement w.r.t R.

A. Performance of CPE with orientation constraints and
differentiability between candidates.

The cost function (5) might have many local minimums
due to erroneous feature matching that might get selected
by RANSAC as inliers. We performed CPE for 22 image
pairs with varying εq and computed the average error and
standard deviation for each εq Fig. 7. We observed that errors
increase drastically with εq > 15◦ as expected. We observed
a slight decrease at εq = 4◦, which can be credited to the
flexibility that allowed optimization to minimize considering
errors in qt estimate. We also evaluate how discriminative is
CPE to candidate positions. We took a spherical image It
and generated multiple spherical images IMt at position with
error increments of ±0.5m along the bridge. From Fig. 7
we observe that Cimage(It, IMt,j ) becomes unstable with

increasing error and thus the concept of confident positive
matching works well to discriminate between candidates that
are further away from nominal position.
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Fig. 7: CPE error with varying relaxation of orientation constraints
(a) and error in nominal position (b).

B. Tolerance of tBSC to error in orientation.

We added error in the orientation estimates along X,
Y and Z axes individually in an increment of ±1◦. We,
then performed tBSC registration and selected the candidate
with transformation estimate closest to the ground truth
transformation. The results in Fig. 8 shows a minimum
tolerance of ±5◦ for error within 0.6m. It indicates the
rotation specificity of LRF as well as robustness to error
in sensor values.

−30 −20 −10 0 10 20 30

Error in rotation estimate along (degrees)

0.0

0.5

1.0

1.5

2.0

2.5

tB
SC

re
gi

st
ra

ti
on

er
ro

r
(m

)
Relative num inliers Registration error (m)

Fig. 8: tBSC registration error with error in orientation estimates.

C. Relation of Cimage(It, IMt,j ) to error in orientation.

IMt,j (qt, xt,j) is generated as a function of (qt, xt,j). We
wanted to evaluate how error in CPE Cimage(It, IMt,j ) is
affected by error in qt. So, we added errors in qt = qt+qe and
performed CPE for each pair of It and IMt,j (qt+qe, xt,j). We
observe that CPE is tolerant to error in orientation estimates
up to ±10◦ Fig. 9.

D. Relation of Cimage(It, IMt,j ) to εσ
The Fig. 10 shows an example synthetic spherical image

and a heatmap visualization of σx,y at each of its pixel. σx,y
gives the uncertainty measure of 3D-2D correspondence.
Correspondences with high σx,y value might result in
more erroneous CPE, while a generous threshold would
promote the number of inliers the can constrain the camera
pose. We performed CPE with varying εσ on an image
pair. From Fig. 11 we can observe that the variance of
Cimage(It, IMt,j ) certainly increases, however relative number
of inliers increase too.
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Fig. 10: Heatmap visualization of standard deviation (m) in IMi,j

E. Reduction in minimum required surface area and
mapping time.

JPIL is targeted towards enabling accurate localization
for very low overlap point clouds that requires significantly
less user time. In sPCR, a user would need to walk on-site
while mapping the structure to build a sufficiently large map.
We simulated random walks in the vicinity of point clouds
generated by the HoloLens. As the walk distance increased,
more parts of the HoloLens point cloud were included
for registration. We wanted to evaluate tBSC and BSC as
a function of surface area mapped. Thus, we generated
a cumulative density function of minimum surface area
required by these methods for successful localization on 15
real datasets Fig. 12. We observe an average reduction of 10
times the surface area required by sPCR. For one dataset,
we achieved a reduction from 465.50m2 to 13.226m2 and
the time difference was ∼ 20 minutes. Finally, performing
JPIL over 12 datasets with EDM ground truth, we observe
an average accuracy of 0.28m for tBSC registration and
1.21m for CPE Fig. 13. The surface area was calculated by
remeshing the point clouds and summing up the area of each
triangle. The surface also included parts of the environment
other than the structure, thus the required surface area in
practice would be less than the values shown.
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Fig. 11: With increasing εσ , the error in CPE tends to increase,
however, more inlier matches are being used which contributes to
confident outlier rejection.
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Fig. 12: Left: Overall JPIL performance in X and Y axis. Black
is the ground truth, blue is error in tBSC registration and brown
is error in CPE. Right: Surface area required for successful
registration by JPIL and sPCR in 15 real world datasets.

VII. RELATED WORKS

While we have covered the related works in the above
text, here we emphasize on few other point cloud registration
methods that uses visual cues. Dold [15] uses planar patches
from image data to refine a point cloud registration whereas
Men et al. [16] uses hue as fourth dimension (x,y,z,hue) and
search for correspondence in 4D space. Similarly, authors
of [17], [18] use 2D image features in a tightly coupled
framework to direct point cloud registration. These requires
accurate calibration between the Lidar scans and camera
images and work well for dominantly planer structures
without stereo ambiguities. When accounted for errors
in sensor calibration, stereo ambiguities and complex 3D
environments, local image features tend to fail and thus
decrease the robustness due to the their tightly coupled
nature.

VIII. CONCLUSION AND FUTURE WORK

We have presented a marker-free self-localization method
for mixed-reality headsets and emphasized that data from
three onboard sensors: a depth sensor, a camera and an
IMU unit are critical for efficient localization. Our method
is robust against errors in orientation estimation unto ±5◦,
which is generous for most sensors. Localization accuracy
of 0.28m, is comparable to that of sPCR while requiring
10 fold less surface area on average. Our method does



(a) S = 5m2 (b) S = 40m2 (c) S = 50m2

Fig. 13: Top: Example JPIL runs for three inspection sessions. Blue denotesM′, the spatial map generated by the HoloLens and yellow
denotes the reference model M. Synthetic spherical images Bottom of confident positive matches are shown along with real image
Middle. The three spatial maps shown here have varying surface area S.

not evaluate the user’s selection of M′. Practically, the
user should generate M′ from well defined structures with
minimum symmetry, and which also exists in M. In future,
we would like to explore the 3D information from time series
image data to further enhance the efficiency and robustness
of this method.
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