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Abstract— In the past decade many robots were deployed
in the wild, and people detection and tracking is an important
component of such deployments. On top of that, one often needs
to run modules which analyze persons and extract higher level
attributes such as age and gender, or dynamic information like
gaze and pose. The latter ones are especially necessary for
building a reactive, social robot-person interaction.

In this paper, we combine those components in a fully
modular detection-tracking-analysis pipeline, called DetTA. We
investigate the benefits of such an integration on the example of
head and skeleton pose, by using the consistent track ID for a
temporal filtering of the analysis modules’ observations, show-
ing a slight improvement in a challenging real-world scenario.
We also study the potential of a so-called “free-flight” mode,
where the analysis of a person attribute only relies on the filter’s
predictions for certain frames. Here, our study shows that this
boosts the runtime dramatically, while the prediction quality
remains stable. This insight is especially important for reducing
power consumption and sharing precious (GPU-)memory when
running many analysis components on a mobile platform,
especially so in the era of expensive deep learning methods.

I. INTRODUCTION
Full detection-tracking systems are a key component in

modern robotics. Being aware of all present persons is
important for both navigation as well as interaction of a
mobile robot platform. Especially human-robot interaction
can be more responsive and sophisticated if person attributes
such as age, gender, appearance, orientation or pose are
observed. As noted by Sabanovic et al. [1] design choices
such as utilizing “gaze as a sign of interest in interaction
[may] improve [the] robot’s interactive effectness”, helping
person robot-interaction scenarios like person-following [2],
[3] or approaching [4], [5].

In the area of computer vision, these person analysis
modules are usually evaluated on a frame-by-frame basis on
controlled test setups. Running them this way on robots that
interact with multiple people at once, person ID and temporal
information would be ignored. With deep learning methods
on the rise, these components also introduce a high power
consumption and (GPU-)memory usage, making it difficult
to run them on low-power mobile platforms with a focus on
long-term autonomy [6].

In this work, we address those problems by presenting a
fully modular detection-tracking-analysis pipeline (DetTA).
Our contributions are therefore i) a fully integrated detection-
tracking-analysis pipeline as real-time ROS component,
ready to run on a robot, ii) studying the effectiveness of
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Fig. 1: Head orientation and skeleton estimated on top of
a person’s track. Green corresponds to the ground-truth
annotation, blue to the analysis module’s output, and purple
to the track-smoothed value. The dotted vertical lines show
where in time the pictures on the bottom are located, and the
bars around these correspond to raw and smoothed angular
error, respectively. Best viewed on a screen.

coupling person attribute observations with a track-based
temporal filter on the example of head orientation and skele-
ton pose, and iii) enabling a so-called “free-flight” mode,
which runs the analysis modules with a stride and relying
on the filter’s predicition in-between, leading to a dramatic
performance boost while keeping stable quality.

After discussing the related work in Sec. II, we present
our DetTA pipeline in Sec. III. It is then evaluated in
Sec. IV, especially looking at the temporal filtering and the
“free-flight” option. Sec. V discusses applications in (social)
robotics and future work, before Sec. VI concludes the paper.

II. RELATED WORK

People awareness is an essential component of any so-
cial robot deployed in the wild, as done in recent re-
search projects such as EUROPA [7], STRANDS [6] or
SPENCER [8].

Full detection-tracking pipelines for robotic scenarios have
recently been described and evaluated in [9], including two
nearest-neighbor methods [10], [11], the Multi-Hypothesis
Tracker of Arras et al. [12] and a vision-based MDL-
tracker [13]. In the area of computer vision, the MOTChal-
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Fig. 2: The presented pipeline. The analysis modules build upon an established detection-tracking framework. This allows
for both cropped image boxes serving as input, while the consistent track ID can be used for temporal integration of person
attributes. Dotted components are not considered in this paper, but are part of the pipeline and can readily be used, e.g., to
integrate more analysis modules.

lenge [14], [15] gives a good overview of recent image-based
tracking methods, but many of those are not designed for
robotics purposes as they are not capable of running online.

Person analysis is a broad field of research, as so many
different attributes can be of interest depending on the
scenario. Reaching from static information such as gen-
der [16], identity [17], clothing or hairstyle [18], to dynamic
information such as gaze direction [19], [20], [21] or pose
skeletons [22], [23], [24]. But these works only evaluate their
method frame-by-frame for a fixed test benchmark, whereas
we want to study how those analysis modules behave when
run continuously, also enabling temporal smoothing.

To the best of our knowledge, there are not many works
which take a full system-level look at how temporal integra-
tion can help analysis modules inside a detection-tracking
pipeline in a real-world robotic scenario. Song et al. [25]
looks at the specific problem of gesture recognition, which
is “significantly improved by Gaussian temporal smoothing,”
but test this in a very controlled environment with only a
single person in the center. Furthermore, Wall et al. [26]
takes temporal integration into account for nod detection in
a face-to-face robot-person interaction.

Another related approach by Benfold et al. [20], [21]
combines a tracking system with gaze estimation. They
strongly couple the gaze estimation and tracker using hand-
engineered assumptions in order to learn a scene-specific
gaze estimator for static-camera surveillance scenarios. This
is also the case for the work of Kleinehagenbrock, Fritsch,
et al. [27], [28], where they use spatio-temporal integration
to combine a face and a laser-leg detector, to track a person
and report the rotation, distance and height of the face.

In contrast to the above, our pipeline allows for modular
person analysis components, while we study how those can
profit from temporal filtering using the tracker’s consistent
ID.

III. DETECTION-TRACKING-ANALYSIS PIPELINE

A. Overview

Fig. 2 gives on overview of our detection-tracking-analysis
pipeline “DetTA”. The detection component gives candidate
locations of people present in the scene, while the tracker

connects detections over time, bridging missing detections,
identifying false alarms, and assigning a unique track ID
to each individual person. By this, the tracker can pro-
vide cropped regions in form of bounding boxes, which
serve as input for further image-based per-person analysis
modules. Using the track ID, the information of different
person attributes can be filtered over time or used in a
“free-flight” mode, relying on the filter’s predictions. The
pipeline is highly modular and can be extended with different
detectors, trackers, and even more analysis modules. The
code repository, which includes ROS nodes ready to run on
a robot, will be made publicly available1.

In the following, we describe the integrated methods of
this paper, which have been developed during the EU projects
STRANDS [6] and SPENCER [8] and were deployed mul-
tiple times in an office space, an elderly care home, and a
busy airport environment.

B. Detection

Analysis modules typically extract person attributes from
RGB(-D) images. This is why we use two vision-based
person detectors to extract 2D bounding boxes of potential
people in the scene, serving as the input for vision-based
trackers [29], [14], [15]. The first one is based on depth
templates of upper bodies [30], focusing on detecting persons
close to the robot (blue rectangle in the left-most image in
Fig. 2). The second one is the groundHOG implementa-
tion of [31], which relies on HOG-features [32] and takes
advantage of geometrical constraints to detect persons in
RGB further away from the robot (red rectangle in Fig. 2).
Both detection channels serve as input for the tracking
module, and by including ground-plane information, 3D
world-coordinates of tracks are available.

C. Tracking

As a tracking method, we rely on the MDL-tracker de-
scribed in [30], which has shown competitive performance
in real-world scenarios [9]. It is based on the approach of
Leibe et al. [33], following the framework of [34], [35] to
compute an overcomplete set of multiple track hypotheses,

1https://github.com/sbreuers/detta.git



similar to the MHT approach [12]. New trajectories are
added to this set by a bi-directional Extended Kalman Filter
following a constant velocity motion model backwards in
time. Existing trajectories are extended from the last to the
current frame, also following this motion model. Each track
in the overcomplete set gets a score based on confidence, ap-
pearance, and motion agreement of inlying detections, while
physical overlap and shared detections define an interaction
cost between trajectories. The problem of choosing the best
subset is then formulated as quadratic binary problem solved
by the multi-branch method of [36].

It should be mentioned that our tracking pipeline is multi-
modal and allows for the inclusion of, e.g., laser-based leg-
detection [37], [38], [39] in addition to the aforementioned
vision-based detectors. This can help the tracker preserve
track IDs when the persons leave the camera’s field-of-view,
and can additionally be used for analysis modules which do
not require image data.

D. Analysis

While it is not a restriction of our framework, we limit the
analysis modules to head orientation and upper-body pose
skeletons for this work.

We predict head orientation using BiternionNets [19], for
which code is publicly available. Training data is collected at
an airport by having volunteers turn in circles in front of our
robot, the annotation is straightforward and done in just a few
hours. Biternions have the advantage of providing continuous
head pose estimates, which are better suited for filtering than
classes, even when trained on discrete labels. The network
architecture is exactly the very lightweight one introduced
in [19], but we further perform background-subtraction using
the depth data provided by the camera.

For skeleton poses, we use the HumanPose estimation
framework from [22]. The framework is an adaptation of
GoogleNet [40], using only the first 17 layers from the
network architecture. The fully connected layer and the
average pooling layer in the last stages of the network are
removed to make the framework fully convolutional. A pose
decoder consisting of a transposed convolution and a sigmoid
layer is appended to the framework to up-sample the low
resolution features from the 17th layer to high resolution heat
maps for different body joints. The HumanPose estimation
framework was trained on the MPI dataset [41], [42] and is
also able to detect occluded joints.

On top of these image-based analysis modules, further
trajectory information, like speed, accelaration, orientation,
distance to robot, etc. could be reported. But as these often
can be derived from the tracker’s output itself, which ususally
includes a temporal filter on its own, it is not part of our
experiments. We want to couple the track ID with the output
of indiviual modular analysis components to perform the
temporal integration.

E. Temporal Filtering

As mentioned, analysis methods are typically designed
and evaluated on an individual, frame-by-frame basis. Here,

the tracking step of the DetTA pipeline provides consistent
person IDs which enables keeping the observed information
and integrating it over time, as long as this ID persists. So
for each ID currently present and for each analyzed person
attribute, we generate an individual filter. Many more details
on filtering methods than discussed here can be found in [43].

The most straightforward approach when it comes to
filtering a single observed quantity is the so called g-h-filter,
also known as α-β-filter or a-b-filter [44]. The state variable
is modeled as (x, v), i.e., the filtered value and its first deriva-
tive/velocity. Two parameters, g and h, represent the update
rate of the value and its derivative, respectively, leading to
the following predict-update loop given observation z:

x̃t = xt−1 + vt−1∆t (1)
xt = x̃t + g(zt − x̃t) (2)

vt = vt−1 + h
(zt − x̃t)

∆t
(3)

It is similar to a weighted average between the pre-
dicted next state and the incoming measurement. Extension
to higher-order derivatives is straight-forward but typically
unstable due to the estimation of high-order derivatives from
noisy data.

While our code framework also includes more sophisti-
cated filtering methods, like the well-known Kalman Fil-
ter [45], [46], we observed in our explorative study that
the g-h-filter is already able to capture the occuring motion
behaviour for our used analysis modules. Of course, this does
not hold for all attributes and needs to be investigated on a
case-by-case basis. The Kalman Filter can actually be derived
from the g-h-filter by updating g and h on-the-fly, allowing
for a richer state representation, motion models, and adaptive
correlations at the cost of worse generalization due to more
hyperparamters which need to be tuned. Furthermore, its
assumption of uncorrelated Gaussian noise is violated by
most existing analysis modules, and it can be difficult to
find a motion model accurately reflecting the real-world
behaviour of, e.g., a person’s wrist.

As an additional option in our pipeline, we propose the
so called “free-flight” mode. Here, the analysis module is
only run with a certain stride, thus updating the filter with
an observation less frequently. Inbetween those updates, the
analysis information relies on the filter’s predictions. This
allows for severe computational savings, increasing per-
formance, reducing power-consumption and (GPU-)memory
usage, especially for expensive analysis components.

IV. EXPERIMENTS AND RESULTS

A. Setup

For the quantitative evaluation, we have chosen a real-
world scenario recorded in a busy airport environment as
part of the SPENCER project [8]. People are getting off a
flight, stepping in front of the camera, looking around and
pointing directions, which is well suited for the evaluation
of our used analysis modules. The scene was recorded with
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Fig. 3: Filtering results for heads, exploring the impact of
different g, h values for head orientation quality in (a) and
numeric results for the chosen values of g = 0.5 and h =
0.02 in (b). Colors on the blue side of the spectrum represent
improvement over raw predictions, while colors on the red
side represent worse results. A g value of 0.0 is a constant
prediction.

an Asus Xtion Pro Live RGB-D sensor mounted on a mobile
platform. We selected a subsequence of 1218 frames and, for
a total of 77 persons, carefully annotated their 2D bounding
box tracks using AnnoTool2 [47], their head orientations as
described in [19], and their skeletons poses with a custom
annotation tool, which is part of our code repository. For the
skeleton, we only annotated the 8 upperbody joints (head,
neck, left and right shoulders/elbows/wrists), as these are
the most interesting for interaction and the leg joints are not
visible for people close to the camera.

This ground truth (GT) allows for a reasonable evaluation
of the individual analysis components. For skeletons, we
use the widely used PCKh measure [41], corresponding
to the percentage of correct keypoints, with a threshold
normalized by 50% of the head size (higher is better). For
the head orientation, we define a similar measure: “PCO,”
the percentage of correct orientations with a threshold of
45◦, or 1/8 of a full circle (higher is better). We also report
the positional or angular offset, respectively, to be able to
highlight even slight improvements in the precision (lower
is better).

While we discuss the experimental result of the analysis
modules in detail in the following sections, we briefly
mention the tracking performance first, as the analysis mod-
ules build up on that. We follow the established CLEAR
metrics [48], computing the number of false positives (FP),
false negatives (FN) and ID switches (IDS) which are then
summarized by the tracking accuracy MOTA and precision
MOTP. Tab. I shows the results averaged over 5 runs to
account for synchronization issues in ROS. An interesting
quantity in our case is the number of IDS, as a new filter
is started as soon as an ID switch happens, interrupting the
current temporal integration of person attribute information.
As we can see, for 77 ground truth tracks we get 120 ID
switches in total, corresponding to 1.6 ID switches per person

GT tracks MOTA MOTP FP FN IDS (rate) Hz
77 36.4% 73.5% 616 4675 120 (1.4%) 96

TABLE I: Tracking results for the test sequence.
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Fig. 4: The same analysis as in Fig. 3 done on the repre-
sentative example of wrist in (a) and numeric results for the
chosen values of g = 0.5 and h = 0.02 in (b).

on average over all 1218 frames. This is a bearable amount,
especially if those switches happen at the beginning or end
of the track.

B. Robust Person Analysis

In this section, we evaluate the analysis components,
namely head orientation and skeleton pose estimation, and
investigate how the filtering of those informations can in-
crease their quality.

We choose g = 0.5, which equally trust measurements and
predictions, while an h of 0.02 accounts for slight angular
velocities when a persons looks around. While these values
seem reasonable, Fig. 3a which explores different g and h
values in an offline experiment, shows that the method is not
too sensitive to their exact choice.

For skeleton poses, different joints follow different motion
models. Head, neck and elbows have a low to none ego-
motion and mostly follow the person’s constant velocity
itself. This is why we set h to a somewhat higher value
of 0.2. With a g of 0.9, we lay more trust on our analysis
method, also to re-align occluded joints. Wrists have the
strongest ego-motion, so we set a lower h = 0.02 and
g = 0.5. Again, we show an exploration of the g-h-space
on the representative example of the wrist in Fig. 3a.

Tab. 3b or Tab. 4b, respectively, report the performances
for our chosen values. We see that the values indeed slightly
increase. Regarding the rather minor quality gain, we want
to remark that for perfect analysis modules, a filter cannot
improve the result, which also holds for bad performing ob-
servations with systematic noise. Also, the absolute numbers
depend on the strictness of the used metrics.

Still, our method holds the potential for a performance
increase, which will be discussed in the next chapter.

C. Free flight

We now turn to evaluating the “free-flight” option de-
scribed at the end of Sec. III. To paint a complete picture, we
look at the performance using three different hardware se-
tups: a high-end desktop GPU like the NVIDIA GTX 1080Ti,
a low-power mobile GT 730M GPU, and a high-end but
mobile Intel i7 CPU. Note that the full pipeline, including
CUDA-based detection, is running during those experiment,
and hence the system is under load even without the analysis
components.



Head/Neck (PCKh) Shoulders (PCKh) Elbows (PCKh) Wrists (PCKh) Performance (Hz)
stride keep predict keep predict keep predict keep predict GTX 1080Ti Mobile GT 730 i7 2.4GHz×8

1 74.8 74.8 74.6 74.6 69.4 69.6 72.1 73.6 111 108 256
2 64.3 68.8 70.0 71.2 69.6 65.5 71.8 73.2 432 355 423
3 55.9 62.3 64.5 65.7 61.4 62.1 70.2 71.4 532 487 478
5 44.4 51.2 58.4 57.4 55.4 54.0 68.4 67.9 584 574 583

TABLE II: Analysis of free-flight mode for skeleton joints

Quality (PCO) Performance (Hz)
stride keep predict GTX 1080Ti GT 730M i7 2.4GHz×8

1 64.9 67.7 395 325 157
2 64.5 66.9 1866 1551 1531
3 63.3 64.8 2316 1940 1865
5 61.9 62.0 2108 2261 2271

TABLE III: Analysis of free-flight mode for head pose

Tab. III shows the full comparison for our head orientation
analysis component. As we can see, the “free-flight” mode
with a stride of 2 already boosts the runtime by a factor
of around 5 for the GPUs and 10 for the CPU. When
increasing the stride, we reach a point where we hit a
ceiling in the performance, while the quality starts dropping
(64.8 vs. 62.0). Overall, including a predictive motion model
(“predict” column) always increases the PCO measure during
free-flight as compared to a naive baseline of only sticking
to the last observed measurement (“keep” column), which
corresponds to a g-h-filter with g = 1 and h = 0.

For skeleton poses, Tab. II shows similar results. The
overall quality regarding the PCKh measure decreases faster
with higher strides, confirming that a simple motion model
struggles with describing behaviour as complex as joints’
motion. This even leads to a better quality of the “keep”
baseline in the case of elbows (stride 2 and 5) and wrists
(stride 5). Still, considering all joints, the quality does not
drop critically with a stride of 2, while the performance
increases noticeably, up to a factor of 4 for the GTX 1080Ti.

These experiments confirm the effectiveness of the free-
flight mode.

V. DISCUSSION

Our temporal filtering of several person attributes may sup-
port any social robot platform, while the free-flight helps sav-
ing ressources and battery-life. Especially mobile platforms
that do not come with a high end GPU or are desigend for
long-term autonomy can profit from this performance boost.
Our DetTA framework can help improve any social robot-
person interaction, like person following and approaching,
returning a look, interpreting gestures, etc. A concrete use
case for this is addressed in a very recent project FRAME2

this work is partially sponsored by. Here, the robot has to
identify potential helpers in a scene and ask them to open
doors and operate elevators. The robust temporal integration
of person analysis information helps in the decision-making
process, e.g., to extract awareness information and whether
a person shows interest in the robot.

2www.frame-projekt.de

A promising direction for research beyond the applica-
tion point of view is to gauge how well a measurement
matches the current filter state and use this information to
compute a distinct confidence score for analysis modules.
This is especially useful for deep learning methods that often
struggle with providing a useful confidence. Certainly, one
could add even more analysis models, also considering static
attributes (age, gender, etc.) in a majority voting fashion
which gathers evidence over time. Finally, as hinted by the
results on skeletons, some attribute “motion” can get very
complex and could profit from being learned, a direction we
did not yet explore.

VI. CONCLUSIONS

In this paper we presented a full detection-tracking-
analysis pipeline, combining tracking information with the
estimation of person attributes, such as head orientations or
skeleton poses. Here, the consistent trajectory ID of each
person allows for a temporal integration of the output of
the analysis modules, which could otherwise only operate
frame-by-frame.

While this temporal filtering only slightly improves qual-
ity, it allows for what we call the “free-flight” mode, in which
the analysis modules are only run every xth frame. Inbetween
those, the estimation of the person attributes relies on the
filter’s prediction. The more analysis modules are available,
the more resources get constrained, especially with the rise of
deep learning based methods. By using this free flight mode
and staggering the ticks at which the modules are evaluated,
it is possible to run many more such demanding modules
than would otherwise be possible, while still being able to
use predictions at every point in time.

Our pipeline allows for modular extension with own
custom analysis modules to get temporally robust person
attributes for improved social robot interaction in different
application scenarios.
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