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Abstract— In this paper, we present the Trifo Visual Inertial
Odometry (Trifo-VIO), a tightly-coupled filtering-based stereo
VIO system using both points and lines. Line features help
improve system robustness in challenging scenarios when point
features cannot be reliably detected or tracked, e.g. low-texture
environment or lighting change. In addition, we propose a novel
lightweight filtering-based loop closing technique to reduce
accumulated drift without global bundle adjustment or pose
graph optimization. We formulate loop closure as EKF updates
to optimally relocate the current sliding window maintained
by the filter to past keyframes. We also present the Trifo
Ironsides dataset, a new visual-inertial dataset, featuring high-
quality synchronized stereo camera and IMU data from the
Ironsides sensor [3] with various motion types and textures and
millimeter-accuracy groundtruth. To validate the performance
of the proposed system, we conduct extensive comparison
with state-of-the-art approaches (OKVIS, VINS-MONO and
S-MSCKF) using both the public EuRoC dataset and the Trifo
Ironsides dataset.

I. INTRODUCTION

Motion tracking is the cornerstone for a wide range of
applications, such as robotics, self-driving, AR/VR, etc. Due
to complementary properties of cameras and inertial mea-
surement units (IMUs) and the availability of these sensors
in smartphones and off-the-shelf plug-and-play devices [3],
[4], visual-inertial odometry (VIO) has become popular in
recent years. Well-known examples that use VIO are Apple
ARKit [1] and Google ARCore [2].

There are two common ways to categorize VIO ap-
proaches. Based on when visual and inertial measurements
are fused, VIO approaches can be divided into loosely-
coupled and tightly-coupled approaches. Loosely-coupled
approaches [22], [28], [37] estimate motions from images
and inertial measurements, independently, and then fuse the
two estimates to obtain the final estimate. Tightly-coupled
approaches [11], [18], [19] fuse visual and inertial data
directly at the measurement level to jointly estimate all IMU
and camera states. While loosely coupling is flexible and
tends to be more efficient, tightly-coupled approaches gen-
erally produce more accurate and robust motion estimates.
Our proposed Trifo-VIO is a tightly-coupled approach.

Based on how visual and inertial measurements are
fused, VIO approaches can be categorized into filtering-
based and optimization-based approaches. Filtering based
approaches [19], [33] typically employ the Extended Kalman

†Feng Zheng, Zhe Zhang, Chen-Chi Chu, and Hongbing Hu are with
Trifo, Inc., Santa Clara, CA 95054, USA. Email: {feng.zheng,
zhe.zhang, jason.chu, hongbing.hu}@trifo.com
∗Grace Tsai and ‡Shaoshan Liu emails are gstsai@umich.edu
and shaoshan.liu@perceptin.io respectively.

Fig. 1: The Trifo Ironsides dataset capture setup. The Iron-
sides sensor [3] outputs synchronized stereo camera and IMU
data, at 60Hz and 200Hz respectively. The 6-axis robot arm
with a working radius of 850 mm provides both motion
and millimeter-accuracy groundtruth. The dataset contains
9 sequences, featuring various motion types and textures,
making it ideal for both evaluation and development.

Filter (EKF), where state propagation/prediction is made
by integrating IMU measurements, and update/correction
is driven by visual measurements. Contrarily, optimization
based approaches [18], [27] use batch nonlinear optimization
to directly minimize the errors between integrated motion
from IMU measurements and camera motion estimated
by the classic reprojection error minimization. Typically
optimization-based approaches are more accurate but com-
putationally more expensive due to repeated linearization.
There are approaches that combines the advantages from
both approaches. For example, PIRVS [41] performs EKF
updates iteratively for efficient motion estimation while using
optimization (bundle adjustment) at the backend to reduce
long-term drifts. Our proposed Trifo-VIO is an efficient
filtering-based VIO, and its accuracy as demonstrated by
extensive evaluation is at the same level of or even better
than state-of-the-art optimization based approaches.

Most VIO approaches mentioned above only rely on point
features, e.g. FAST [29], Shi-Tomasi [31], as intermediate
image measurements. The performance of these approaches
suffer considerably in low-texture environments, or in sce-
narios when point features can not be reliably detected
or tracked, e.g. lighting change. Many of such low-texture
environments, however, contain planar elements that are
rich in linear shapes [14], and the detection of edges is
less sensitive to lighting changes in nature. Therefore, in
the proposed Trifo-VIO, in addition to point features, we
extract line segment features as useful image measurements
to increase the motion constraints available for challenging
scenarios, leading to better system robustness. Both stereo
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points and line features are processed over a sliding window
at cost only linear in the number of features, by using the
Multi-State Constraint Kalman Filter (MSCKF) [23].

In addition, visual or visual-inertial odometry systems
typically operate at faster speed but are more prone to
drift compared to SLAM (Simultaneous Localization And
Mapping) systems because odometry systems do not main-
tain a persistent map of the environment. Therefore, in the
proposed Trifo-VIO, we introduce a lightweight loop closing
method to reduce long-term drift without any computation-
ally expensive map optimization, e.g. bundle adjustment
(BA).

We summarize our contributions as follow:
• To the best of our knowledge, the proposed Trifo-

VIO approach is the first tightly-coupled filtering based
stereo VIO that uses both point and line features.

• We introduce a novel lightweight filtering-based loop
closure method formulated as EFK updates, which op-
timally relocates the current sliding window maintained
by the filter to the detected loops.

• We conduct extensive evaluation of our Trifo-VIO
with comparison to state-of-the-art open-source VIO
approaches including OKVIS [18], VINS-MONO [27],
and the recent S-MSCKF [33] using both the EuRoC
dataset and our new Trifo Ironsides dataset.

• We release the Trifo Ironsides dataset captured us-
ing the Ironsides [3], a high-quality device with
synchronized stereo camera and IMU data, with
millimeter-accuracy groundtruth from the robot arm.
The dataset is available at https://github.com/
TrifoRobotics/IRONSIDES/wiki/Dataset.

II. RELATED WORK

In this section, we review the state of art of odometry or
SLAM approaches in terms of line or edge features and loop
closure.

PL-SLAM [26] builds on top of ORB-SLAM [25] and
extend its formulation to handle both point and line corre-
spondences in monocular setup. In a similar vein, another
joint point and line based work [14], termed PL-SLAM as
well, aims at stereo camera setting, and additionally intro-
duces a bag-of-words (BoW) place recognition method using
both point and line descriptors for loop detection. In [34],
Tarrio and Pedre propose an edge-based visual odometry for
a monocular camera, with simple extension to using rotation
prior obtained from gyroscope as regularization term within
edge alignment error minimization. Most recently, Ling et
al. present a tightly-coupled optimization-based VIO by edge
alignment in the distance transform domain [20].

Within rich body of filtering-based VIO literatures, there
are not many works using edge or line features. One of
the earliest work along this line is [17], which uses only
line observations to update the filter and also conducts
observability analysis. In [38], the authors extend [17] with
a new line parameterization which is shown to exhibit better
linearity properties and support rolling-shutter cameras. The
edge parametrization introduced in [39] allows non-straight

contours. Similar to [17] and [38], we use straight line
segments.

Direct methods, such as LSD-SLAM [10], DSO [9], rely
on image intensities at high-gradient regions, which include
but are not limited to image region of features and edges.
Usenko et al. [35] extend the vision-only formulation of
LSD-SLAM to tightly couple with IMU by minimizing a
combined photometric and inertial energy functional. ROVIO
[5], [6] is a direct filtering-based VIO method, using pho-
tometric error of image patches as innovation term in the
EKF update. Our usage of line features, to some extent,
lies in between direct and feature-based methods. Despite
the advantage of feature-free operation, direct methods rely
on brightness constancy assumption, usually suffering from
environment lighting change and camera gain and exposure
settings. In contrast, in particular to ROVIO, we use point
reprojection error and point-to-line distance as the filter
update innovation instead of photometric error.

Drift is an inhere issue in SLAM and odometry methods.
Loop closure has proven to be effective to correct drift,
and state-of-art approaches typically employ global pose
graph optimization [25], [27], [14]. In particular, VINS-
MONO [27] introduces a two-step loop closure method: (1)
local tightly-coupled relocalization which aligns the sliding
window with past poses, and (2) global pose graph opti-
mization. Our lightweight loop closure resembles the first
step employed by VINS-MONO, except that we realize it
in a filtering framework and we exclude global optimization
for efficiency. To our best knowledge, it is the first tightly-
coupled filtering-based loop closure method. Furthermore,
our proposed Trifo-VIO handles both stereo point and line
features and loop closure in a consistent filtering framework.

III. ESTIMATOR DESCRIPTION

The backbone of our estimator is MSCKF whose key
idea is to maintain and update a sliding window of camera
poses using feature track observations without including
features in the filter state [23]. Instead, 3D feature positions
are estimated via least-squares multi-view triangulation and
subsequently marginalized, which resembles structureless
BA to some extent. The advantage of doing this is consid-
erable reduction of computational cost, making MSCKF’s
complexity linear in the number of features, instead of cubic
like EKF-SLAM [8].

We introduce two types of EKF updates: (1) joint point and
line features based update to cope with challenging scenarios
and to enhance robustness, and (2) loop closing update to
reduce accumulated drift. Filter consistency is ensured by
using the right nullspace of the observability Gramian to
modify state transition matrix and observation matrix at each
propagation and update step, following OC-EKF [15].

A. State Parameterization

We follow [23] and define the evolving IMU state as
follows:

XB = [ B
GqT bg

T GvT
B ba

T GpT
B

B
CqT BpT

C ]T (1)

https://github.com/TrifoRobotics/IRONSIDES/wiki/Dataset
https://github.com/TrifoRobotics/IRONSIDES/wiki/Dataset


where B
Gq is the unit quaternion representing the rotation

from the global frame {G} to the IMU body frame {B},
GpB and GvB are the IMU position and velocity in the global
frame, and bg and ba denote gyroscope and accelerometer
biases. Optionally, we include IMU extrinsics B

Cq and BpC

in the state, which represent the rotation and the translation
between the IMU body frame {B} and the camera frame
{C}.

At time k, the full state of our estimator consists of the
current IMU state estimate and N camera poses

X̂k = [ X̂
T

Bk
X̂

T

C1
... X̂

T

CN
]T (2)

where X̂C = [CGq̂T Gp̂T
C ]T represents the camera pose

estimate.
We use the error-state representation in order to minimally

parameterize orientation in 3 degrees of freedom (DOF)
and to avoid singularities [32]. Specifically, for the position,
velocity, and biases, the standard additive error is employed,
while for the orientations, the compositional update q =
δq ⊗ q̂ is used, where δq is the 3DOF error quaternion as
follows

δq = [
1

2
δθ 1]T (3)

B. EKF Propagation

Whenever a new IMU measurement is received, it is used
to propagate the EKF state and covariance estimates. We
use the standard continuous-time IMU kinematics model as
follows

B
G

˙̂q =
1

2
Ω(ω̂)BGq̂ (4)

˙̂bg = 03×1 (5)
G ˙̂v = R(GB q̂) â +G g (6)
˙̂ba = 03×1 (7)

G ˙̂pB = Gv̂ (8)
B
C

˙̂q = 03×1 (9)
B ˙̂pC = 03×1 (10)

where ω̂ and â are angular velocity and linear acceleration
from gyroscope and accelerometer respectively with biases
removed, R denotes the corresponding rotation matrix of the
quaternion, and Ω(ω̂) ∈ R4×4 is the skew-symmetric matrix
formed from the angular rate

Ω(ω̂) =

[
−[ω̂×] ω̂

−ω̂T 0

]
(11)

Our discrete-time implementation employs 4th order Runge-
Kutta numerical method. We ignore earth rotation rate in the
model as in most MEMS IMUs it cannot be sensed due to
gyro bias instability and noise. For sake of simplicity, we also
omit the description of state transition matrix and covariance
propagation. Interested readers please refer to [23].

(a) Stereo frame 579

(b) Stereo frame 1262

Fig. 2: Stereo point and line features. Magenta: new features.
Green: tracked features. Line features help improve system
robustness in challenging scenarios, e.g. low-texture environ-
ment (a) and motion blur (b). These two stereo frames are
from the Trifo Ironsides dataset PI 3058.

C. Measurement Model for Point Features

In MSCKF, all the continuous measurements of the same
3D point, i.e. feature tracks, are used to update all involved
camera poses that observe the point. The residual is the
standard reprojection error:

rfi = zfi − ẑfi (12)

where zfi = [ui vi]
T is the observation of the i-th feature

in the image, while ẑfi is the predicted measurement of the
feature from projecting its estimated 3D position Gp̂fi

=

[GX̂i
GŶi

GẐi]
T in global frame into the image based on the

estimated camera pose and the projection model as follows

ẑfi = π( R(CGq̂) (Gpfi
−G p̂C) ) (13)

where π is the pinhole projection model (π : R3 → R2)

π(p) =
1

Z

[
X
Y

]
(14)

We then linearize Eq. 12 about the estimates for the camera
pose and for the feature position, and calculate the Jacobians
with respect to the state and the feature position as HXfi

and
Hfi respectively, following [23]. After that, we marginalize
the feature position via nullspace projection to de-correlate
it with the state.

So far, we have described the measurement model for
monocular camera. One tricky part is the estimation of 3D
feature positions, which is typically computed by multi-view
triangulation in least-squares fashion. There has to be enough
baseline among the cameras observing the same feature in
order to do the triangulation. Therefore, monocular MSCKF
cannot estimate the 3D positions of features nor do EKF



updates while being static or undergoes rotation dominant
motion. This motivates us to adopt the more practical stereo
camera setup to overcome this limitation, from which we
can also easily get the true scale. For stereo feature mea-
surements, we employ a simple yet effective representation,
similar to [33],

ẑfi =

[
π(C1 p̂fi

)
π(C2 p̂fi

)

]
=

[
π( R(C1

G q̂)(Gpfi
−G p̂C1

) )

π( R(C2

G q̂)(Gpfi
−G p̂C2

) )

]
(15)

where ẑfi ∈ R4, C1 p̂fi
and C2 p̂fi

are the estimated 3D
positions of the same feature point in left and right camera
coordinates respectively, and X̂C1

= [C1

G q̂T Gp̂T
C1

]T and
X̂C2

= [C2

G q̂T Gp̂T
C2

]T are stereo camera poses at the same
timestamp. Note that the stereo camera is assumed to be
calibrated beforehand, and the camera extrinsics relating the
left and the right cameras is assumed to be constant.

D. Measurement Model for Line Features

We now present the measurement model of line features
for updating the state estimates. We denote a line li in
image using point-normal form, li = [zli ~nli ], where zi
is any point on the line and ~nli ∈ R2×1 is a unit vector
denoting line’s normal direction in image space. For a 3D
line, Lj , we over-parameterize it by using two 3D endpoints,
GLj = [Gpb

Gpe], where Gpb and Gpe are the beginning and
ending endpoints on the 3D line in the global frame.

For the line feature residual, rli ∈ R2×1, we use the point
to line distance, as follows

rli =

[
(zli − ẑlib) · ~nli

(zli − ẑlie) · ~nli

]
(16)

where ẑlib ∈ R2×1 and ẑlie ∈ R2×1 are the 2D projections
of the beginning and ending endpoints on the 3D line, and ·
represents dot product. To conform to the standard form of
EKF residual as in Eq. 12, we simplify Eq. 16 to

rli =

[
~nT
lizli − ~n

T
li ẑlib

~nT
lizli − ~n

T
li ẑlie

]
(17)

Note ~nT
lib

zlib produces a scalar number, thus one 3D endpoint
results in one dimensional residual. This is desirable as
line features can only provide useful constraints in the
normal direction. Therefore, every 3D line represented by
two endpoints produces a two dimensional residual. The
over-parameterization makes sure that, if the projected 3D
line and the observed line do not perfectly align, at least
in one dimension of the residual it will not be zero. This
holds even when one projected endpoint is accidentally on
the observed line.

Another benefit of this measurement model is that the line
feature Jacobian becomes extremely easy to calculate and
feature marginalization can be done in the same way as point
features. Under the chain rule, we can derive the Jacobian
for each line as follows

Hli =

[
~nT
liHlib

~nT
liHlie

]
(18)

(a) First frame (b) Before loop closure

(c) After loop closure (d) Trajectory

Fig. 3: Results of loop closing EKF update. In this sequence,
the Ironsides device is handheld, and we move it around the
office and go back to the starting position. (a), (b) and (c) are
visualizations of device poses at the beginning, around the
end before the loop closure and after it, by rendering a fixed-
position virtual cube in front of the first camera. From the
rendered cube, it is evident that the pose drift is effectively
corrected. In addition, (b) and (c) are not the same frame
but a few frames apart, as the drift is corrected progressively
rather than immediately. (d) shows the trajectory in the
horizontal plane, where the red dot indicates the beginning
position, and the magenta dot and the green dot are the
positions before and after the loop closure, corresponding to
(a), (b), and (c) respectively. Note that the red dot is largely
covered by the green dot, indicating the drift is almost fully
corrected.

where Hlib ∈ R2×3 can be calculated in the same way
as point feature Jacobian Hfi and the “point” here is the
beginning endpoint of the line. Likewise, Hlie ∈ R2×3 is
the “point” Jacobian of the line ending endpoint. Note that
~nT
liHlib ∈ R1×3, hence Hli ∈ R2×3. Similarly, the Jacobian

of line feature with respect to the state can be derived as

HXli
=

[
~nT
liHXlib

~nT
liHXlie

]
(19)

where HXlib
and HXlie

are the Jacobians of the line’s
beginning and ending endpoints with respect to the state,
and they share the same formula as point features.

To extend the measurement model to the stereo setting is
straightforward. We follow the way we use for stereo point
features, and represent the stereo line residual, rli ∈ R4, as
follows

rli =


~nT
li,1zli,1 − ~n

T
li,1ẑlib,1

~nT
li,1zli,1 − ~n

T
li,1ẑlie,1

~nT
li,2zli,2 − ~n

T
li,2ẑlib,2

~nT
li,2zli,2 − ~n

T
li,2ẑlie,2

 (20)



(a) Stereo (b) Temporal

Fig. 4: Results of histogram matching (HM) to deal with
dramatic brightness mismatch. (a) Stereo HM: top - stereo
left image, middle - original stereo right image, bottom -
stereo right image after HM. The frames are from the EuRoC
V2 03 difficult dataset. (b) Temporal HM: top - left image,
middle - original left image at the next timestamp, bottom -
left image at the next timestamp after HM. The frames are
from the EuRoC V1 03 difficult dataset. It is obvious that
middle images in both (a) and (b) exhibit strong brightness
difference compared to the top ones, and the HM results
at the bottom match the top ones well in terms of overall
brightness and distribution. Intensity based feature tracking
and matching, e.g. KLT optical flow [21], can significantly
benefit from this operation.

E. EKF Update: Point and Line Features

We adopt a similar update strategy as [23]: whenever a
point and/or line feature is no longer tracked, or the sliding
window size exceeds the predefined maximum size, EKF
update is triggered. Point and line features are subsequently
marginalized since their positions are directly correlated with
the state estimate X̂ . This makes the algorithm complexity
linear in the number of features. The marginalization is
performed by using the left nullspace of feature Jacobian,
which cancels out the feature term in the linearized residual.
We then stack the transformed residuals and the state Jaco-
bians of both points and lines to form the final residual and
observation matrix.

F. EKF Update: Loop Closure

To reduce accumulated drift while being efficient for
resource-constrained platforms which cannot afford global
BA, we present a novel lightweight loop closure method,
formulated as native EKF updates. As will be described in
Section V, when a new camera state is added to the sliding

window, we perform keyframe selection and trigger loop
detection in a parallel thread if selected. If a loop is detected
while the keyframe is still in the sliding window, loop closing
updates will be triggered. Otherwise, the keyframe is added
to the database along with its feature descriptors and 3D
positions.

Since loop detection establishes feature matches between
the current keyframe and the past, we use feature positions
from the past keyframes for EKF updates instead of re-
triangulating them using current poses which suffer from
drift. The update procedure is almost the same as the update
with point features, except that we treat 3D positions of
such loop closure features as prior knowledge, and thus do
not perform feature marginalization. This makes sense given
such “map” points have been marginalized in the past along
with the keyframes which are inserted into the loop detection
database.

As shown in Fig. 3, the accumulated drift is effectively
corrected by the loop closing update. A benefit of doing
loop closure as EKF updates is that the drift is corrected
progressively across multiple consecutive camera frames
as long as loop closure features are tracked, rather than
immediately which often introduces sudden large jump in
the subsequent pose estimate and it is not desirable for
closed-loop control, e.g. of drones. While the introduced
loop closing update is similar to [24] and [41] where map
based update is employed, their maps are either pre-built or
online estimated via the costly BA in a separate thread. To
our best knowledge, the introduced tightly-coupled filtering-
based loop closure using marginalized “map” points is novel.

IV. IMAGE PROCESSING

In this section, we describe our image processing pipeline
for detection and tracking of point and line features. An
example is shown in Fig. 2.

For each new image, we track existing point features
via KLT optical flow (OF) [21] and for non-tracked image
regions new features are detected via FAST feature detector
[29]. We enforce uniform distribution of features in image by
spatial binning and maintain a fixed number of high response
features in each bin. To cope with fast motion, we obtain
initial guess for optical flow using relative rotation computed
from gyroscope measurements. We use KLT OF for stereo
feature matching as well similar to [33] for efficiency. To
reject outliers in both stereo and temporal matching, we use
2-point RANSAC and space-time circular matching [16].

For line features, we use Line Segment Detector (LSD)
[36] to extract line segments. For each line segment detected,
we extract binary descriptor using Line Band Descriptor
(LBD) [40]. Both stereo and temporal matching of line
features are based on LBD descriptor matching. To ensure
best matches, we perform 4-way consistency check, i.e.
left to right, right to left, previous to current, and current
to previous. Furthermore, we prune putative matches by
checking the length and orientation of lines.

To further enhance the robustness of feature tracking and
matching, we introduce a fast brightness check between



(a) Raw feature matches

(b) After fundamental matrix RANSAC removal

(c) After PnP RANSAC removal

Fig. 5: Two-step outlier rejection for loop-detection feature
matches. The frames are from the EuRoC V2 02 medium
dataset. (Best viewed in color.)

stereo and temporally consecutive images based on their
mean brightnesses, and perform histogram matching to en-
sure consistent brightness and contrast across stereo and
temporal images if necessary. An example is shown in Fig.
4. This considerably boosts stereo feature matching and
temporal tracking performance under unfavorable conditions,
e.g. auto-exposure mismatch between stereo cameras, dra-
matic lighting change. This is in contrast to using histogram
equalization for each frame as done in [27] and [41], which
incurs more computation and disregards brightness consis-
tency between stereo and temporal images, and may result
in over enhancement.

V. LOOP DETECTION

In this section, we describe our loop detection approach.
For each new image, we do keyframe selection based on the
number of features tracked and the pose distance to existing
keyframes in the loop detection database. If a keyframe is
selected, we extract ORB descriptors [30] for loop detection.
Our loop detection is implemented based on DBoW2 [12]
which is both fast and reliable, and it runs in a parallel thread
to the main VIO thread. For candidate loops, similar to [27],
we perform two-step outlier rejection: 2D-2D fundamental
matrix test and 3D-2D PnP test both within the RANSAC
framework. This outlier rejection strategy is effective as
shown in Fig. 5. If the number of inlier feature matches is
above the pre-defined threshold, we mark loop detected and

trigger loop closing EKF updates as described in Sec. III-
F. If the current keyframe does not contain loops, we add
it to the database when it is marginalized from the active
sliding window maintained by the filter along with its pose,
2D and 3D positions of features, and their descriptors. We set
a maximum number of keyframes in the database considering
memory requirement and detection speed to make sure that
it returns result within one camera frame.

VI. EXPERIMENTS

We conduct two experiments to demonstrate the perfor-
mance of the proposed Trifo-VIO approach. Both experi-
ments compare Trifo-VIO to competitive state-of-the-art VIO
approaches including OKVIS [18], VINS-MONO [27], and
S-MSCKF [33]. OKVIS and VINS-MONO are optimization
based tightly coupled VIO systems, while S-MSCKF is a
tightly-coupled filtering-based stereo VIO system closely
related to us. Both OKVIS and S-MSCKF support stereo
camera hence we run them in stereo mode, while VINS-
MONO is a monocular system. The first experiment is
conducted with the public EuRoC MAV dataset [7], while the
second is with our new Trifo Ironsides dataset. As all com-
parison approaches contain more or less non-determinism,
e.g. due to RANSAC, we repeat all experiments five times
and report median numbers.

A. EuRoC MAV Dataset

The EuRoC dataset contains eleven sequences in three
categories (MH, V1, V2) collected on-board a Micro Aerial
Vehicle (MAV). We select nine from them so that each
category contains 3 datasets. For comparison approaches, we
use their default parameters, as they all have been carefully
tuned for the EuRoC dataset. In addition, we keep the global
loop closure on for VINS-MONO, as we want to compare
with it in its best form. Evaluation results are shown in Fig.
6a. It is evident that Trifo-VIO is among the best performing
methods, leading results in MH 04, MH 05, V1 01, and
V2 01.

For the V2 03 dataset, S-MSCKF produces poor results,
mentioned in [33] as well, for the reason that “the continuous
inconsistency in brightness between the stereo images causes
failures in stereo feature matching”. Hence, its result is not
reported in Fig. 6a. In contrast, the histogram matching
method employed by Trifo-VIO makes it robust to this
challenging scenario, as demonstrated in Fig. 4. In addition,
V2 03 has about 400 missing frames in the left camera
data, resulting in OKVIS tracking failure. After we prune
extra frames from the right camera data, OKVIS runs well.
Note that we use the original V2 03 dataset for Trifo-VIO
evaluation as our approach is robust enough to handle frame
drop in either stereo or temporal frames. VINS-MONO is
not affected as it is a monocular approach and uses only left
camera data.

B. Trifo Ironsides Dataset

To further evaluate the performance of Trifo-VIO, we
introduce a new public dataset. The dataset is recorded by the



Trifo Ironsides [3] in a robot arm platform as shown in Fig.
1. We collect in total 9 sequences, featuring a wide range of
motions and environmental conditions, from controlled slow
motion around each axis under good visual conditions to fast
random motion with motion blur and low texture. For details,
please refer to Table I. We provide the entire dataset in two
formats, ROS bag and zipped format, similar to the EuRoC
dataset. The groundtruth provided by the robot arm is up to
millimeter accuracy and precisely synced with the Ironsides
sensor. Therefore, the Trifo Ironsides dataset is ideal for both
VIO/SLAM development and evaluation.

The comparison result is shown in Fig. 6b. We tune
parameters of all approaches to make them perform well
as much as possible. Our Trifo-VIO is consistently among
the top two best performing approaches. S-MSCKF results
are close to us, except dataset PI 3058, where we show
significantly better results due to the usage of additional line
features. PI 3058 is the most challenging sequence in the
dataset, containing fast motion and low texture in many parts
of the sequence, making it hard for VIO approaches which
rely on only point features. For OKVIS, it performs well for
easy sequences (PI S1 X1, PI S1 Y1, and PI S1 Z1) whose
dominant motions are slow translation. However, OKVIS
produces poor results for PI 3058, PI S1 Y2, and PI S1 Z2,
hence we omit reporting those numbers. We notice that
OKVIS’s feature matching suffers from repetitive textures
in the scene. Note that we exclude VINS-MONO from this
comparison as rotation dominant motion at the beginning
of many datasets leads to poor initialization and tracking
failure. To improve monocular SLAM initialization, delayed
initialization till enough parallax and model selection be-
tween fundamental matrix and homography could help [13],
[25].

TABLE I: The Trifo Ironsides Dataset

Dataset Motion Type Speed Texureness Difficulty
PI S1 X1 Pure X trans. Slow Medium Easy
PI S1 X2 Pure X rot. Slow Medium Easy
PI S1 Y1 Pure Y trans. Slow Medium Easy
PI S1 Y2 Pure Y rot. Slow Medium Easy
PI S1 Z1 Pure Z trans. Slow Medium Easy
PI S1 Z2 Pure Z rot. Slow Medium Easy
PI S1 R1 Random Medium Medium Medium
PI 3030 Random Medium Medium Medium
PI 3058 Random Fast Low Hard

VII. CONCLUSIONS
In this work, we have presented Trifo Visual Inertial

Odometry (Trifo-VIO), a new tightly-coupled filtering-based
stereo visual inertial odometry approach using both point and
line features. Line features help improve system robustness
in point-scarce scenarios, e.g. low texture and changing light.
Both stereo point and line features are processed over a
sliding window at cost only linear in the number of features.
To reduce drift, which is inherent in any odometry approach,
we have introduced a novel lightweight loop closure method
formulated as native EKF updates to optimally relocate
the current sliding window maintained by the filter to past

(a) EuRoC dataset

(b) Trifo Ironsides dataset

Fig. 6: Absolute trajectory RMSE (Root Mean Square Error)
results of our Trifo-VIO and competing approaches including
OKVIS, S-MSCKF, and VINS-MONO on both the public
EuRoC dataset and our new Trifo Ironsides dataset. Note
that we exclude VINS-MONO from the second evaluation.
(Best viewed in color.)

keyframes. All of them (point features, line features, and
loop closure) are handled in a consistent filtering-based
framework.

We have also presented the Trifo Ironsides dataset, a new
public visual-inertial dataset, featuring high-quality synchro-
nized stereo camera and IMU data from the Trifo Ironsides
sensor with various motion types and textures and millimeter-
accuracy groundtruth. The extensive evaluation against com-
petitive state-of-the-art approaches using this new dataset and
the public EuRoC dataset clearly demonstrate the superior
performance of the proposed Trifo-VIO approach.
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