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Abstract— Deep-sea robot operations demand a high level of
safety, efficiency and reliability. As a consequence, measures
within the development stage have to be implemented to ex-
tensively evaluate and benchmark system components ranging
from data acquisition, perception and localization to control.
We present an approach based on high-fidelity simulation that
embeds spatial and environmental conditions from recorded
real-world data. This simulation in the loop (SIL) methodology
allows for mitigating the discrepancy between simulation and
real-world conditions, e.g. regarding sensor noise. As a result,
this work provides a platform to thoroughly investigate and
benchmark behaviors of system components concurrently under
real and simulated conditions. The conducted evaluation shows
the benefit of the proposed work in tasks related to perception
and self-localization under changing spatial and environmental
conditions.

I. INTRODUCTION

The rapid progress of Unmanned Underwater Vehicle
(UUV) capabilities in recent years has increased their use
in inspection and mapping activities as they offer higher
data transmission rates through acoustics, more accurate
navigation and denser environment 3D models with energy-
efficient sensors. UUV systems are also increasingly applied
to areas which are inaccessible and hazardous to humans.
For example, the UK Health & Safety Executive’s (HSE)
2015–2016 Offshore Safety Statistics [1] reports 53 major
injuries and more than 400 dangerous occurrences, most
of them performing maintenance and construction activities.
However, the development and continuous evaluation of such
underwater robotic systems typically requires the organiza-
tion of a crew (intendant, operator, navigator) and an ade-
quately equipped vessel to deploy, operate, and retrieve the
robot offshore. This rapidly increases the effort and cost of
each development cycle. Specialized testing and deployment
strategies are required because effort and costs in case of fail-
ure are higher by several orders of magnitude than in ground
robotics, for example, when a UUV malfunctions in deep
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Fig. 1. Illustration of the proposed simulation in the loop (SIL) methodol-
ogy showing a perception task application (valve and lever pose estimation,
see Section V-B) within the DexROV project [2].
Supplementary video: http://robotics.jacobs-university.de/videos/sil-2018

sea and cannot be retrieved anymore. Consequently, efficient
strategies have to be incorporated to validate effectiveness,
robustness and reliability of the developed capabilities. As to
alleviate these costs and efforts, we propose a methodology
that uses a simulator for underwater robotic activities and
integrates parts of the development stack with real-world data
recorded from field trials.

In the context of the EU-funded research project DexROV
(Effective Dexterous ROV Operations in Presence of Com-
munication Latencies [2]), in our previous work [3] we
proposed a versatile integration and validation architecture
that allows for pre-deployment testing using simulated and
real system components besides each other in a seamless
way. That work focused on the continuous system integration
and deployment of a fully integrated system that may contain
simulated components due to their developmental stage.

In the work presented here, however, our goal is a simula-
tion in the loop (SIL) architecture (see Fig. 1) which allows
for extensive system benchmarking. Hence, our particular
focus is set on closing the discrepancy between simulated
and real-world data. As a result, our proposed framework
• synchronizes simulated and real-world data by incor-

porating environmental and spatial feedback collected
from field-trials which

• provides an augmented virtual environment reflecting
environmental/spatial conditions from real-world mis-
sions to test, benchmark and compare behaviors of
system modules,

• preserves the benefits of continuous system integration
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to perform such benchmarks using real or simulated
components or a combination of both, and allows to

• perform tests on distributed deployment,
interfaces/pipelines, data regression/degradation,
and fault recovery/safety as described in [3].

II. RELATED WORK

DexROV [2] features a full-fledged Unmanned Underwa-
ter Vehicle (UUV) system, deployed from a vessel in the
Mediterranean to perform perception as well as dexterous
manipulation. In our application, an artificial testing panel
has been set up to allow for interventions including, but
not limited to, visual inspection, docking, and manipulation
of valves, handles and other movable parts. Such robotic
underwater operations require accurate pose estimation of
task-related objects like levers and valves to reduce the risk
of costly failures. Hence, robust detection of spatio-temporal
reference points is of particular interest during these tasks.

Due to the noisy nature of underwater scenarios and the
precision required for manipulation tasks, we exploit a-priori
knowledge about the environment. Using known landmarks
allows the system to operate with low-quality data which
commonly appears in deep-sea sensing, e.g. acoustic sensors
affected by salinity and temperature, and camera images
distorted by light backscatter. Such landmarks have been
used for navigation and docking of underwater vehicles [4],
[5] since underwater no global positioning information is
available. Additionally, artificial structure-based perception
has been frequently used both in ground [6] and underwater
robotics [7], [8]. For these reasons, we equipped the de-
scribed testing panel with visual markers [9] to exploit it as
a reference structure for enhancing localization and object
perception capabilities.

The major goal of the proposed SIL methodology is
robust projection of real conditions to simulation, including
task-related objects. Inferences from simulated interaction of
robots with the environment is a well-established approach
[10], [11], [12]. Additionally, several frameworks exist which
allow for the reproduction of experiments from a knowledge
base incorporating experimental data and information de-
duced thereof [13], [14]. However, synchronizing the state
of the simulation with real-world data for reasoning and
benchmarking has still not been covered extensively in the
literature.

Although numerous sophisticated simulators exist for
ground and aerial robots, there is a limited number for under-
water applications [15], [16] due to the difficulty of modeling
hydrodynamic forces and environment light. Closest to the
DexROV scenario is the UUV Simulator package [17] which
serves similar use cases like intervention tasks using a
UUV manipulator. This package, as well as our approach,
builds upon the established Gazebo [18] simulator. Further
on, to guarantee authentic projection of real conditions to
simulation, we exploit visual markers attached to the testing
panel as reference points, described in Section IV. The work
in [19] and our experimental evaluation in Section VI-B

Fig. 2. System Architecture Overview – subfigures h) and i) are not
regarded in the context of this paper, see [3] instead.

validate the use of visual markers subject to underwater
image distortions.

In the remainder of this paper, we describe how to use
artificial man-made structures to set up the simulation envi-
ronment for perception and manipulation tasks and interlock
it with continuous system integration. In Section VI, we
show the performance improvements achieved through ex-
periments in object pose estimation and robot localization as
real data is iteratively used to refine the simulated scenario.

III. SIMULATION FOR
CONTINUOUS SYSTEM INTEGRATION

In a real-world robotic system, a large number of system
integration hours have to be invested before being able to
deploy it into a realistic scenario. Regarding the example
of DexROV, the research project features an fully-fledged
UUV for open sea usage and, amongst others, equipped with
a stereo perception system and a manipulator. Within this
project, several real-world field trials have been scheduled
and partly performed already. However, the different work-
groups do not have access to the hardware prior to the annual
trials despite the need to thoroughly test their developed
hardware and software components.

For this reason, high priority was assigned to establish
a simulation base before implementing any task-specific
software modules in order to allow developers to work
independently and in parallel. The architecture of such a
simulation framework depends on the application scenario,
though the underlying principles and procedures of continu-
ous system integration as described in detail in our previous
work [3] translate to any desired area of robot operation.

Fig. 2(a) shows an example of the DexROV simulation
environment including a man-made testing panel which
features different valves and levers, specifically generated
to test the manipulation capabilities of the robot. The main
target of using simulation in a continuous system integration
fashion is to validate a plethora of different components
in simulation and to infer from their behavior onto real-
world missions. Hence, the simulation framework for the
respective application scenario, i.e. a deep-sea setting like



DexROV, needs to provide its capabilities in a component-
wise structure where simulated can be effortlessly replaced
with real elements. As for inter-component communication,
since such a variable system encompasses many interacting
modules, all components are integrated into a middleware
like ROS. This allows operability through remote and unsta-
ble network connections as described in [2] and required in
harsh deployment environments.

Using the principle of continuous system integration, a
complex system architecture can be established, maintained,
and exploited like the application example in Fig. 2. All the
components pictured therein have been developed, enhanced,
and evaluated following this schema. In Section V, we
describe in detail the business logic of some components
as well as how the simulation framework has been exploited
to improve their utility and usability. However, first of all,
the next section explains how real-world data is incorporated
into the simulation environment for fast component tuning
that, in turn, yields high-accuracy results in real-world tests.

IV. INCREASING CONTINUOUS SYSTEM INTEGRATION
ROBUSTNESS USING SIMULATION IN THE LOOP

A developmental procedure that incorporates a simulation
of the application scenario is a powerful tool to decrease
the overall project costs by accelerating the planning and
execution of field trials. It also increases the system reliability
by benchmarking its behavior in extreme border conditions
and without exposing valuable equipment to danger.

The concept of simulation in the loop (SIL) goes one
step further. Instead of conducting working cycles in a se-
quential development-evaluation process with data generated
from simulation and later from real-world field trials, SIL
aims to combine both steps. The recorded real-world data
is projected into the simulation environment using similar
conditions such as the robot configuration in space, perceived
sensor data and environmental constraints.

To conflate the spatial conditions present in real-world
data with simulation, spatio-temporal reference points are
used during the field trials. Crucial prerequisite of these ref-
erence points is their accurate detection and pose estimation
in 3D space. In the DexROV scenario, the testing panel is
exploited as such a reference point since the pose estimation
of the panel is a major project objective, further described
in Section V-A. To guarantee robust pose estimation, the
panel is augmented with visual markers, specifically ArUco
markers [9] which provide high pose accuracy. Given the
augmented panel model, the observation of markers in the
recorded real-world data allows to take the panel as a visual
landmark and infer the robot pose with respect to it. This
inference allows to project the relative spatial circumstances
between panel and robot into simulation (Fig. 3b). Likewise,
states of panel components (e.g. valves, switches or wheels)
from real observations can also be accordingly projected to
panel components in simulation (Fig. 3e).

Furthermore, real observed environment conditions, like
camera image noise, haze or illumination, can be estimated
to reflect similar conditions in simulation. For this, we rely on

Gazebo’s built-in sensor noise models, scene fog and lighting
options as well as the UUV Simulator camera plugin [17].
Consequently, spatial and environment conditions perceived
from real observations are continuously reflected in simula-
tion in a cylic manner, as shown in Fig. 3. This processing
loop of real observations acquisition and their projection into
simulation is shown in Alg. 1.

Algorithm 1 Simulation in the loop (SIL)
Input: real-world sensor data R(E), task T

initialize knowledge base (see Section V)
infer environment conditions E from sensor data R(E)
initialize simulation environment, spawn testing panel model
for all real-world samples r(t) ∈ R at time steps t do

detect visual markers in r(t) (see Fig. 3a)
estimate panel pose in odometry frame TOP from marker poses (Section V-A)
infer robot pose in odometry frame TOR (see Fig. 3b)
set robot pose in simulation according to TOR (see Fig. 3c)
generate simulated sensor data s(t) ∈ S(E)
create benchmarking sensor data pair b(t)← 〈r(t), s(t)〉 (Figs. 3a and 3d)
calculate measure m(T , t) using b(t) under R(E)/S(E) domain (Section V)

B ← B ∪ b(t), M ←M ∪m(T , t)
end for

Output: synchronized benchmarking data sequence B ← R(E) ∩ S(E), sequence
of measures M(T ) for task T

Through this loop process several specialized optimization
and benchmarking tasks T can be performed iteratively
based on simulated S and real-world data R, such as
object recognition, manipulation or 3D modeling. This yields
a corresponding sequence M(T ) of individual measures
m(T ) ∈M which have to be defined depending on the task
T prior to running the simulation loop. Several examples for
such measures are described and used in our experimental
evaluation (Section VI).

Additionally, environmental conditions E in simulation can
be adapted to compare the methods performance (e.g. robot
localization, panel pose estimation) under various configu-
rations with respect to their performance under real field
trial conditions. For numeric optimization, a respective task-
dependent measure m(T ) can be utilized. This capability of
the proposed approach is particularly valuable in continuous
system development under challenging and dynamic condi-
tions, such as in deep-sea projects like DexROV.

V. APPLICATION-RELEVANT BENCHMARKING TASKS

Since deep-sea missions are cost-intensive and bear a risk
to life and equipment, prior knowledge about the mission
decreases risk of failures and increases safety. Particularly
in visual inspection or manipulation tasks of man-made
structures, the incorporation of prior knowledge can be
exploited to increase efficiency and effectiveness of con-
ducted missions. Therefore, a knowledge base is built which
contains properties of task-related objects. Along with offline
information, like CAD models and kinematic descriptions of
the robot and testing panel, the knowledge base also contains
online state information gathered over the execution course
of the task, e.g. the current robot and object poses.

Using this prior knowledge and online state information,
a multitude of different validation and optimization tasks
can be carried out with the presented setup. In this section,



(a) Real-world
camera image

TCR

TMR
TPM

TOP
TOR

TMC

TOM

(b) Robot–panel space transformations (c) Simulated
camera image

(d) Adapted
simulated camera
image

(e) Panel with projected
kinematic model

Fig. 3. (Spatial condition) Synchronization of observed robot pose in real-world data (a, b) with simulation environment (c). (Environmental condition)
Simulated images are shown in (c) and (d) accordingly. (e) Panel component kinematic state projected in simulation.

we describe several application scenarios where the SIL
methodology provides significant benefits for validation and
benchmarking. All these benchmarking tasks TP , TH and TL
are described in detail while their respective results can be
found in our experimental evaluation.

A. Panel Pose Estimation (TP )

Our panel pose estimation approach described below is
the basis for projecting the panel model and its kinematic
properties into the simulation as illustrated in Fig. 3e. The
estimation of accurate panel poses is crucial for reliable
manipulation of valves and handles. Our approach incor-
porates offline knowledge such as the panel CAD model
and visual markers placed at predefined locations. Based
on this augmentation of the panel with markers, the panel
pose in odometry frame TO

P can be reliably estimated using
the detected markers poses w.r.t. the camera frame TC

M , the
camera pose on the robot frame TR

C and the current robot
pose in odometry frame TO

R , see Fig. 3b:

TO
P = TO

R TR
C TC

M TM
P (1)

Consequently, n marker observations lead to n panel pose es-
timates TO

P that eventually allow to compute the pose mean
which includes mean position and orientation, determined by
spherical linear interpolation (Slerp) [20].

B. Panel Handle Pose Estimation (TH )

Once the panel pose has been estimated, the panel kine-
matic model can be exploited to approximate the orientations
of each component (handles, wheels, valves, etc.). Accurate
orientations are necessary to guarantee reliable manipulation
of targets as required by further mission tasks.

Using the described knowledge base, a region of interest
(ROI) in form of a 3D oriented bounding box is extracted
according to the component model dimensions. Then an
image-based approach estimates the component orientation
using the extracted ROI projected into the image space.
Fig. 4a shows the input image from one monocular view of
the real stereo camera, and Fig. 4b shows the computed ROI
of the handle labelled C3. For precise localization of the han-
dles, the superellipse-guided active contours segmentation
algorithm [21] is applied to the image patches representing

Real

(a) Input

(b) ROI (c) Handle

(d) Detected handle poses

Simulation

(e) Input

(f) ROI (g) Handle

(h) Detected handle poses

B1

B2

B3

B4

C3

Fig. 4. Stages of the handle pose estimation algorithm. It can be tested
for identical viewpoints on real ((a)–(d)) and simulation data (e)–(h)).

each handle ROI. This algorithm is a particularly good fit
to our use case because the handles are round or ellipsoid-
shaped when viewed from a frontal perspective.

Fig. 4c shows the result of using Fig. 4b as input for
the superellipse-guided active contours segmentation. Sub-
sequently, the handle state given by the lever position can
be inferred from the most prominent straight edge in the
lever’s image. A Canny edge detector is used to detect edge
points, followed by a Hough transformation for lines. Fig. 4d
shows the estimated handle poses overlaid over the panel.
Based on these estimated orientations, the overall state of
the panel is accordingly updated (Fig. 3e). Then, thanks to
the synchronized simulation, the algorithm is tested with an
identical camera viewpoint in simulation for comparison, as
shown in Fig. 4e–f; note that, handle pose estimates retrieved
from real (Fig. 4d) and simulated (Fig. 4h) data may deviate
due to different signal-to-noise in the respective data.

To further enhance the robustness of the algorithm when
used in the envisioned scenario, a moving average of the
detected lever orientations is employed to mitigate the effects
of incorrect estimations on single frames. Moreover, both
images from the stereo camera are used separately to estimate
the handle pose, which gives us two samples from different
perspectives at each time instance.



C. Robot Localization (TL)

Accurate self-localization of vehicles is a challenging task,
especially in the deep-sea domain, due to noisy sensor
readings typically based on acoustic devices like Ultra-
Short Baseline (USBL) systems, single-beam or multi-beam
sonars, Doppler Velocity Log (DVL) or relative readings pro-
vided by Inertial Navigation Systems (INS). Consequently,
localization methods rely on multiple modalities to increase
reliability [22], [23]. A typical and well-established approach
to deal with sensor fusion is the Extended Kalman filter
(EKF) [24] which allows to incorporate these modalities
while considering their individual uncertainty.

However, as discussed in the previous section, reliable
dexterous manipulation is a requirement in the DexROV
scenario. To ensure robust control of the manipulator arm,
accurate robot pose estimates are needed. Hence, we exploit
the panel as a visual landmark again due to its static pose
on the seafloor and its visual augmentation with multiple
markers. Once the panel pose has been estimated, the robot
pose can be inferred and used as an additional EKF input
modality. In the following we describe our EKF-based lo-
calization system incorporating sensor readings and visual
landmarks.

1) Sensor Readings
The robot setup provides a bank of sensors including INS,

DVL, and USBL which together allow to gather readings
of the current robot state regarding translation, orientation,
linear/angular velocities and accelerations.

2) Visual Landmark-Based Localization
Fig. 3a shows a sample pose estimate of a visual marker,

note that the panel is partially observed, used to infer
the panel pose though the space transformations shown in
Fig. 3b. Now the panel is taken as a fixed landmark and the
robot pose TO

R can be estimated as follows:

TO
R = TO

P TP
M TM

C TC
R (2)

where TO
P is the panel pose in odometry frame, TP

M is
one marker pose in panel frame, TM

C is the camera pose
w.r.t. the marker and TC

R is the robot fixed pose w.r.t.
the camera. Further on, the means of robot position p̄O

R

and orientation q̄O
R w.r.t. the odometry frame are estimated

from multiple marker detections using Slerp. In addition, a
covariance matrix CO

R for the robot pose is computed:

CO
R = diag(σ2

px , σ
2
py , σ

2
pz , σ

2
qφ
, σ2

qθ
, σ2

qψ
). (3)

The full robot pose estimate TO
R = 〈 p̄O

R , q̄O
R 〉 along with

the respective covariance matrix CO
R is then taken as an input

for the localization filter in the final setup. Alternatively, it
can be used as a ground truth value to optimize each of its
components, i.e. sensor biases and associated covariances.

3) Extended Kalman Filter
In this work, we apply an Extended Kalman Filter (EKF)

[24] to estimate the robot pose over time considering a
state space consisting of position x, y, z, orientation φ, θ, ψ,
translational ẋ, ẏ, ż, and angular velocities φ̇, θ̇, ψ̇ as well
as translational accelerations ẍ, ÿ, z̈. We only incorporate

(a)
m(TE) = 1.0

(b)
m(TE) = 0.32

(c)
m(TE) = 0.48

(d)
m(TE) = 0.65

Fig. 5. Simulated image adaptation to real environment conditions. Images
correspond to (a) real-world, (b) default and (c–d) light adapted simulation.

direct sensor measurements to the EKF, no integrated or
differentiated values. INSs produce angular and linear accel-
erations, a DVL provides position outputs in form of altitude
readings and linear velocities, and the mentioned landmarks
are incorporated as pose readings. To increase the localiza-
tion filter robustness, obvious outliers from sensor readings
are rejected heuristically, and the pose inputs inferred from
visual markers are tuned based on our experimental results.

VI. EXPERIMENTAL EVALUATION

In the following experiments we exploit the SIL concept
with real-world data recorded during field trials in Marseille,
France, in July 2017. The goal is to demonstrate the ef-
fectiveness of the proposed method to benchmark critical
system components and several mission tasks Ti in deep-sea
operations. This data contains sequences where the robot was
used to verify the integrity of the testing panel and expected
handle positions at up to 100 meters below sea level.

In the first experiment we perform an environment condi-
tion adaptation task (TE) to find the best possible simulation
setup with respect to environment conditions. Next, we
evaluate the performance of three benchmarking tasks: panel
pose estimation (TP ), panel handle pose estimation (TH ) and
robot localization (TL).

A. Environment Condition Adaptation (TE)

In this task the simulated environment conditions E are
tuned to reflect real environment conditions with high fi-
delity. We focus on adapting the light behavior to replicate
the underwater camera distortions, i.e. light and color atten-
uation. The simulated stereo camera applies an exponential
attenuation on the pixel intensity as described in [17]:

i∗c = ice
−zac + (1− e−zac)bc ∀c ∈ {R,G,B} (4)

where ic and bc correspond to the pixel and background
intensity value for color channel c, and ac is a color-
dependent attenuation factor. The attenuation depends on the
distance z to the object projected on the camera pixel, which
is extracted directly from the simulator depth-camera plugin.

We define the measure m(TE) equivalent to the Feature
Simularity Index (FSIM) [25] image quality measure be-
tween synchronized real and simulated images. 50 images
recorded from the field trial were used to heuristically
determine the most adequate light parameters for Equation 4;
these images include different distances to the panel and
perspectives. Fig. 5 shows some adapted image instances and
their respective m(TE) ∈ [0, 1]. Fig. 5d shows the optimized
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environment conditions

adapted image under environment conditions E∗, which are
used in the next experiments to find the expected system
performance in simulation.

B. Panel Pose Estimation (TP )

This first benchmarking task TP evaluates the accuracy
of the panel pose estimation, as it is the starting point for
other tasks like handle pose estimation. This consequently
validates the robustness of the used visual markers.

In simulation the robot navigates as in Fig. 8c; the trajec-
tory was computed by extracting the robot poses given by the
detected markers on real data and using them as waypoints
in simulation. In this way, the same visual perspectives as
in the field trial are obtained which represent a common
routine trajectory given by the robot operators. Thus, we can
determine the expected error as the difference between the
ground-truth panel pose in simulation TO

P S and the panel
pose determined from marker detection TO

P M :

m(TP , E) =d
(

TO
P S , TO

P M

)
=〈d

(
p̄O

P S , p̄O
P M

)
, d
(

q̄O
P S , q̄O

P M

)
〉 (5)

where d
(

p̄O
P S , p̄O

P M

)
is the Euclidean distance between po-

sitions and d
(

q̄O
P S , q̄O

P M

)
is the minimal geodesic distance

between orientations [26] under conditions E .
Fig. 6 shows the mean M̄(TP , E) and standard deviation

σ(M(TP , E)) for all panel observations under noise free
E0 and underwater-like conditions E∗. As expected, our
method has high accuracy under noise-free environment,
and underwater image distortions decrease the accuracy and
number of detections. With E∗ conditions, we can expect
a translation and orientation error of 0.118 m and 4.2 ◦

respectively. For visual survey and navigation tasks this error
is minimal. It can be overcome by image registration methods
and the variance σ2(M(TP , E∗)) can be used to fine-tune the
robot pose covariance matrix CO

R (Section V-C) to improve
localization, as it is an estimation of pose precision. For
manipulation tasks, applying a moving average over the

Fig. 7. Normalized histograms of handles orientation error M(TH) for
simulated and real data

outputs produces good results as explained in Section V-B.
Tasks TH and TL show this in the next experiments.

C. Panel Handle Pose Estimation (TH )

The previously described handle pose estimation was
tested with the SIL framework, synchronizing the real and
simulated camera point of view. Fig. 7 shows the normalized
histograms of the error M(TH) between the estimated handle
orientation and ground truth from simulated and real data;
note that, ground truth handle orientations are retrieved from
visual inspection. In the course of the development, B1 and
B2 have been modified to enhance the estimation accuracy
by coloring the respective lever black in order to investigate
contrast benefits for edge-based image algorithms as the
one used (see Figs. 4a and 4e). This modification causes
a discrepancy between simulated and real data, therefore B1
and B2 are disregarded in the results shown in Fig. 7. In
general, the results in Fig. 7 show that the handle orientation
estimates are predominantly within a low -10◦ to 10◦ error
range. Depending on viewpoint, handle type and orientation,
outliers can be observed for B4 in the range of 60◦ to 70◦.

D. Robot Localization (TL)

The final task TL to benchmark with our SIL methodology
is the localization method described in Section V-C. First we
validate the use of visual landmarks in the localization filter
through simulation under the found E∗ conditions, then with
real data we compare the task performance with and without
the use of visual landmarks, and finally we tune the EKF
parameters based on the results from tasks TL1 and TP .

1) TL1 – localization in simulation
In the case of real-world underwater localization, no ac-

curate ground-truth sensing is available. For this reason, the
performance of the proposed localization filter that integrates
visual landmarks into the EKF has to be tested in simulation
first; and deployed afterwards in the field.

In this task TL1 the simulated robot again follows the
trajectory shown in Fig. 8c. During this movement, the
ground-truth robot pose in simulation TO

R S is recorded
alongside the robot pose determined through the detected
marker pose TO

R M and the localization filter TO
R F . Note

that the EKF receives only the visual landmark-based pose
estimates to prove that it converges to ground truth.
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(c) Robot poses (triangles) with orientation error d
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Fig. 8. TL1 results: position and orientation errors between ground-truth robot pose and marker-based / localization filter-based robot pose estimates,
while the robot moves around the panel on a trajectory recorded in field trials

The pose estimate error of TO
R M and TO

R F with respect
to simulation ground truth are shown in Fig. 8, denoted
as mS,M (TL1) = d

(
TO

R S , TO
R M

)
and mS,F (TL1) =

d
(

TO
R S , TO

R F

)
as in Equation 5. The trajectory in Fig. 8c

and the detailed error breakdown in Fig. 8a–b show that
whenever no marker has been detected for a while, the
EKF error increases significantly on the next reading, but
then quickly re-converges towards ground truth. On parts
of the trajectory where markers are visible constantly, the
localization error decreases satisfactorily below 0.3 m/3 ◦ e.g.
between time marks 0.1 and 0.25.

2) TL2 – real-world localization using only navigation
sensor data

In order to get a baseline to compare the performance of
the localization filter when integrating visual landmarks, in
this subtask only DVL and INS measurements are used as
inputs. This is also done because our focus is on tuning the
use of visual markers in the EKF because navigation sensors
are not integrated in the simulation at this development stage.

To evaluate this and the next tasks, see Table I-II,
we use the robot pose estimate given by the marker
TO

R M as reference ground truth, and compute the measure
mM,F (TLi) = d

(
TO

R M , TO
R F

)
plus the lag-one auto-

correlation mA(TLi) =
∑

t TO
R F (t) TO

R F (t − 1) on the
EKF-predicted poses. mA(TLi) is a measure of trajectory
smoothness, important to prevent the robot from performing
sudden jumps that can interfere with manipulation tasks.

3) TL3, TL4, TL5 – real-world localization with visual
markers

In these tasks, we show the localization results using
all sensor data recorded in field trials along with visual

TABLE I. Description of localization tasks TLi

Task Description

TL2 EKF with real-world data and only navigation sensors
TL3 EKF with real-world data, using navigation sensors and visual markers

(default parameters)
TL4 TL3, plus covariance COR of the robot pose estimates from marker

detections adjustment with results from task TP , i.e. using (0.126m)2

and (4.6 ◦)2 (see Fig. 6) as diagonal values for single marker detections
TL5 TL4, plus rejection of pose estimates whose distance

d
(

TOR M , TOR F

)
to the current prediction are greater than 1m

and 12 ◦; according to TL1 and Fig. 8a–8b

TABLE II. Tasks TLi measure results

TL2 TL3 TL4 TL5

m̄M,F (TLi〈p̄〉)[m] 2.11±0.94 0.26±0.39 0.29±0.32 0.28±0.35

m̄M,F (TLi〈q̄〉)[deg] 15.59±7.33 10.24±7.57 8.82±5.17 8.86±5.19

mA(TLi) 0.95 0.72 0.91 0.94

landmark-based pose estimates. A description of the respec-
tive tasks is given in Table I. The corresponding results are
shown in Table II and Fig. 9.

As expected, the EKF instance with only navigation sen-
sors as an input (TL2 – blue in Fig. 9) bears the largest
error. Integrating the visual markers (TL3 – orange) sig-
nificantly reduces the error and increases the number of
jerky movements while navigating; this results in the worst
mA(TLi). Finally, we show that, based on previous tasks
TP and TL1 developed through our SIL methodology, the
localization performance can be optimized adjusting the pose
estimates covariances (TL4 – green) and rejecting outliers
(TL5 – red). TL4 and TL5 yield similar accuracies, but the
latter achieves the smoothest navigation trajectory. Certainly,
as more sensors are integrated in simulation, performance can
be further enhanced through simulation in the loop.
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Fig. 9. Localization benchmark tasks TLi results

VII. CONCLUSION

Deep-sea robotic operations are cost intensive, and de-
mand robustness and high reliability under harsh conditions.
Measures have to be taken to guarantee the safety of the
crew and the equipment. This includes not only robust pose
estimation and localization algorithms, but also a versatile
development framework including a realistic testbed.

In this work we presented a simulation in the loop (SIL)
procedure that incorporates real observations into the simu-
lation in a seamless manner by synchronization of simulated
conditions with real-world data. Consequently, the compo-
nents development progress can be instantaneously verified
and benchmarked under simulated and real conditions. In
our experimental evaluation we showed the benefit of the
presented SIL approach on the DexROV research project.
We were able to analyze and optimize critical components
like robot localization considering the components’ behavior
under various environmental and spatial conditions.
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