
Hallucinating Robots:
Inferring Obstacle Distances from Partial Laser Measurements

Jens Lundell*, Francesco Verdoja* and Ville Kyrki

Abstract— Many mobile robots rely on 2D laser scanners for
localization, mapping, and navigation. However, those sensors
are unable to correctly provide distance to obstacles such as
glass panels and tables whose actual occupancy is invisible at
the height the sensor is measuring. In this work, instead of
estimating the distance to obstacles from richer sensor readings
such as 3D lasers or RGBD sensors, we present a method to
estimate the distance directly from raw 2D laser data. To learn
a mapping from raw 2D laser distances to obstacle distances
we frame the problem as a learning task and train a neural
network formed as an autoencoder. A novel configuration of
network hyperparameters is proposed for the task at hand and
is quantitatively validated on a test set. Finally, we qualitatively
demonstrate in real time on a Care-O-bot 4 that the trained
network can successfully infer obstacle distances from partial
2D laser readings.

I. INTRODUCTION

2D laser scanners are the de facto sensors used by mobile
robots for navigation, mapping, and localization as they
provide distance measurements in large angular fields at
fast rates thanks to their small data dimensionality [1].
However, the amount of knowledge that can be extracted
from a 2D laser scan may be insufficient for some tasks like
object detection and obstacle avoidance. In particular, laser
sensors cannot detect glass or infer the true occupancy of
complex objects such as tables. An example of this problem
is presented in Fig. 1: here a robot relying only on raw 2D
laser data of the scene (i.e., the green dots in the figure)
would see the legs of the table but not the tabletop itself,
allowing it to plan and execute a trajectory through the table
causing a collision and harming the robot. We refer to the
distance along a certain direction to the closest point of an
obstacle that the robot could collide with as the robot-to-
obstacle distance.

Classical approaches overcome such limitations by utiliz-
ing richer sensor readings from, for example, RGBD cameras
[2] or 3D laser scanners [3], or by fusing data between
different sensors [1]. These approaches often suffer from a
limited field of view and higher computational requirements
of the sensors they employ. Instead, we propose a method
for inferring the robot-to-obstacle distance directly from 2D
laser data. This is accomplished by framing the problem as
a learning task where the input is raw 2D laser distance and
the output is the correct 2D robot-to-obstacle distance. In
essence, the network hallucinates the corresponding range

*These authors contributed equally to this paper.
This work was supported by Academy of Finland, decision 314180.
J. Lundell, F. Verdoja and V. Kyrki are with School of Electrical

Engineering, Aalto University, Finland. name.surname@aalto.fi

Fig. 1. A robot reconstructing the shape of a table by seeing only its legs. In
the illustration on the right, the green laser is the original input signal, while
the red one is the output produced in real-time by the proposed algorithm
(best viewed in color).

data as if the 2D laser scanner could detect the full shape of
the obstacles; hence the name Hallucinating robots1.

The main contributions of this work are:

• a novel approach to estimate the robot-to-obstacle dis-
tance from raw 2D laser data by training an autoen-
coder;

• a quantitative study over the impact on the network per-
formance of different hyperparameters, specifically skip
connections (Sect. III-B), a novel activation function
tailored for the domain at hand (Sect. III-C) and data
augmentation with random Gaussian noise (Sect. IV-C);

• a method to generate ground truth robot-to-obstacle
distances by fusing raw 2D laser scans with overlapping
depth images (Sect. IV-B);

• a qualitative evaluation of the proposed technique per-
formed online on the real robot (Sect. IV-E) showing the
method working in complex environments such as the
one presented in Fig. 1 and in 360° around the robot.

To the best of our knowledge, the work presented here
is the first one focusing on learning distance to otherwise
invisible obstacles in 2D laser data. The hallucinated laser
data is not to replace raw laser data, but instead acts as
an additional source of information to enrich environment
awareness and increase robot safety.

1Code of the implementation of the proposed method, the dataset used
in this study, and a video demonstrating the algorithm running in real time
on a robot can be found on our website: http://irobotics.aalto.
fi/software-and-data/hallucinating-robots

ar
X

iv
:1

80
5.

12
33

8v
2 

 [
cs

.R
O

] 
 2

9 
Ju

l 2
01

8

name.surname@aalto.fi
http://irobotics.aalto.fi/software-and-data/hallucinating-robots
http://irobotics.aalto.fi/software-and-data/hallucinating-robots


II. RELATED WORKS

One of the earliest works on training neural networks on
laser data dates back to 1998 [4], where the trained network
was used in a museum tour-guide robot to modify the initial
map with the true occupancy of invisible objects such as
chairs and glass showcases. That work’s scope was however
limited to the exact setting where it was proposed. Only
recently, mostly due to the growing possibilities of deep
learning, a lot of new work has been proposed using neural
networks trained on laser data [5]–[10].

In the context of obstacle detection, the use of neural
networks has been proposed to infer bounding boxes of
pedestrians and vehicles from 3D laser data of typical road
scenes [6], [8] and to track spatially occluded moving objects
in the scene by incorporating consecutive laser measurements
to include the temporal information [7]. These works, how-
ever, are not directly dealing with the problem of inferring
robot-to-obstacle distances. Moreover, [6], [8] use 3D laser
sensors, which are naturally able to obtain the robot-to-
obstacle distance.

In regards to network architectures proposed for laser data
processing, Pfeiffer et al. [10] trained a Deep Neural Net-
work (DNN) end-to-end to mimic a motion planner with laser
data as input and velocity commands as output. The training
data was obtained from simulation but validated on a real
robot navigating complex corridors. In that work the authors
propose a neural network architecture specifically tailored
to process laser data: it consisted of a fully Convolutional
Neural Network (CNN), using Batch Normalizations (BNs),
Rectified Linear Units (ReLUs) and skip connections (details
about these structures is given in Sect. III). Despite good
results which validated the network structure, the authors
claimed the learned motion planner underperformed when in
wide open areas with a lot of glass and/or clutter, a problem
that is partly due to missing obstacles in laser data and that
we address in this work.

The problem of undetected obstacles when using 2D laser
scans was also mentioned in the work by Liao et al. [9],
where they used 2D laser scans together with RGB images
to predict a 3D depth map of the same scene by a Residual
Neural Network (ResNet). Although the method was not per
se developed for obstacle detection and avoidance, it was
experimentally shown to successfully detect obstacles that
were not seen from the fixed 2D laser. However, to produce
such measurements the algorithm still relies on integrating
information from RGB images.

Along the same line of inferring missing obstacles in laser
data with vision, Baltzakis et al. [1] proposed a method
which at runtime fuses laser and visual data, and is an
example of sensor fusion. The method constructs a local 3D
model from laser scans which, in turn, is visually evaluated
by a stereo vision system to detect incorrect models. In
such cases, the model is corrected with the depth data from
the visual sensor. The method was successfully tested in
simulation and on a real robot navigating a corridor filled
with tables, chairs, and open doors. Although the problems

addressed in sensor fusion works such as [1], [9] are in
essence the same as in this work, those methods require
overlapping readings from camera and laser sensors, which
our method does not.

III. METHOD

Let us define the output of a generic N -point 2D laser
positioned at a height h from floor level as a 1D vector
lh = {lih}Ni=1 where each lih represents an estimate (usually,
in meters) of the distance dih of closest obstacle from the
laser along the direction i at height h. When considering a
specific robot model having a 2D laser sensor positioned at a
fixed height h∗ ∈ [0, H], where 0 is floor level and H is the
robot height, we define the vector x = {xi | xi = lih∗}Ni=1.

In this work we address the problem of predicting robot-
to-obstacle distances, given an N -point 2D range laser ac-
quisition x. The robot-to-obstacle distances are represented
as y = {yi}Ni=1, i.e., in the same space as the input laser x.
Formally, we can define each yi as

yi = min
h∈[0,H]

dih . (1)

In particular, we want to learn the function H : RN → RN
for which H(x) = y. To this end, following the intuition
behind the work by Pfeiffer et al. [10], we propose to train a
fully convolutional autoencoder architecture. An autoencoder
is a deep learning architecture that can be formalized as a
pair of transformations φ and ψ such that:

φ : RN → Rm ,
ψ : Rm → RN .

(2)

Traditionally autoencoders were proposed in unsupervised
settings [11], [12] to reconstruct the input, i.e., to compute
the latent variable z = φ(x) ∈ Rm and then reconstructing
the original input as x = ψ(z), given a loss function L,

φ, ψ = argmin
φ,ψ

L((ψ ◦ φ)x,x) . (3)

In that setting typically m < N , and the signal x is effec-
tively compressed in the representation z. For this reason,
φ and ψ are typically referred to as encoder and decoder
respectively.

In contrast, we propose to use an autoencoder to predict
y instead of reconstructing x. This moves us from an
unsupervised to a supervised learning setup, and for this
reason knowledge of the correct y, i.e., a ground truth, is
required to train the network. We will discuss in detail how
we propose to empirically obtain y in Sect. IV-B.

A. Network architecture

A graphical representation of the proposed network struc-
ture is given in Fig. 2. The encoder φ takes as input a
1D vector x of size N = 128 and passes it through four
1D convolutional layers, with kernel size 5 and stride 2,
connected via BN [13] and ReLU [14] layers. The input
vector x is scaled to the range [0, 1] before feeding it to the
network. The output of the encoder is reshaped to obtain
the latent feature representation z. The decoder ψ has the



x/s z ŷ/s
γ

64× 16

32× 32
16× 64 8× 128 8× 128 16× 64

32× 32

64× 16

φ ψ

+

+

+

Legend: convolution (kernel size: 5, sdride: 2) + batch normalization + ReLU skip connection+

Fig. 2. The proposed fully convolutional autoencoder

same structure as φ, which maps z back to a 1D vector ŷ
of size N through a series of 1D transposed convolutional
(often, improperly, referred to as deconvolutional) layers of
kernel size 5 and stride 2 connected via BN and ReLU. In
the next sections we will discuss some components of the
network architecture and the intuitions rooted in the specific
laser data domain that justifies them. The actual contribution
of these components to the performance of the network is
evaluated in Sect. IV.

B. Skip connections

We propose to connect corresponding convolutional and
deconvolutional layers through skip connections, as shown in
Fig. 2. Previous works [10], [15], [16] demonstrated a two-
folded contribution of such connections: firstly they improve
gradient back-propagation to bottom layers and secondly
they increase the flow of detail information to top layers.

The way skip connections work is that the output of a
convolutional layer in the encoder is added to the output of
the corresponding deconvolutional layer of the same size in
the decoder. The result is then used as the input of the next
deconvolutional layer. This operation allows high frequencies
that are typically lost by the encoder to be passed to the
decoder to produce a more detailed reconstruction.

C. Non-uniform scaling

Both the input laser x and the output obstacle vector
y represent distance measures in meters with values in
range [0, s] where s is the maximum laser distance (in our
work, 30 m). Intuitively, for the robot to safely navigate,
an error in the distance estimate for a closer object is far
more dangerous than for an object far away; for this reason
accurate prediction in the first couple of meters is crucial.
However, when considering the range of a typical laser, the
first couple of meters are residing in a small fraction of the
range. To address this issue, we propose to first scale the
input in the range [0, 1] by linear scaling, and then scale
the output of the last layer of the network ŷ′ by a positive γ
factor, before bringing it back to its original range. Formally,

x′ = x/s , (4)
ŷ′ = (ψ ◦ φ)x′ , (5)
ŷ = s(ŷ′)γ . (6)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ŷ′

ŷ
/
s

γ = 1/4

γ = 1/2

γ = 1

γ = 2

γ = 4

Fig. 3. Effect of different values of γ on the output of the last layer of
the network.

The intuition behind this non-uniform output scaling,
which henceforth is referred to as γ-scaling, comes from
the domain of image processing, where gamma correction is
used to enhance contrast in an image and gamma encoding
is used to optimize the bandwidth used to transport an image
according to the way humans perceive light and color.

The effect of different values of γ is shown in Fig. 3. By
using γ > 1, a greater portion of the range of the last layer of
the network is reserved for the smallest values of the output,
effectively increasing the resolution in that portion of the
range while reducing the resolution for the rest of the output
range. Using 0 < γ < 1 yields the opposite effect instead,
which in our case is not desired.

D. Loss function

Following the same reasoning as in Sect. III-C, we trained
the network using Root Mean Squared Logarithmic Error
(RMSLE) as loss function. RMSLE can be expressed as:

L(ŷ,y) =
√

1
N

∑N
i=1[ln(ŷi + 1)− ln(yi + 1)]2

=
√

1
N

∑N
i=1 ln

2 ŷi+1
yi+1 ;

(7)

it is a common choice for domains in which the desire is to
mitigate the contribution of big errors when numbers are big
themselves.



(a) Room with glass walls (b) Table blocking a door (c) Glass window (d) Table in a corridor (e) Table and chairs

Fig. 4. Examples of scenes encountered while testing on the Care-O-bot 4; the green laser is the original input signal, while the red one is the output
produced in real-time by the proposed algorithm (best viewed in color).

It is important to note that by using γ > 1, the network
imposes variable output resolution to produce smaller errors
for smaller numbers while admitting larger errors for bigger
numbers. It is therefore important to pair this choice with a
loss function that follows the same idea. If Mean Squared
Error (MSE) was used, the error for big numbers could
possibly overshadow more important smaller errors and
negatively impact the learning process.

IV. EXPERIMENTS AND RESULTS

A. Experimental Platform

In this work we used the mobile service robot Care-O-
bot 4 shown in Fig. 1 and Fig. 4. The robot is equipped
with omni-directional wheels and three 2D SICK S300 safety
laser scanners, one at front, one to the left, and one to the
right, with maximum scanning range of 30 m, resolution
of 30 mm and angular resolution of 0.5°. Together all
three lasers scanners enable the robot to sense its 360°
surrounding. Furthermore, the robot is equipped with three
RGBD Asus Xtion cameras located at the front of the robot
together covering a field of view of approximately 90°.
As a consequence, the robot senses only about 90° of its
surrounding with overlapping laser and image sensors while
the remaining 270° are sensed using laser scanners alone.
This sensing limitation motivated the work in this paper
as our method enables inferring robot-to-obstacle distances
from laser data without requiring additional sensors.

B. Dataset

As already mentioned in Sect. III, we are training in a
supervised learning setting, which requires matching pairs

of input laser data x and robot-to-obstacle distance vectors
y. We therefore acquired a dataset composed of laser scans,
serving as input, and corresponding depth images of the same
scene obtained from one of the front-facing cameras on the
Care-O-bot 4. Then, the depth images were projected to 1D
by iteratively taking the closest distance of each column
in the depth image and storing it as the distance vector
estimated by the depth camera. Furthermore, to focus on
obstacles that the robot could collide with, we removed
from the depth images all points that, once converted to the
3D space, were outside the range [ε,H] with ε = 0.05m.
Additionally, as the field of view of a single laser scanner is
about 270° while only 90° are covered by the RGBD sensors,
it was necessary to prune the laser scan until it matches
the field of view of the camera. Once the matching was
complete we obtained two 1D vectors of size N = 128, one
originated from the laser scanner and one obtained from the
depth camera, which we will refer as x and yc respectively.
Then we set y as

y = {yi = min(xi, y
c
i )}Ni=1 . (8)

The final step forces the ground truth to consist of the closest
points from either sensor readings to provide a conservative
estimate of the obstacle distance. An example of x, yc, and
y is shown in Fig. 5.

This approach of generating the ground truth from depth
images provided us with a good estimate of the robot-
to-obstacle distance, did not require manual labeling, and
enabled us to acquire a dataset directly by running the robot
around. However, generating similar ground truth would be
also possible from, for example, an accurate map of the



0 20 40 60 80 100 120
0

5

10

15

20

25

30

i

di
st

an
ce

(m
)

x

yc

y

Fig. 5. Sample data from the training dataset. This reading is taken while
the robot is facing a closed two-panel glass door.

environment, or human labeling.
We gathered the dataset by teleoperating the Care-O-

bot 4 in a university building. We gathered a training set
consisting of 27904 input-output pairs in the second floor
of the building, while the test set was obtained in the third
floor and consists of 11604 input-output pairs. Several of
these locations included glass surfaces, tables and chairs,
e.g., those shown in Fig. 4, whose robot-to-obstacle distance
is incorrectly inferred by the laser scanner but correctly
estimated by the depth image, capturing interesting evalu-
ating scenarios for the network to represent. Although the
two floors present structural similarities, we argue they vary
enough in the overall topology and obstacle content to act
as a good train-test set pair. Nevertheless, in future works
we aim at expanding both the training and test set with data
from various indoor environments.

C. Data augmentation

In other domains [17]–[19] it is known that injection of
noise in the input of the training dataset can improve the
generalization capability of neural networks and encourages
a network to converge to smoother mapping functions. How-
ever, to the best of our knowledge, this has never been
tested when training on laser. Therefore, during training,
we augmented the data by adding random noise sampled
from a Gaussian distribution N (0, σn) to the input. In this
study, we set σn = 0.02m, which is compatible with the
sensor resolution of the Care-O-bot 4. In the next section
we evaluate and discuss the contribution of noise injection
on training performance.

In addition, to further increase variability in the training
set, for each training example, a random 50% chance of
flipping both x and y has been implemented. This way, the
number of samples in the training dataset effectively doubles.

D. Evaluation on test set

All networks evaluated in this work were implemented in
pyTorch 0.3.0 and trained for 2000 epochs on the augmented
training dataset presented in the previous sections by using
shuffled batches of 32 samples. The networks were trained

Fig. 6. 360° laser hallucination; the green laser is the original input signal,
while the red one is the output produced in real-time by the proposed
algorithm (best viewed in color).

using RMSLE as loss function and optimizing with Adaptive
Moment Estimation (Adam) [20].

We are in particular interested in evaluating whether skip
connections, γ-scaling and the injection of noise increase the
performance. To quantitatively evaluate their contributions
and the effective ability of the proposed architecture to learn
the true obstacle distances from laser data, we trained each
network configuration 5 times. The results, in terms of mean
and standard deviation of the RMSLE, are presented in
Tab. I. The configuration n. 0 is taken as baseline, i.e., the
one including all hyperparameters presented in this work.
Configurations n. 1-5 are obtained by changing only one of
the hyperparameters at the time, while configuration n. 6 is
obtained by having all proposed hyperparameters disabled.
This approach enabled us to evaluate the contribution of each
single component to the performance.

From the results presented in Tab. I, it is clearly seen that
among all hyperparameters, the inclusion of skip connections
improves the network performance the most. Additionally, it
can be concluded that using a value of γ > 1 is a good
choice for this domain. However, as is predictable, a too
high value, as in the case of γ = 4, limits improvements
due to exaggerated scaling. Finally, it is interesting to notice
the effect of the inclusion of noise: the negligible deficit to
the average performance it produces is counterbalanced by an
almost halved standard deviation; which seems to confirm the
results presented in [17]–[19], where the main contribution
of injecting noise into the training inputs was claimed
to be an increased ability of the network to learn more
consistent results. Configuration n. 6, i.e., the one having all
hyperparameters excluded, performs the worst, confirming
once more the positive effect all proposed hyperparameters
have on performance.



TABLE I
TEST-SET PERFORMANCE AND PARAMETER CONTRIBUTIONS

Network hyperparameters RMSLE (absolute) RMSLE (relative to n. 0)
n. Skip connections γ σn mean (×10−2) std (×10−3) mean std

0 X 2 0.02 2.865 0.31

1 2 0.02 3.059 1.45 +6.79% +372.81%
2 X 2 2.838 0.57 -0.95% +84.82%
3 X ½ 0.02 2.885 1.27 +0.71% +315.13%
4 X 1 0.02 2.938 1.01 +2.54% +230.12%
5 X 4 0.02 2.869 0.47 +0.13% +52.35%
6 1 3.065 0.76 +6.98% +148.91%

Fig. 7. A problematic sample; the green laser is the original input signal,
while the red one is the output produced in real-time by the proposed
algorithm (best viewed in color).

E. Online testing on the Care-O-bot 4

Based on the quantitative results in Tab. I, the network
with skip connections, γ = 2, and trained with zero mean
Gaussian noise with standard deviation σn = 0.02 provided
the best results. The same network was further tested online
on Care-O-bot 4 in the same office spaces from which the
training and test sets were gathered. The reason for testing
on the same floor as the training set was because this floor
included many challenging situations such as the room with
glass walls and doors presented in Fig. 4a. Additionally we
changed the environment by, for example, relocating tables
to close access to corridors (Fig. 1) and doors (Fig. 4b),
creating situations not present in the training set. Other test
scenarios included a glass window covering an entire wall
(Fig. 4c) and a table with chairs underneath (Fig. 4e).

The figures show that the trained network is able to
hallucinate laser data that better estimates the robot-to-
obstacle distance. Particularly impressive results occur when
the robot faces the room with glass walls in Fig. 4a and
correctly recognizes the door from other walls. It is also
worth pointing out that the network can infer missing laser
data from a small set of points corresponding to obstacles
such as the table in Fig. 4d. Although the network was trained
on data gathered from a 90° viewing angle, it is possible to
hallucinate 360° around the robot as shown in Fig. 6 by
running the network on laser chunks of that size.

In most testing situations the proposed approach produced

(a) (b) (c)

Fig. 8. Comparison of the behaviour of a local planner relying on raw laser
data (b) or on hallucinated laser data (c) while the robot is instructed to plan
a trajectory through a door obstructed by a table; in both pictures the white
area is considered free space, the black areas are considered obstructed,
the blue line is the planner trajectory, the green laser is the original input
signal, while the red one is the output produced in real-time by the proposed
algorithm (best viewed in color).

correct results, even when we changed object locations to
ones the network never saw during training. Nevertheless,
we noticed that the trained network was unable to correctly
infer robot-to-obstacle distance in scenarios greatly different
from the training set. For example, tables were correctly
detected even if moved to new locations as long as they
were parallel to a wall, but if placed perpendicular they were
not correctly detected. Similarly, as shown in Fig. 7, objects
positioned alone in the middle of empty spaces were not
correctly detected. Both these situations were not present
in the training set and were therefore not learned by the
network. To address this issue we want to explore more
thorough data augmentation in the future, for example by
synthetically injecting objects in random positions in the
data. Another interesting network behavior is the tendency
to produce smooth curves even in presence of strong discon-
tinuities. This phenomenon is visible for the doors shown
in Fig. 6, the corridor however was correctly kept open.
Although such behavior is not problematic most of the times,
it can cause navigation issues when planning through a
door, as some navigation goals may seem unreachable. The
smoothing tendency stems from the network topology, and
to overcome it one solution is to more aggressively enforce
non-linearities in the network structure.

Finally, we tested the use of the hallucinated laser for
autonomous local navigation. Fig. 8 shows an example where
the robot was given a navigation goal inside the room. The



planner using only raw laser planned a trajectory through the
table (the blue line in Fig. 8b) which would cause a collision,
while the one relying on the hallucinated laser did not as it
successfully inferred the actual robot-to-obstacle distance as
shown in Fig. 8c.

V. CONCLUSIONS AND FUTURE WORK

Detecting and inferring distance to complex obstacles from
2D laser scans alone is nontrivial but useful for robot safety.
In this work, we presented a method capable of estimating
the robot-to-obstacle distance from raw 2D laser data. This
is achieved by framing the problem as a learning task and
training a DNN to infer the robot-to-obstacle distances from
the laser scans. The key concept is to shape the DNN as
an autoencoder with skip connections between each con-
volutional and deconvolutional layer, enabling the network
to pass detailed information from bottom to top layers.
Furthermore, to generate the actual training and test set we
proposed a method to estimate the true distance to obstacles
by fusing 2D laser data and depth images. Based on the
quantitative evaluation on the test set, the network with skip
connections outperformed the ones without, and by further
adding noise to the input data and shaping the last layer
using a novel non-uniform γ-scaling the overall performance
increased while the standard deviation decreased, resulting in
more robust learning. The real robot test demonstrated that
the trained network was able to infer the robot-to-obstacle
distance in 360° in challenging situations including an entire
wall made of glass windows or from a scarce set of laser
points that corresponded to the obstacle as in the case of
tables.

To the best of our knowledge no prior work has focused
on problems similar to the one presented here, opening up
interesting future research avenues. To improve generaliza-
tion, the training dataset could be augmented by domain
randomization, corresponding to changing location and rota-
tion of objects such as tables, chairs, or windows. To enable
prediction of moving obstacles, for example walking humans,
a temporal component could be included in the network
along the lines of [7]. Finally, the ideas presented in this work
could be integrated with end-to-end training for navigation,
by extending a motion planner similar to the one in [10].

REFERENCES

[1] H. Baltzakis, A. Argyros, and P. Trahanias, “Fusion of laser and visual
data for robot motion planning and collision avoidance,” Machine
Vision and Applications, vol. 15, no. 2, pp. 92–100, Dec. 2003.

[2] F. Bonin-Font, A. Ortiz, and G. Oliver, “Visual Navigation for Mobile
Robots: A Survey,” Journal of Intelligent and Robotic Systems, vol. 53,
p. 263, Nov. 2008.

[3] H. Surmann, A. Nüchter, and J. Hertzberg, “An autonomous mobile
robot with a 3d laser range finder for 3d exploration and digitalization
of indoor environments,” Robotics and Autonomous Systems, vol. 45,
no. 3, pp. 181–198, Dec. 2003.

[4] W. Burgard, A. B. Cremers, D. Fox, D. Haehnel, G. Lakemeyer,
D. Schulz, W. Steiner, and S. Thrun, “Interactive museum tour-
guide robot,” in Proceedings of the National Conference on Artificial
Intelligence. AAAI, 1998.

[5] J. Sergeant, N. Sünderhauf, M. Milford, and B. Upcroft, “Multimodal
Deep Autoencoders for Control of a Mobile Robot,” in Proceedings of
the Australasian Conference on Robotics and Automation 2015 (ACRA
2015). Canberra, Australia: ARAA, 2015, pp. 1–10.

[6] B. Li, T. Zhang, and T. Xia, “Vehicle Detection from 3d Lidar Using
Fully Convolutional Network,” in Robotics: Science and Systems XII,
vol. 12, June 2016.

[7] P. Ondruska and I. Posner, “Deep Tracking: Seeing Beyond Seeing
Using Recurrent Neural Networks,” in Thirtieth AAAI Conference on
Artificial Intelligence, Mar. 2016.

[8] M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner,
“Vote3deep: Fast object detection in 3d point clouds using efficient
convolutional neural networks,” in 2017 IEEE International Confer-
ence on Robotics and Automation (ICRA), May 2017, pp. 1355–1361.

[9] Y. Liao, L. Huang, Y. Wang, S. Kodagoda, Y. Yu, and Y. Liu, “Parse
geometry from a line: Monocular depth estimation with partial laser
observation,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), May 2017.

[10] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena,
“From perception to decision: A data-driven approach to end-to-
end motion planning for autonomous ground robots,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA), May
2017, pp. 1527–1533.

[11] Y. Bengio, Learning Deep Architectures for AI. Now Foundations
and Trends, 2009.

[12] D. D. Testa and M. Rossi, “Lightweight Lossy Compression of Bio-
metric Patterns via Denoising Autoencoders,” IEEE Signal Processing
Letters, vol. 22, no. 12, pp. 2304–2308, Dec. 2015.

[13] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” in PMLR,
June 2015, pp. 448–456.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification,”
in 2015 IEEE International Conference on Computer Vision (ICCV),
Dec. 2015, pp. 1026–1034.

[15] X. Mao, C. Shen, and Y.-B. Yang, “Image Restoration Using Very
Deep Convolutional Encoder-Decoder Networks with Symmetric Skip
Connections,” in Advances in Neural Information Processing Systems
29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
Eds. Curran Associates, Inc., 2016, pp. 2802–2810.

[16] A. Newell, K. Yang, and J. Deng, “Stacked Hourglass Networks for
Human Pose Estimation,” in Computer Vision – ECCV 2016, ser.
Lecture Notes in Computer Science. Springer, Cham, Oct. 2016,
pp. 483–499.

[17] L. Holmstrom and P. Koistinen, “Using additive noise in back-
propagation training,” IEEE Transactions on Neural Networks, vol. 3,
no. 1, pp. 24–38, Jan. 1992.

[18] K. Matsuoka, “Noise injection into inputs in back-propagation learn-
ing,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 22,
no. 3, pp. 436–440, May 1992.

[19] S. Yin, C. Liu, Z. Zhang, Y. Lin, D. Wang, J. Tejedor, T. F. Zheng, and
Y. Li, “Noisy training for deep neural networks in speech recognition,”
EURASIP Journal on Audio, Speech, and Music Processing, vol. 2015,
no. 1, p. 2, Dec. 2015.

[20] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimiza-
tion,” arXiv:1412.6980 [cs], Dec. 2014, arXiv: 1412.6980.


	I Introduction
	II Related works
	III Method
	III-A Network architecture
	III-B Skip connections
	III-C Non-uniform scaling
	III-D Loss function

	IV Experiments and results
	IV-A Experimental Platform
	IV-B Dataset
	IV-C Data augmentation
	IV-D Evaluation on test set
	IV-E Online testing on the Care-O-bot 4

	V Conclusions and future work
	References

